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Abstract
A genome-wide association study of educational attainment was conducted in a discovery sample
of 101,069 individuals and a replication sample of 25,490. Three independent SNPs are genome-
wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects
sizes are small (R2 ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic
score from all measured SNPs accounts for ≈ 2% of the variance in both educational attainment
and cognitive function. Genes in the region of the loci have previously been associated with
health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the
involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for
follow-up work, and our effect size estimates can anchor power analyses in social-science
genetics.

Twin and family studies suggest that a broad range of psychological traits (1), economic
preferences (2–4), and social and economic outcomes (5) are moderately heritable.
Discovery of genetic variants associated with such traits leads to insights regarding the
biological pathways underlying human behavior. If the predictive power of a set of genetic
variants considered jointly is sufficiently large, then a “risk score” that aggregates their
effects could be useful to control for genetic factors that are otherwise unobserved, or to
identify populations with certain genetic propensities, for example in the context of medical
intervention (6).

To date, however, few if any robust associations between specific genetic variants and
social-scientific outcomes have been identified likely because existing work [for review see
(7)] has relied on samples that are too small [for discussion, see (4, 6, 8, 9)]. In this paper,
we apply to a complex behavioral trait—educational attainment—an approach to gene
discovery that has been successfully applied to medical and physical phenotypes (10),
namely meta-analyzing data from multiple samples. The phenotype of educational
attainment is available in many samples with genotyped subjects (5). Educational attainment
is influenced by many known environmental factors, including public policies. Educational
attainment is strongly associated with social outcomes, and there is a well-documented
health-education gradient (5, 11). Estimates suggest that around 40% of the variance in
educational attainment is explained by genetic factors (5). Furthermore, educational
attainment is moderately correlated with other heritable characteristics (1), including
cognitive function (12) and personality traits related to persistence and self-discipline (13).

To create a harmonized measure of educational attainment, we coded study-specific
measures using the International Standard Classification of Education (ISCED 1997) scale
(14). We analyzed a quantitative variable defined as an individual’s years of schooling
(EduYears) and a binary variable for college completion (College). College may be more
comparable across countries, whereas EduYears contains more information about individual
differences within countries.

A genome-wide association study (GWAS) meta-analysis was performed across 42 cohorts
in the discovery phase. The overall discovery sample comprises 101,069 individuals for
EduYears and 95,427 for College. Analyses were performed at the cohort level according to
a pre-specified analysis plan, which restricted the sample to Caucasians (to help reduce
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stratification concerns). Educational attainment was measured at an age at which subjects
were very likely to have completed their education [over 95% of the sample was at least 30;
(5)]. On average, subjects have 13.3 years of schooling, and 23.1% have a college degree.
To enable pooling of GWAS results, all studies conducted analyses with data imputed to the
HapMap 2 CEU (r22.b36) reference set. To guard against population stratification, the first
four principal components of the genotypic data were included as controls in all the cohort-
level analyses. All study-specific GWAS results were quality controlled, cross-checked, and
meta-analyzed using single genomic control and a sample-size weighting scheme at three
independent analysis centers.

At the cohort level, there is little evidence of general inflation of p-values. As in previous
GWA studies of complex traits (15), the Q-Q plot of the meta-analysis exhibits strong
inflation. This inflation is not driven by specific cohorts and is expected for a highly
polygenic phenotype even in the absence of population stratification (16).

From the discovery phase, we identified one genome-wide significant locus (rs9320913, p =
4.2 × 10−9) and three suggestive loci (defined as p < 10−6) for EduYears. For College, we
identified two genome-wide significant loci (rs11584700, p = 2.1 × 10−9, and rs4851266, p
= 2.2 × 10−9) and an additional four suggestive loci (Table 1). We conducted replication
analyses in 12 additional, independent cohorts that became available after the completion of
the discovery meta-analysis, using the same pre-specified analysis plan. For both EduYears
and College, the replication sample comprises 25,490 individuals.

