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Abstract

Helicobacter bilis (H. bilis) infection is associated with cases of inflammatory bowel Disease, thyphlocolitis, hepatitis
and cholecystitis. However, little is known about the bacterial virulence determinants or the molecular mechanisms
involved. Recently, H. bilis γ-glutamyltranspeptidase (HBgGT) was shown to be a virulence factor decreasing host
cell viability. Bacterial gGTs play a key role in synthesis and degradation of glutathione and enables the bacteria to
utilize extracellular glutamine and glutathione as sources of glutamate. gGT-mediated loss of cell viability has so far
been linked to DNA damage via oxidative stress, but the signaling cascades involved herein have not been
described. In this study, we identified enhanced ROS production induced by HBgGT as a central factor involved in
the activation of the oxidative stress response cascades, which finally activate CREB, AP-1 and NF-κB in H. bilis
infected colon cancer cells. IL-8, an important pro-inflammatory chemokine that is a common downstream target of
these transcription factors, was up-regulated upon H. bilis infection in an HBgGT dependent manner. Moreover, the
induction of these signaling responses and inflammatory cytokine production in host cells could be linked to HBgGT-
mediated glutamine deprivation. This study implicates for the first time HBgGT as an important regulator of signaling
cascades regulating inflammation in H. bilis infected host epithelial cells that could be responsible for induction of
inflammatory disorders by the bacterium.
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Introduction

Helicobacter bilis (H. bilis), an enterohepatic Helicobacter
species, is endemic in most mouse facilities and may induce
disease in susceptible animals [1]. The bacterium possesses
one of the broadest host spectra of the Helicobacter genus [2],
and H. bilis infection has been associated with a higher
incidence of typhlocolitis [3,4], Inflammatory Bowel Disease
(IBD) [5], hepatitis [6], and cholecystitis [7] in animals. In
humans, it has been associated with chronic liver diseases
[7,8] and biliary tract and gall bladder cancer [9,10] as well as
chronic diarrhea [11] and pyoderma gangrenosum-like ulcers
[12]. Chronic inflammation is the underlying cause in many
hepatobiliary and gastroenteric disorders, predisposing the
tissue to malignant changes. The deregulation of pro-
inflammatory chemokines and cytokines such as TNFα, IL-8,
IL-6 as well as enzymes such as cyclooxygenase 2 (COX-2)
and inducible nitric oxide synthase (iNOS) are frequently

implicated in chronic inflammation [13–16]. IL-8 and TNFα up-
regulation are a hallmark of IBD [14]. IL-8 functions as a
chemoattractant, and is also a potent angiogenic factor [17],
which is secreted in large amounts in response to infection and
oxidative stress, recruiting inflammatory cells. This in turn
results in an additional increase in oxidative stress mediators,
making it a key player in localized inflammation [18]. IL-8 is
regulated by different transcription factors responding to
oxidative stress, including NF-κB, AP-1 and CREB, which
directly bind to the IL-8 promoter [19].

NF-κB and CREB transcriptional activities are activated upon
infection of bile duct cells with H. bilis [20], suggesting an
involvement of those transcription factors in the induction of
disease upon H. bilis infection. Although AP-1 activation has
not been described in response to H. bilis infections,
concomitant activation of AP-1 and NF-κB is often observed
during inflammatory diseases, where both transcription factors
determine the cytokine gene activation profiles and activity of
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disease [21]. Moreover, up-regulation of these transcription
factors by H. pylori is central to the inflammation induced by
this bacterium [22].

