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Abstract
Docosahexaenoic acid is a long-chain polyunsaturated fatty acid that is found in large quantity in
the brain and which has repeatedly been observed to be related in positive ways to both cognitive
function and cardiovascular health. The mechanisms through which docosahexaenoic acid affects
cognition are not well understood, but in this article, we propose a hypothesis that integrates the
positive effects of docosahexaenoic acid in the cognitive and cardiovascular realms through the
autonomic nervous system. The autonomic nervous system is known to regulate vital functions
such as heart rate and respiration, and has also been linked to basic cognitive components related
to arousal and attention. We review the literature from this perspective, and delineate the
predictions generated by the hypothesis. In addition, we provide new data showing a link between
docosahexaenoic acid and fetal heart rate that is consistent with the hypothesis.

1. The effects of DHA
Docosahexaenoic acid (DHA, 22:6n-3) is a long-chain poly unsaturated fatty acid (LC-
PUFA) member of the n-3 fatty acid family found in all cell membranes. Because the
accumulation of fatty acids in cell membranes is influenced by the kind and amount of n-3
fatty acids in the diet, there exists the potential for dietary fatty acids to influence many
physiological functions.

1.1. Cardiovascular function
The best documented effects of DHA are in the realm of cardiovascular function. Studies in
adults have shown that fish consumption and marine LC-PUFA supplementation lowers the
risk of arrhythmias and reduces both blood pressure and heart rate (HR) [1,2]. Increased
heart rate variability (HRV) with greater vagal predominance has also been reported with
consumption of these fatty acids. Reduced HR and increased HRV results in higher stroke
volume (a secondary effect of lower vascular resistance) and improved filling [3]. A meta-
analysis of 30 randomized controlled trials provided evidence that fish oil consumption
effectively lowers HR in humans, either directly or indirectly, by influencing cardiac
electrophysiology and thereby improves autonomic tone, vascular resistance and ventricular
efficiency that ultimately has a favorable effect on cardiovascular health [4].

1.2. Behavioral and cognitive development
It has also been established that DHA is important in early development. Over the past
several decades, evidence has been accumulating on positive effects on sensory, cognitive,
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and behavioral function. The initial outcome measured was visual acuity and that showed
positive effects of DHA status and supplementation, though not in all studies [5]. Less
frequently, clinical trials of DHA supplementation during gestation and infancy have studied
and found benefits on behavioral development, including improved performance on global
developmental tests [6], higher order cognitive tasks and intelligence [7,8].

The biological effects of variable DHA in neuronal membranes include alterations in
membrane biophysics and in the regulation of cell signaling and cell proliferation [9].
However, the causal path through which DHA affects behavioral and cognitive development
is not at all clearly conceptualized. DHA is found in many brain structures [10], so its effects
may be specifically linked to the timing and location of neuronal deposition during
development. Effects on attention have been found with variable DHA exposure or status in
early development [11,12].

Attention is among the most basic cognitive functions. The most fundamental
conceptualization of the construct of attention is as a behavioral state that is closely
associated with concepts of alertness and arousal [13,14] that enhances or facilitates learning
[15]. The brain regions centrally responsible for initiating, sustaining, and modulating
attention are among the same regions that mediate vital functions such as respiration, sleep-
wake cycles, and cardiac activity and control [16].

In this article we will explore and develop the hypothesis that the effects of DHA on cardiac
and cognitive function may be achieved through effects on the autonomic nervous system
(ANS). To accomplish this, we will briefly review the nature of the ANS, the linkages
between cardiac and cognitive function as mediated by the ANS and the relevant literature
on the relation of DHA to ANS function. New data on the association between DHA
supplementation in pregnancy and fetal HR that is in accord with the hypothesis will be
presented. We will end with a delineation of the directions for future study that the
hypothesis suggests.