For each of the ten loci that reached at least suggestive significance, we brought forward for
replication the SNP with the lowest p-value. The three genome-wide significant SNPs
replicate at the Bonferroni-adjusted 5% level, with point estimates of the same sign and
similar magnitude (Fig. 1 and Table 1). The seven loci that did not reach genome-wide
significance did not replicate (the effect went in the anticipated direction in 5 out of 7 cases).
The meta-analytic findings are not driven by extreme results in a small number of cohorts
(see phet in Table 1), by cohorts from a specific geographic region (figs. S7 to S15), or by a
single sex (figs. S3 to S6). Given the high correlation between EduYears and College (5), it
is unsurprising that the set of SNPs with low p-values exhibit considerable overlap in the
two analyses (tables S8 and S9).

The observed effect sizes of the three replicated individual SNPs are small [see (5) for
discussion]. For EduYears, the strongest effect identified (rs9320913) explains 0.022% of
phenotypic variance in the replication sample. This R2 corresponds to a difference of ~1
months of schooling per allele. For college completion, the SNP with the strongest estimated
effect (rs11584700) has an odds ratio of 0.912 in the replication sample, equivalent to a 1.8
percentage-point difference per allele in the frequency of completing college.

We subsequently conducted a “combined stage” meta-analysis, including both the discovery
and replication samples. This analysis revealed additional genome-wide significant SNPs:
four for EduYears and three for College. Three of these newly genome-wide significant
SNPs (rs1487441, rs11584700, rs4851264) are in linkage disequilibrium with the replicated
SNPs. The remaining four are located in different loci and warrant replication attempts in
future research: rs7309, a 3′UTR variant in TANK; rs11687170, close to GBX2; rs1056667,
a 3′UTR variant in BTN1A1; and rs13401104 in ASB18.

Using the results of the combined meta-analyses of discovery and replication cohorts, we
conducted a series of complementary and exploratory supplemental analyses to aid in
interpreting and contextualizing the results: gene-based association tests; eQTL analyses of
brain and blood tissue data; pathway analysis; functional annotation searches; enrichment
analysis for cell-type-specific overlap with H3K4me3 chromatin marks; and predictions of
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likely gene function using gene-expression data. Table S20 summarizes promising candidate
loci identified through follow-up analyses (5). Two regions in particular showed convergent
evidence from functional annotation, blood cis-eQTL analyses, and gene-based tests:
chromosome 1q32 (including LRRN2, MDM4, and PIK3C2B) and chromosome 6 near the
Major Histocompatibility Complex (MHC). We also find evidence that in anterior caudate
cells, there is enrichment of H3K4me3 chromatin marks (believed to be more common in
active regulatory regions) in the genomic regions implicated by our analyses (fig. S20).
Many of the implicated genes have previously been associated with health, central nervous
system, or cognitive-process phenotypes in either human-GWAS or model-animal studies
(table S22). Gene co-expression analysis revealed that several implicated genes (including
BSN, GBX2, LRRN2, and PIK3C2B) are likely involved in pathways related to cognitive
processes (such as learning and long-term memory) and neuronal development or function
(table S21).

Although the effects of individual SNPs on educational attainment are small, many of their
potential uses in social science depend on their combined explanatory power. To evaluate
the combined explanatory power, we constructed a linear polygenic score (5) for each of our
two education measures using the meta-analysis results (combining discovery and
replication), excluding one cohort. We tested these scores for association with educational
attainment in the excluded cohort. We constructed the scores using SNPs whose nominal p-
values fall below a certain threshold, ranging from 5 × 10−8 (only the genome-wide
significant SNPs were included) to 1 (all SNPs were included).

We replicated this procedure with two of the largest cohorts in the study, both of which are
family-based samples (QIMR and STR). The results suggest that educational attainment is a
highly polygenic trait (Fig. 2 and table S23): the amount of variance accounted for increases
as the p-value threshold becomes less conservative (i.e., includes more SNPs). The linear
polygenic score from all measured SNPs accounts for ≈ 2% (p = 1.0 × 10−29) of the variance
in EduYears in the STR sample and ≈ 3% (p = 7.1 × 10−24) in the QIMR sample.