Although activation of NF-κB and CREB has been described
in H. bilis infection, the bacterial factors responsible for this
induction are unknown. H. bilis harbors many virulence factors
including urease and cytolethal distending toxin, whose specific
function during H. bilis infection has not been explored yet
[23,24]. Recently, gamma-glutamyl transpeptidase (gGT) has
been described as a novel H. bilis virulence factor. H. bilis
genome encodes for two putative gGT sequences, only one of
which was found to be functionally active and similar in function
to H. pylori gGT (HPgGT) in its ability to affect gastric epithelial
cell viability [25]. HPgGT represents an important virulence
factor of H. pylori since it plays an essential role in the
colonization of the gastric mucosa and predisposes infected
individuals to a higher risk of developing peptic ulcer [26,27].
Furthermore, during H. pylori infection, gGT has been
described to induce oxidative stress and is one of the bacterial
virulence factors responsible for inducing the pro-inflammatory
chemokine IL-8 in epithelial cells [27,28]. On the other hand,
the effects induced by H. bilis gGT (HBgGT) remain largely
unknown. Despite the increasing evidence implicating
Helicobacter gGT in enhanced bacterial virulence, not much
effort has gone into elucidating the mechanism of action of this
important bacterial enzyme. Thus, gGT-modulated host cell
changes leading to inflammation and disease remain mostly
elusive. Shibayama et al. proposed that HPgGT may lead to
depletion of the antioxidants glutamine and glutathione by gGT
enzymatic activity [29]. Interestingly, glutamine depletion has
been also implicated in the activation of NF-κB and AP-1
pathways and enhanced IL-8 production by human breast
cancer cell line TSE [30]. The presence of gGT in other
Helicobacter spp. underlines its importance in bacterial
metabolism and its possible role in inducing inflammatory
diseases prevalent in Helicobacter infection. Therefore, we
aimed at analyzing the effect of HBgGT in colon cancer cells
regarding the mechanism involved in induction of
transcriptional alterations mediated by oxidative stress
signalling as well as possible changes in downstream gene
expression.

Results

HBgGT up regulates ROS production in colon cancer
cells

Generation of reactive oxygen species (ROS) by glutathione
hydrolysis has been reported for gGTs from H. pylori and H.
suis [31]. We have previously demonstrated similar functional
conservation between HPgGT and HBgGT with respect to their
immune-evasive potential, which raised the question whether
HBgGT might also be involved in the induction of oxidative
stress in epithelial cells. We first examined the generation of
intracellular superoxide anion radicals (O2-) after infection of
DLD-1 and HCT116 colon cancer epithelial cell lines with H.
bilis. Increased accumulation of blue formazan crystal
precipitates, which form after superoxide radicals accumulate
in the cells under oxidative stress, was observed in cells

infected with H. bilis when compared to control cells (Figure 1A
and 1B). The specific contribution of HBgGT on ROS
production was analyzed by infecting the cells with a gGT
deficient H. bilis strain, which induced markedly diminished
superoxide production (Figure 1A and 1B. For characterization
of the ΔgGT H. bilis see Methods and Figures S1A and S1B),
indicating that the presence of gGT in H. bilis significantly
enhances O2- production from HCT116 (p= 0.0098) and DLD-1
(p=0.024) infected cells.

To assess the ability of HBgGT enzyme alone to induce
ROS, colon cancer cells were treated with the recombinant
HBgGT or the heat-inactivated protein, defective in catalytic
activity (Figures S1C and S1D). HBgGT-treated colon cancer
cells exhibited a significantly enhanced formazan precipitate
accumulation compared to the untreated control cells (p=0.011
in HCT116 and p=0.0255 in DLD-1 cells), while the inactive
enzyme showed no ROS induction compared to untreated
control cells (Figure 1A and 1B).

H. bilis Induces gGT-Dependent Oxidative Stress
Signaling in Colon Cancer Cells

Accumulation of ROS has been shown to result in activation
of oxidative stress-induced cascades. In order to analyze if
HBgGT induces oxidative stress signaling, colon cancer cells
were transiently transfected with a luciferase reporter plasmid
containing binding sites for transcription factors involved in
cellular stress responses including oxidative stress.
Specifically, NF-κB, AP-1 and CREB transcriptional activity was
tested after H. bilis infection at multiplicity of infection (MOI) 5
and 50. Cells were also infected with a gGT deficient bacterium
to differentiate between gGT-related effects and those related
to other virulence factors. H. bilis-infected HCT116 cells
exhibited a significant increase in NF-κB (p<0.001), AP-1
(p=0.032) and CREB (p=0.05) transcriptional activities (Figure
2A), and this effect was dose dependent, as an increase in
MOI resulted in higher transcriptional activity. Significantly
lower levels of NF-κB (p<0.001), AP-1 (p=0.05) and CREB
(p=0.048) transcriptional activity were detected when the ΔgGT
strain was used at the same MOI. Similar results were obtained
with the DLD-1 cell line in the NF-κB and AP-1 reporter assays
(Figure S2A); however, high endogenous CREB activation
levels compromised the inducibility of CREB in this cell line
after treatment (data not shown). To assess CREB levels after
H. bilis infection, LS174T cells were used instead (Figure S2A),
which also demonstrated NF-κB and AP-1 transcriptional
activation after H. bilis infection (data not shown). Activation of
NF-κB, AP-1 and CREB was also confirmed using the
recombinant active and heat-inactivated HBgGT enzyme (data
not shown).