2. The autonomic nervous system
The ANS maintains internal homeostasis of the organism by regulating functions of heart
muscle, smooth muscle and hormone secretion [17]. The peripheral ANS is separated into
two anatomically and functionally different divisions, the sympathetic nervous system and
the parasympathetic (vagal) nervous system. The peripheral ANS is controlled by the central
nervous system (CNS) through complex neuronal interconnections that form a functional
entity known as the central autonomic network (CAN) [18]. The output of the CAN is
mediated through preganglionic sympathetic and parasympathetic neurons that innervate the
heart via the stellate ganglia and vagus nerve. The interaction of these inputs to the sino-
atrial node of the heart is the source of variability and control of HR; thus HRV is an index
of central-peripheral neural feedback and CNS-ANS integration. Through the CAN, the
brain controls visceromotor, neuroendocrine, pain and behavioral responses essential for
behavior, adaptability and survival [18].

Respiratory sinus arrhythmia (RSA) is the high-frequency HRV linked to the respiratory
cycle and is a reflection of the phasic vagal control of the heart, (i.e., “vagal tone”).
Respiration alters HR via the myelinated vagus, originating in the nucleus ambiguous and
terminating at the sino-atrial node. HR increases during inspiration and decreases during
expiration. On an electro cardiogram, this is seen as a shortening and lengthening of the R-R
interval (heart period) that results in an oscillatory pattern in the HR trace at the same
frequency as the respiratory cycle.
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Recently, the broader health significance of autonomic balance and vagal function has been
recognized. Autonomic imbalance occurs when one branch of the ANS dominates over the
other, more often sympathetic hyperactivity or parasympathetic hypoactivity [19]. When the
inhibitory influences of the parasympathetic nervous system are deficient, an autonomic
imbalance occurs and this has been associated with increased morbidity and all-cause
mortality [20]. The model of neurovisceral integration emphasizes the importance of higher
order brain systems, such as the medial prefrontal cortex, that are involved in cognitive and
affective processes, and proposes that inhibitory control over sympathoexcitatory circuits in
the brainstem is vital to preservation of the organism and key to good health [21].

2.1. The ANS and modulation of HR in development
Early in gestation, fetal HR is primarily under control of the sympathetic nervous system
[22]. As the parasympathetic nervous system matures, fetal HR decreases from an average
175 bpm in the first trimester to 140 bpm at term [23]. With increasing gestational age and
increased influence from the parasympathetic nervous system, HR becomes more variable.
Around 30 weeks gestational age (GA), distinct HR patterns associated with fetal activity
states begin to emerge [24].

Developmental increases in cardiac vagal activity serve as an index of the developmental
changes in the ability of the ANS to mediate physiological and behavioral activity [25]. This
is the precursor for emotional, cognitive and behavioral regulation [26]. There is evidence
that inter-individual differences in HR and HRV persist from prenatal to postnatal life
[27,28]. Measures of heart period (R-R interval) and RSA are frequently used as an index of
the physiological foundation of infant behaviors and to predict later developmental
outcomes [29,30]. There are significant developmental increases in heart period and RSA
from 4 months to 4 years of age [31] which continue until at least 7 years of age[32],
paralleling the development of behavioral self-regulation[33]. Assessing vagal function, as
indexed by RSA, has become a useful and important index of autonomic control and
reactivity in studies of disease, development, and psychological research.