To explore one of the many potential mediating endophenotypes, we examined how much
the same polygenic scores (constructed to explain EduYears or College) could explain
individual differences in cognitive function. While it would have been preferable to explore
a richer set of mediators, this variable was available in STR, a dataset where we had access
to the individual-level genotypic data. Cognitive function had been measured in a subset of
males using the Swedish Enlistment Battery (used for conscription) (5, 17). The estimated
R2 ≈ 2.5% (p < 1.0 × 10−8) for cognitive function is actually slightly larger than the fraction
of variance in educational attainment captured by the score in the STR sample. One possible
interpretation is that some of the SNPs used to construct the score matter for education
through their stronger, more direct effects on cognitive function (5). A mediation analysis
(table S24) provides tentative evidence consistent with this interpretation.

The polygenic score remains associated with educational attainment and cognitive function
in within-family analyses (table S25). Thus, these results appear robust to possible
population stratification.

If the size of the training sample used to estimate the linear polygenic score increased, the
explanatory power of the score in the prediction sample would be larger because the
coefficients used for constructing the score would be estimated with less error. In (5), we
report projections of this increase. We also assess, at various levels of explanatory power,
the benefits from using the score as a control variable in a randomized educational
intervention (5). An asymptotic upper bound for the explanatory power of a linear polygenic
score is the additive genetic variance across individuals captured by current SNP
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microarrays. Using combined data from STR and QIMR, we estimate that this upper bound
is 22.4% (S.E. = 4.2%) in these samples (5) (table S12).

Placed in the context of the GWAS literature (10), our largest estimated SNP effect size of
0.02% is over an order of magnitude smaller than those observed for height and BMI: 0.4%
(15) and 0.3% (18) respectively. While our linear polygenic score for education achieves an
R2 of 2% estimated from a sample of 120,000, a score for height reached 10% estimated
from a sample of 180,000 (15), and a score for BMI using only the top 32 SNPs reached
1.4% (18). Taken together, our findings suggest that the genetic architecture of complex
behavioral traits is far more diffuse than that of complex physical traits.

Existing claims of “candidate gene” associations with complex social-science traits have
reported widely varying effect sizes—many with R2 values more than one hundred times
larger than those we find (4, 6). For complex social-science phenotypes that are likely to
have a genetic architecture similar to educational attainment, our estimate of 0.02% can
serve as a benchmark for conducting power analyses and evaluating the plausibility of
existing findings in the literature.

The few GWAS studies conducted to date in social-science genetics have not found
genome-wide significant SNPs that replicate consistently (19, 20). One commonly proposed
solution is to gather better measures of the phenotypes in more environmentally
homogenous samples. Our findings demonstrate the feasibility of a complementary
approach: identify a phenotype that, although more distal from genetic influences, is
available in a much larger sample [see (5) for a simple theoretical framework and power
analysis]. The genetic variants uncovered by this “proxy-phenotype” methodology can then
serve as a set of empirically-based candidate genes in follow-up work, such as tests for
associations with well-measured endophenotypes (e.g., personality, cognitive function),
research on gene-environment interactions, or explorations of biological pathways.

In social-science genetics, researchers must be especially vigilant to avoid
misinterpretations. One of the many concerns is that a genetic association will be
mischaracterized as “the gene for X,” encouraging misperceptions that genetically
influenced phenotypes are immune to environmental intervention [for rebuttals, see (21, 22)]
and misperceptions that individual SNPs have large effects (which our evidence
contradicts). If properly interpreted, identifying SNPs and constructing polygenic scores are
steps toward usefully incorporating genetic data into social-science research.

Supplementary Material
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Fig. 1.
Regional association plots of replicated loci associated with educational attainment [(A):
rs9320913, (B): rs11584700, (C): rs4851266]. The plots are centered on the SNPs with the
lowest p-values in the discovery stage (purple diamond). The R2 values are from the CEU
HapMap 2 samples. The CEU HapMap 2 recombination rates are indicated with a blue line
on the right-hand y-axis. The figures were created with LocusZoom (http://
csg.sph.umich.edu/locuszoom/).
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Fig. 2.
Solid lines show results from regressions of EduYears on linear polygenic scores in a set of
unrelated individuals from the QIMR (N = 3526) and STR (N = 6770) cohorts. Dashed lines
show results from regressions of Cognitive function on linear polygenic scores in a sample
from STR (N = 1419). The scores are constructed from the meta-analysis for either
EduYears or College, excluding the QIMR and STR cohorts.
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