We next investigated the upstream signaling events leading
to activation of the respective transcription factors. Here, we
also observed that IκBα phosphorylation, c-jun protein levels
and phosphorylation of CREB were induced in a gGT-
dependent manner when HCT116 (Figure 2B), DLD-1 and
LS174T cells (Figure S2B) were infected with H. bilis wild type,
but not with the gGT deficient bacterium. Moreover, decreased
p65 nuclear translocation could be observed in cells co-
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cultured with H. bilis ΔgGT compared to the wild type as
detected by immunofluorescence (Figure 2C).

Taken together, these results indicate that activation of NF-
κB, AP-1 and CREB signaling pathways is mostly dependent
on gGT activity upon H. bilis infection.

To further substantiate the gGT involvement in the activation
of these pathways, cell co-cultures with the H. bilis ΔgGT
bacterium were supplemented with the recombinant HBgGT
enzyme. Addition of HBgGT to these co-cultures significantly
enhanced the transcriptional activation of NF-κB in H. bilis
ΔgGT-infected HCT116 cells (p=0.028) (Figure 3A) compared
to the ones infected with the gGT deficient bacterium only. A
similar increase in AP-1 (p=0.05) and CREB (p=0.011)
transcriptional activities in H. bilis ΔgGT-infected and HBgGT-
supplemented cells were observed. However, the increase in
the transcriptional activity after HBgGT supplementation of the
gGT deficient bacterium did not reach the activation levels
observed after infection with wild type H. bilis, suggesting the
need for continuous gGT secretion from the bacterium during
infection to fully activate host signaling cascades. Comparable
results were obtained with DLD-1 and LS174T cells (Figure
3B). It must be noted that although the supplementation of
recombinant HBgGT was able to enhance CREB
transcriptional activation in LS174T cells, the increase was not
significant. This could be attributed to the differential inducibility
and sensitivity of the different cell lines to treatment. As
observed previously, these transcriptional changes were
accompanied by increased phosphorylation of IκBα and CREB,
as well as enhanced levels of c-jun after HBgGT addition to H.
bilis ΔgGT (data not shown) supporting an involvement of
HBgGT in the activation of these signaling pathways.

HBgGT enhances H. bilis-induced IL-8 production from
epithelial cells

IL-8 plays an important role as a mediator of the innate
immune response to different bacteria including some
Helicobacter species. Since transcriptional activation of NF-κB,
AP-1 and CREB was induced by HBgGT and binding sites for
these three transcription factors have been identified in the IL-8
promoter, we sought to investigate whether H. bilis infection
was able to trigger IL-8 secretion from epithelial cells in a gGT
dependent manner. Therefore, IL-8 content in supernatants
from colon cancer cells infected with H. bilis or treated with
recombinant gGT was measured by ELISA. Exposure of cells
to H. bilis bacteria or recombinant HBgGT significantly induced
IL-8 secretion in HCT116 (p<0.001) and DLD-1 (p<0.001) cells
in contrast to the cells treated with the inactive gGT (Figure 4A
and 4B). While the gGT deficient bacterium was also able to
induce IL-8 secretion from HCT116 (p= 0,033) and DLD-1
(p<0.001) cells, the IL-8 release was significantly lower
compared to that induced by gGT proficient bacteria. This
suggests that although gGT significantly enhances the IL-8
production from epithelial cells, it is not the only bacterial factor
contributing to IL-8 production from H. bilis infected cells.

Regulation of gGT-mediated transcriptional activation
involves glutamine deprivation

We next investigated the mechanism by which HBgGT could
induce ROS production and activation of the NF-κB, AP-1 and
CREB signaling cascades. Since gGT is able to hydrolyze
glutamine (and to a lesser extent glutathione) as a substrate to
be utilized in bacterial glutamate synthesis, depletion of
extracellular glutamine due to HBgGT enzymatic activity might