2.2. The ANS and cognition
The ANS has been linked with many cognitive functions, particularly with functions that
facilitate learning. At the turn of the 20th century, the Yerkes-Dodson law [34] articulated
the nature of the relationship between arousal and performance, thus implicitly integrating
ANS output with cognitive ability. ANS functions were subsequently linked to many aspects
of psycho logical function [35]. Perhaps the clearest link between ANS function and the
fundamental steps of information processing involves the physiological changes to the
occurrence of an event [36]. The orienting reflex (OR); which is a cluster of behavioral and
physiological responses that occur in response to a novel or unexpected stimuli, has been
historically linked to exploration and learning [37,38]. When a stimulus occurs, there is a
clear behavioral response that indicates the initiation of attention (i.e., the direction of the
sensory receptors toward the source or location of the stimulus). This behavioral response is
also accompanied by autonomic indicators, such as changes in HR, respiration, skin
conductance, pupil size and motor activity. Subsequent formulations attempted to refine and
dissociate different response components from the autonomically driven OR; for example,
Graham and Clifton [39] concluded that more intense or threatening stimuli tend to activate
the sympathetic nervous system (e.g., cardiac acceleration) while stimuli eliciting interest or
curiosity would activate parasympathetic responses (e.g., cardiac deceleration). The Laceys
[40,41] proposed a similar, but more wide-ranging model termed “directional fractionation,”
in which parasympathetic activation represented stimulus intake, and sympathetic activation
represented stimulus avoidance [42]. In considering the link between ANS function and
cognition, it is critical to note that parasympathetic driven responses (cardiac deceleration,
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slowed respiration, pupil dilation, reduced skin conductance) to stimuli or events have the
presumed effect of reducing random or unwanted “noise” in the CNS, a fundamental
characteristic of attention and a facilitator of learning [13]. Sympathetic activation more
closely characterizes increased arousal which, as noted above, is a more phasic moderator of
cognitive performance.

A discussion of the mechanisms through which ANS and cognitive functions are mediated
are beyond the scope and page limitations of the current paper. It has been suggested that
ANS changes in attention are a result of the behavioral events that occur in response to a
stimulus or event [43]. However, the more widely accepted notion at this time [33,44] posits
that the ANS changes seen at the initiation of cognitive functions such as attention and
arousal are attributable to a common, neurally regulated mechanism. Evidence supports the
existence of such a mechanism at the level of mammalian brain stem organization; this is
mediated by a dual vagal complex and that links autonomic processes in particular with
attention, action, and other psycho logical constructs such as emotion. Indeed, four
ascending brainstem systems have been integrally implicated in attention and arousal, and in
the modulation of various forms of cognitive behavior [45–48]. This suggests that measures
of cardiovascular response to stimuli (in particular, measures of variability such as vagal
tone derived from RSA) will be associated with various developmental and adult cognitive
and affective outcomes. At this point, there is considerable evidence in its favor of this
model [49]. The links between ANS function and cognition are bidirectional; that is,
initiation of physiological changes will produce changes in attention and arousal, and
initiation of attention and arousal will produce changes in ANS indicators.

Infant autonomic control is linked to the degree of maturation and integrity of the ANS.
Small for gestational age and preterm infants with decreased vagal function are more
vulnerable, less able to adjust quickly to stressful stimuli and are shown to have suboptimal
neurodevelopmental outcomes [29,50,51]. Conversely, higher vagal activity and self-
regulation in infants has been positively correlated with higher Bayley scores [52], better
social skills [29], shorter visual fixation duration [53], and increased attention [54].

2.3. DHA and ANS function
DHA is the second most abundant LC-PUFA in the CNS and with arachidonic acid (AA)
constitutes approximately 50% of the total fatty acids in neuronal membrane phospholipids
[9]. The developing fetus receives maternal DHA by transfer across the placenta and DHA
accumulates in the CNS during the third trimester. After birth, the infant receives DHA from
mother’s milk or DHA-supplemented infant formula.

Between 30 and 34 weeks gestational age there is a period of rapid brain growth,
myelination and synaptogenesis. Two important physiologic oscillators emerge during the
third trimester: (1) the sleep-wake cycle where distinct quiet and active states are observed
and (2) increased parasympathetic control over heart rhythms. While studies have
investigated the importance of DHA intake for preterm and term infant visual and cognitive
development, few studies have considered the influence of DHA on ANS maturation and
regulation.