Figure 1.  Superoxide production induced by HBgGT in colon cancer cells.  A) NBT assay visualization of formazan crystal
formation in HCT116 and DLD-1 cells in response to wild type and gGT deficient H. bilis infection for 20 hours at MOI 50. Cells were
also treated with recombinant HBgGT (5µg/ml) or inactive HBgGT (5µg/ml) for 20 hours. Following treatment, cells were stained for
formazan crystals (dark blue) and counterstained with safranin. TNFα (20ng/ml) was used as a positive control.
B) Quantification of crystal formation in HCT116 and DLD-1 cell lysates at OD 650. Results are expressed as mean of three
independent experiments normalized to the untreated control. *p<0.05, **p<0.005, ***p<0.0005. Asterisks on top of bars indicate
significance relative to untreated control; asterisks on bars indicate significance level between indicated conditions.
doi: 10.1371/journal.pone.0073160.g001
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be an important factor impairing the redox balance of the host
cell, thereby rendering it prone to ROS generation and
activation of related signaling pathways. Indeed, we could
confirm that glutamine deprivation was able to trigger
transcriptional activities of NF-κB (p<0.001), AP-1 (p=0.027)
and CREB (p<0.001) in HCT116 cells cultured in glutamine
free medium for 24 hours (Figure 5A). Moreover, the addition of
glutamine to H. bilis-infected cells was able to significantly
lower the transcriptional activities of NF-κB (p<0.001) as well
as of AP-1 (p=0.016) and CREB (p=0.001), while infection
under glutamine-depleted conditions led to cell death (data not
shown). Optimal amounts of supplementary L-glutamine to be
added for successful protection against stress response
activation were pre-determined using a dose response curve to
IL-8 (Figure S4). It must be noted that glutamine was not able
to completely reverse these inductions to the levels observed
with the deletion mutant. Such reduced activation of the NF-κB,

AP-1 and CREB pathways was accompanied by a significant
decrease in IκBα and CREB phosphorylation and reduced total
c-jun levels after addition of glutamine to infected cells
compared to the infected cells alone (Figure 5B). A similar
effect was observed in DLD-1 and LS174T cells as shown in
Figures S3A and S3B. These results indicate that HBgGT-
induced transcriptional changes in host cells partially occur
through glutamine deprivation.

Furthermore, glutamine deprivation by itself induced a
significant increase in the levels of intracellular superoxide
anion radicals in colon cancer cells (Figure 5C and Figure 5D).
In contrast, glutamine supplementation of H. bilis-infected
DLD-1 cells significantly reduced ROS production (p= 0.046),
indicating that HBgGT enhances oxidative stress partly by
glutamine depletion. We therefore conclude that HBgGT
enzymatic activity-dependent glutamine depletion is the initial
step in inducing ROS and oxidative stress response. This

Figure 2.  Activation of oxidative stress-associated signaling pathways upon H. bilis infection.  A) NF-κB, AP-1 and CREB
transcriptional activity in gGT proficient and gGT deficient H. bilis infected HCT116 colon cancer cells. Transiently transfected
HCT116 cells with corresponding luciferase reporter plasmids were co-cultured with H. bilis and H. bilis ΔgGT at MOI 5 and 50 for
24 hours. Bars represent mean of relative luciferase values to renilla of 3 independent experiments normalized to the untreated
control. *p<0.05, **p<0.005. Asterisks on top of bars indicate significance relative to untreated control; asterisks on bars indicate
significance level between indicated conditions.
B) p-IκBα (40 kDa), c-jun (48kDa) and p-CREB (43 kDa) protein levels detected by western blot. HCT116 cells were lysed after 10
hours of infection at the MOI indicated. β-actin (45 kDa) was used as a loading control. One representative blot of three independent
experiments is shown.
C) Confocal image of HCT116 cells showing nuclear translocation of NF-κB subunit p65 after 24 hour H. bilis infection at MOI 50 or
recombinant HBgGT (5µg/ml) treatment. TNFα (20ng/ml) was used to induce nuclear translocation of p65 and the inactive gGT
(5µg/ml) was used as control. Actin was stained with phalloidin to allow visualization of total cell area.
doi: 10.1371/journal.pone.0073160.g002
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finally leads to IL-8 secretion via activation of NF-κB, AP-1 and
CREB.

Glutamine supplementation lowers IL-8 levels secreted
by H. bilis infected cells.  As glutamine supplementation was
able to effectively reduce the activation levels of the oxidative
stress response cascades studied, we next examined if

glutamine deprivation could also decrease cellular IL-8 levels
secreted in response to H. bilis.

First, we observed that starvation of cells from extracellular
glutamine sources alone was able to induce the secretion of
IL-8 by HCT116 (p<0.001) and DLD-1 (p<0.001) colon cancer
cells (Figure 6A and Figure 6B), although at lower levels

Figure 3.  Influence of HBgGT on the activation of the NF-κB, AP-1 and CREB pathways.  NF-κB, AP-1 and CREB
transcriptional activity in transiently transfected HCT116 (A), and DLD-1 and LS174T (B) cells. Recombinant HBgGT (5µg/ml) was
added to H. bilis ΔgGT-infected cells and transcriptional activity determined after 24 hours of infection. Results are expressed as
mean of relative luciferase activity to renilla of three independent experiments, normalized to the untreated control. *p<0.05,
**p<0.005, ***p<0.0005. Asterisks on top of bars indicate significance relative to untreated control; asterisks on bars indicate
significance level between indicated conditions.
doi: 10.1371/journal.pone.0073160.g003

Figure 4.  Influence of HBgGT on IL-8 secretion by colon cancer cells.  A) IL-8 secretion determined by ELISA in cell culture
supernatants of HCT116 and DLD-1 cells treated with recombinant HBgGT (5µg/ml) or infected with H. bilis or H. bilis ΔgGT (MOI
50) for different time points. Mean values of three independent experiments are shown.
B) IL-8 levels after 24 hour of treatment secreted by HCT116 and DLD-1 cells upon HBgGT treatment or H. bilis infection. Results
are expressed as mean of three independent experiments. *p<0.05 **p<0.005, ***p<0.0005. Asterisks on top of bars indicate
significance relative to untreated control; asterisks on bars indicate significance level between indicated conditions.
doi: 10.1371/journal.pone.0073160.g004
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compared to H. bilis infection. Furthermore, glutamine
supplementation of H. bilis-infected cells significantly lowered
the IL-8 levels secreted from HCT116 (p<0.001) and DLD-1 (p<
0.001) cells (Figure 6A). To further confirm the effect of
glutamine deprivation on gGT-mediated IL-8 induction, cells
were treated with HBgGT pre-incubated medium for 24 hours,
which resulted in comparable IL-8 secretion to the levels

observed after treatment with the recombinant protein.
Interestingly, the IL-8 secretion induced by HBgGT pre-
incubated medium could be restored to basal levels when the
pre-incubated medium was supplemented with 2mM glutamine
in HCT116 (p<0.001) and DLD-1 (p<0.001) (Figure 6B). These
data support our hypothesis that glutamine deprivation plays a
key role in HBgGT-modulated host cell changes.

Figure 5.  Effect of glutamine supplementation on the activation of NF- κB, AP-1 and CREB pathways after H. bilis
infection.  A) NF-κB, AP-1 and CREB transcriptional activity. Transiently transfected HCT116 cells were infected with H. bilis (MOI
50). Infected cells were supplemented with 3mM L-glutamine (Supplementary Gln) in addition to the 2mM present in the culture
medium (Input Gln) for 24 hours where indicated. Untreated cells cultured in 2mM L-glutamine in culture medium served as the
untreated control. L-glutamine free medium was used to starve the cells of glutamine for the same time period. Results are
expressed as mean of relative luciferase activity to renilla of three independent experiments, normalized to the untreated control.
*p<0.05, **p<0.005, ***p<0.0005. Asterisks on top of bars indicate significance relative to untreated control; asterisks on bars
indicate significance level between indicated conditions.
B) p-IκBα, c-Jun and p-CREB protein levels analyzed by western blot in HCT116 after 10 hours H. bilis infection (MOI 50). Where
indicated regular cell culture medium containing 2mM L-glutamine (Input Gln) was supplemented with additional 3mM L-glutamine
(Supplementary Gln). β-actin was used as a loading control. One representative blot from three independent experiments is shown.
C) ROS production was determined by NBT assay in HCT116 and DLD-1 cells after L-glutamine supplementation of cells infected
with H. bilis (MOI 50) or treated with HBgGT PIM (pre-incubated medium with 5µg of HBgGT/ml of culture medium) for 20 hours. L-
glutamine free medium was used to starve the cells of glutamine. TNFα (20µg/ml) was used as a positive control.
D) Quantification of superoxide production in similarly treated HCT116 and DLD-1 cell lysates at OD 650. Results are expressed as
mean of three independent experiments, normalized to the untreated control. *p<0.05, **p<0.005, ***p<0.0005. Asterisks on top of
bars indicate significance relative to untreated control; asterisks on bars indicate significance level between indicated conditions.
doi: 10.1371/journal.pone.0073160.g005
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Discussion

H. bilis infection has been linked to development of IBD,
colitis as well as biliary tract and gall bladder cancers in various
host species [1,3,4,7,32]. However, the molecular mechanisms
underlying the infection in the host cell leading to disease as
well as the bacterial virulence factors involved still remain
elusive.