Observational studies of human milk-fed vs. formula-fed infants prior to 2002 when DHA
was added to US infant formulas showed that human milk-fed infants had lower HR and
higher HRV than their bottle formula-fed cohorts [55–57]. Recent experimental studies of
LC-PUFA supplementation in human infants and non-human infant primates suggest that
supplementation during infancy could have positive cardiovascular effects. Healthy Danish
infants were supplemented with fish oil (or no oil) in cow’s milk or infant formula from 9 to
12 months of age. Fish oil supplementation effectively increased red blood cell DHA levels
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and lowered HR with a trend towards higher HRV. These findings suggest that adding fish
oil to the diet had a beneficial effect on HR in healthy infants similar to the effect seen in
adults [58].

Three-year-old Rhesus monkeys fed formulas containing DHA and AA as infants had
significantly higher HRV when under stress than monkeys fed formulas without DHA and
AA [59]. It is notable that the dietary intervention was only from birth until weaning after
which both groups were fed ordinary monkey chow without DHA and AA. Early dietary
supplementation of DHA and AA appears to have induced a cardiac programming effect that
persisted well beyond the period of DHA and AA exposure.

Intrauterine exposure of DHA has also been shown to modulate sleep. Cheruku et al. [60]
studied the sleep patterns of 1–2 day old infants and found that the infants born to women
with higher plasma phospholipid DHA had more mature sleep-state patterning.

Healthy, human milk-fed newborns had superior arousability when newborn
neurobehavioral outcomes were tested using the Brazelton Neonatal Behavioral Assessment
Scale (NBAS). A few investigators have posited that enhanced arousability [61,62] and
higher scores for orientation/engagement, emotional regulation, motor quality and total
behavior scores using the NBAS [63] may be due to components in breast milk, including
DHA. However, maternal breast milk DHA level is a reflection of maternal DHA stores
available to the fetus during intrauterine transfer therefore; the positive behavioral effects
seen in these studies are likely due to increased availability to the fetus in the 3rd trimester
as opposed to DHA intake from breast milk after birth.

There have been several calls to examine the constructs of arousal and attention in studies of
LC-PUFA status and supplementation in infancy and childhood [6,59]. Measures of
attention appear to be particularly sensitive to DHA status, as evidenced by a number of
studies showing positive results in infancy [11,12,64–66]. One study showed
supplementation as specifically improving sustained attention performance in late childhood
[67] although another showed improvements in most cognitive measures except attention
[68].

There have been reports of abnormal LC-PUFA (DHA and/or AA) profiles in children with
attention-deficit disorder [69–72]. These have motivated studies of remediation with
supplementation of DHA, AA and/or gamma linolenic acid. Such supplementation
universally increased LC-PUFAs in a positive direction; however, remediation was
associated with improvement in symptoms in some [73,74] but not other trials [75,76].

3. New data: fetal HR and DHA supplementation
Fetal biomagnetometry has emerged as a reliable and sensitive tool for monitoring fetal
ANS development [77–79]. Biomagnetic cardiac signals (magnetocardiogram or MCG) are
measured by a detector that is inductively coupled to a superconducting quantum
interference device (SQUID) that acts as a low-noise, high-gain, current-to-voltage
converter. Fetal MCG offers the precision required for measures of HRV based on accurate
detection of R-R intervals from 24 weeks GA to term. We have used MCG to obtain
measures of fetal HR, HRV and fetal movements as part of a fetal neurobehavioral
assessment [80].

The study was approved by the University of Kansas Medical Center Human Subjects
Committee (protocol #9297). A total of 40 subjects were studied between 24 and 38 weeks
gestation. The MCG was recorded using an investigational 83 channel dedicated fetal
biomagnetometer (CTF systems, subsidiary of VSM MedTech Ltd.) housed in a
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magnetically shielded room to reduce the interference from external environmental magnetic
fields. The data were acquired with a 300 Hz sampling rate over an 18min recording session
and digitally filtered offline. Multivariate data were presented to an Infomax ICA algorithm
implemented in EEGLAB toolbox [81] in order to separate contributions from spatially
distinct electrophysiologic sources. The fiducial points (R peaks) were automatically
estimated by a template matching algorithm applied on the root-mean-square signal across
channels. False negative and false positive detections were manually corrected. Fetal activity
state was determined from the HR pattern [82]. Indices of HRV were determined from
Poincaire plots [83] where SD1 is a measure of short-term HRV, SD2 is a measure of
overall HRV and the SD1:SD2 ratio is a measure of sympatho- vagal balance.