In a previous study, we identified HBgGT as an important
virulence determinant affecting host cell proliferation, and
demonstrated that HBgGT exhibits similar affinity to L-
glutamine as HPgGT [25]. gGT is a threonine N-terminal
nucleophile hydrolase which catalyzes the transpeptidation and
hydrolysis of the γ-glutamyl moiety of glutathione and related
compounds. The reaction is accompanied by generation of
ROS as well as ammonia [33]. Glutamine hydrolysis by gGT
deprives cells of its antioxidant properties and leads to ROS
generation. In the presence of molecular oxygen and iron or
copper ions, a number of antioxidants paradoxically generate
ROS leading to free radical damage of nucleic acids and
oxidative modification of lipids and proteins. In fact, human
gGT (HsgGT) is able to generate ROS in the presence of

Figure 6.  Influence of glutamine supplementation on IL-8
secretion by H. bilis co-cultures and HBgGT-treated
cells.  A) IL-8 production by HCT116 and DLD-1 cells. H. bilis
(MOI 50) infected cells were supplemented with 3mM L-
glutamine (Gln). Supernatants of 24 hour treated cells were
collected and IL-8 secretion determined by ELISA. Results are
expressed as mean of three independent experiments.
*p<0.05, **p<0.005, ***p<0.0005.
B) IL-8 levels secreted by HCT116 and DLD cells after
glutamine supplementation (Gln 2mM, where indicated) of
HBgGT PIM (pre-incubated medium, 5µg HBgGT/ml of cell
culture medium). Heat-inactivated HBgGT PIM (inactive
HBgGT pre-incubated at 5µg/ml of culture medium) was used
as an enzymatically inactive control. Results are expressed as
mean of three independent experiments. *p<0.05, **p<0.005,
***p<0.0005.
doi: 10.1371/journal.pone.0073160.g006

glutathione and transferrin as an iron source [34], while ROS
induction by bacterial gGTs from H. pylori and H. suis induces
host epithelial cell necrosis in presence of glutathione [31].
Furthermore, ROS and reactive nitrogen species generated
due to gGT activity are mediators of cell signaling in epithelial
cells.

In the present study we observed increased levels of
superoxide production from H. bilis-infected cells, which partly
depended on the presence of gGT. Molecular mechanisms of
ROS action are only partially understood; it is hypothesized
that ROS may lead to oxidation of disulfide groups in redox
sensitive proteins with highly conserved cysteine residues that
may cause structural changes leading to the exposure of active
sites and subsequent activation. Such molecular targets
include transcription factors NF-κB and AP-1, signaling
molecules such as Ras/Rac or JNK and protein tyrosine
phosphatases [35–37]. Also, Felty and Roy observed that
stimulation of redox sensor kinase A-Raf, AKT or PKC,
activates transcription factors NF-κB, CREB, or AP-1 [37]. We
observed that H. bilis infection of colon cancer cells indeed
activated the oxidative stress-associated signalling pathways
NF-κB, AP-1, and CREB. Induction of these and other
transcription factors has been reported in response to
Helicobacter infection in epithelial cells [38–44], while H. bilis
infection in bile duct cells has been shown to influence CRE
transcriptional activity [20]. However, in our study, such
activation was significantly enhanced when the bacteria were
gGT proficient, suggesting that HBgGT plays an important role
in the regulation of these signalling cascades during H. bilis
infection. We noted that cells treated with the recombinant
HBgGT show a weaker cellular stress response compared with
the H. bilis wild type-infected cells, possibly because the
bacteria constantly produce the protein, while the recombinant
protein was only added once. The residual activation of the
pathways in the host cells when infected with the gGT knockout
bacterium indicates that other virulence factors, such as the
cytolethal distending toxin, peptidoglycan or LPS, may
additionally contribute to the effects observed. This assumption
is supported by studies in several helicobacters also showing
gGT independent NF-κB signalling i.e. for H. pylori, H.
muridarum and recently H. bilis [20,22,45].