We recorded maternal prenatal vitamin and supplement use. All women reported taking
prenatal vitamins. Out of these women, 10 reported consuming DHA or DHA/EPA
supplements based on the recommendation of their health care provider or by their own
choice. The average daily dose of DHA was 200 mg. All 10 women took the supplements
during the 2nd and 3rd trimester. Fetal sex, activity state and GA were matched to an
unsupplemented fetus and mean HR and HRV indices were compared. When possible,
subjects were followed longitudinally but it was not possible to obtain data at every time
point in all subjects. The total number of subjects (supplemented plus unsupplemented
control) for each GA tested are: 24 wks n = 6, 28 wks n = 16, 32wks n = 18, 36 wks n = 16,
38 wks n = 12.

Fetal HR from 24 to 38 weeks GA is shown in Fig. 1. There was no group difference in fetal
HR at 24 and 28 weeks. However, from 32 to 38 weeks, fetal HR was significantly lower in
the supplemented group when compared to unsupplemented. (32 wks, p = .01, 36wks, p = .
02, 38 wks, p = .03). Overall HRV (SD2) and the SD1:SD2 ratio did not differ between
groups (data not shown). There was no difference in short-term HRV (SD1) at 24 and 28
weeks GA but at 32 weeks, short-term variability was higher in the supplemented group and
this persisted to term. The difference was significant at 36 weeks (p = .02) (Fig. 2).

These are preliminary data and, as such, have several limitations. This was a convenience
sample of women who consumed DHA or DHA/EPA supplements during the 2nd and 3rd
trimester of pregnancy, drawn from a larger pool of women with uncomplicated, singleton
pregnancies. DHA intake was not controlled or monitored, there was no placebo group and
we have no measure of maternal DHA status in either group. However, our preliminary,
observational findings suggest that maternal DHA or DHA/EPA supplementation during
pregnancy may result in lower fetal HR and higher cardiac vagal control and a larger,
controlled study is planned.

4. Summary and conclusions
There were three aims of this paper. The first was to propose a hypothesis that sought to
integrate the effects of DHA seen in both the cardiovascular and cognitive realms. This was
done by invoking mechanisms common to the ANS which serves both vital physiological
functions as well as fundamental steps in the initiation of information processing. Second,
we sought to develop this hypothesis by reviewing the literature on the effects of DHA and
links between ANS, DHA and cognitive function. Finally, we provided new data showing
possible relations between prenatal DHA or DHA/EPA supplementation and fetal cardiac
measures that are consistent with the hypothesis. We realize that we have made a series of
preliminary arguments here, but it is our hope that this paper will spur researchers to
consider the involvement of the ANS as a basic system that is affected by DHA we well as a
mechanism through which DHA affects both physiological and behavioral outcomes,
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Furthermore, we hope that researchers will also seek to include measures of autonomic
function in studies of DHA supplementation and status in the future.
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Fig. 1. Mean fetal HR(±1 SD) in control (unsupplemented) and supplemented groups across
gestational age
Mean HR for the supplemented group begins to diverge from the control group at 32 weeks
and is consistently and significantly lower at 32, 36 and 38 weeks.
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Fig. 2. Short term heart rate variability
There is no group difference in Poincare SD1, a measure of short term heart rate variability,
between 24 and 28 weeks GA. At 32 weeks, short term HRV is higher in the supplemented
group, significant at 36 weeks.
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