ROS-induced activation of NF-κB, AP-1 and CREB may in
turn play a major role in inflammation. Oxidative stress induced
by H2O2 and TNF-α increase the activation of AP-1 and NF-κB,
which lead to IL-8 expression [30,46,47]. IL-8 is associated with
inflammation and is one of the main mediators in the immune
response particularly against Helicobacter spp. infections. We
observed increased secretion of IL-8 after HBgGT treatment of
colon cancer cells. Furthermore, H. bilis was able to induce
higher levels of IL-8 expression by colon epithelial cells when
expressing gGT, pointing to the fact that HBgGT significantly
contributes to H. bilis-induced host cell inflammatory response.
Having established gGT as an important virulence factor in the
Helicobacter arsenal, we sought to determine the mechanism
behind the induction of oxidant stress induced by HBgGT, and
could link it to its intrinsic enzymatic activity.

One of the main physiological functions of Helicobacter gGT
is to enable the bacteria to utilize extracellular glutamine and

Helicobacter bilis gGT Inflammatory Response
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glutathione as sources of glutamate, and, indeed, we
previously showed that HBgGT is able to hydrolyze glutamine
[25]. In mammalian cells glutathione is a ubiquitous substance
present in the cytosol in mM quantities [48], and glutamine is
essential for maintaining homeostasis and normal integrity of
intestinal mucosa [49–51]. Glutamine and glutathione function
as anti-oxidants by detoxification of oxidizing substances
[49,51], and glutamine depletion leads to an impaired redox
balance, triggering a whole cascade of oxidative stress
response elements [30,35,52,53]. To analyze the influence of
gGT-dependent glutamine depletion on the cellular stress
response, glutamine supplementation experiments were
performed. We observed that glutamine supplementation of
HBgGT-treated or H. bilis-infected cells was able to diminish
gGT-induced activation of NF-κB, AP-1, CREB as well as ROS
and IL-8 production. Glutamine protects epithelial tight
junctions as well as serves as a precursor for glutathione
synthesis [54–56]. Depletion of cellular glutamine resources not
only affects cell growth and viability but also limits intracellular
glutathione reserves, an important anti-oxidant, thereby
compromising host cell protection against infection and oxidant
stress [57,58]. At this point, we cannot rule out that the
glutamine depletion observed here might induce changes in
intracellular glutathione levels, since gGT can also hydrolyze
glutathione. However, data in the literature on the effects of
glutathione depletion on oxidative stress signaling and
specifically NF-κB and AP1 regulation are conflicting, because
glutathione depletion has also been reported to down regulate
NF-κB and AP1 responses [59,60]. Our observations are in
agreement with previous studies showing that glutamine
depletion from cellular sources can cause increased activation
of the NF-κB and AP-1 signaling pathways leading to an
augmented expression of IL-8 [30,52,60], and provide with a
novel mechanism by which HBgGT modulates host cell
response to H. bilis infection (summarized in Figure 7).

The protective role of glutamine against host cell
transcriptional alterations and IL-8 production in the context of
H. bilis infection observed in our study is in accordance with

Figure 7.  Model of host cell response modulated by
HBgGT.  Glutamine deprivation, exhaustive consumption of
glutathione, and subsequent generation of free radicals by H.
bilis gGT induce several oxidative stress response cascades in
host cells, cumulating in IL-8 secretion.
doi: 10.1371/journal.pone.0073160.g007

reports describing the protective effect of glutamine against
intestinal inflammation [50,61–65]. Mechanistically, deprivation
of glutamine causes increased activation of the NF-κB
pathway, leading to enhanced sensitization of the cells to LPS
induced IL-8 production [30,52] which explains the higher IL-8
levels observed in H. bilis infected cells compared to the gGT
mutant bacterium, where gGT may exhaust the cellular
glutamine supply. Increased NF-κB (p65/p50) and AP-1
(Fra-1/c-Jun, JunD) DNA-binding activities were found in
response to glutamine deprivation, leading to an increased IL-8
expression [30]. In vivo, glutamine supplementation has been
shown to improve the outcome of experimentally induced colitis
in rats by attenuating cytokine- induced inducible nitric oxide
production and nuclear translocation of nuclear factor-κB p65
subunit [61]. Since glutamine supplementation in H. bilis
infected cells was also able to decrease activation of the NF-
κB, AP-1 and CREB pathways as well as lower IL-8 production
in the colon cancer cells used in our study, glutamine
administration could be considered as a protective therapeutic
approach against H. bilis induced IBD and colitis.

The results presented here indicate a significant role of
HBgGT in host epithelial cell responses towards H. bilis
infection, and provides possible underlying molecular
mechanisms. Our data indicate that the HBgGT mediated
glutamine depletion leads to ROS-mediated activation of NF-
κB, AP-1 and CREB and subsequent IL-8 secretion upon H.
bilis infection of colon cancer cells, adding new insights into H.
bilis-induced pathogenesis. However, further studies are
required to understand the underlying bacterium-host dynamics
during infection. Moreover, in vivo validation will help to
understand the role of gGT in H. bilis-induced inflammation and
pathogenesis.

Materials and Methods

Cell cultures
Colon cancer cell lines HCT116 (CCL-247), DLD-1

(CCL-221) and LS174T (CCL-188) were purchased from ATCC
and maintained in DMEM (GIBCO, Invitrogen, Carlsbad CA,
USA) containing 2mM L-glutamine (GIBCO, Invitrogen, CA,
USA) (except where indicated) supplemented with 10% FBS
(GIBCO, Invitrogen, CA, USA) and 1% Penicillin/ Streptomycin
(GIBCO, Invitrogen, CA, USA). All cell lines were maintained in
an incubator at 37°C with 5% CO2 and 100% humidity.

Bacterial Culture
Bacterial cultures were grown on Wilkins-Chalgren (WC)-

blood agar plates containing DENT supplement and kept at
37°C in a microaerobic atmosphere (10% CO2; 5% O2). H. bilis
(ATCC 43879) could be maintained with minimum viability loss
for up to 3 days in culture after which the bacteria were sub-
cultured onto fresh agar plates. Bacterial cells were only sub-
cultured up to 3 times to minimize genotypic and/or phenotypic
changes. H. bilis gGT deletion mutant was kindly provided by
M. Rossi [25]. Deletion of gGT was confirmed by PCR using
gGT specific primer amplification of genomic DNA and
enzymatic activity assay, performed with the bacterial culture
supernatants (Figures S1A and S1B). No differences in growth

Helicobacter bilis gGT Inflammatory Response

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e73160



were observed between the wild type and gGT-deficient
bacteria.

Antibodies and recombinant proteins
p-IκBα, c-jun, p-CREB and CREB antibodies were purchased

from Cell Signaling, (Beverly, Massachusetts, USA). Anti-p65
antibody was purchased from Santa Cruz (California, USA) and
anti-β-actin was obtained from Sigma-Aldrich (Missouri, USA).
Peroxidase labeled anti-mouse and anti-rabbit IgG antibodies
were obtained from Promega (Mannheim, Germany),
fluorescence labeled Alexa Flour 488 rabbit anti-mouse
antibody was purchased from Invitrogen (California, USA) and
phalloidin was from Dyomics (Jena, Germany). Recombinant
TNFα was obtained from Preprotech (Hamburg, Germany).
The recombinant HBgGT protein was purified according to
established protocols [25]. The protein was inactivated by
heating at 95°C for 5 minutes. Pre-incubated medium was
generated by incubating 5µg/ml of recombinant HBgGT in cell
culture medium for 24 hours, prior to heat inactivation of the
enzyme.

Cell-Bacterial co-culture
H. bilis cultured WC-DENT agar plates were incubated for 1

day before the bacteria were used for inoculation. Bacteria
were suspended in DMEM and adjusted OD to 1.0 (2x108

CFUs/ml). 80% confluent cells were counted (after
trypsinization) and bacteria added to an MOI of 5 or 50, as
indicated.

Superoxide anion quantification
Production of intracellular superoxide anion (O2

-) was
measured using the NBT assay, whereby Nitroblue tetrazolium
salt (Sigma-Aldrich, Missouri, USA) is reduced by O2

- resulting
in accumulation of dark blue formazan crystals in the cells.

Cells were grown in 24 well plates and treated for 20 hours.
Medium was removed after the treatment period and cells were
washed once with DMEM. 250µl of 0.2% NBT solution was
added per well and the cells incubated for an additional 1 hour.
Photometrical quantification was done by fixing the cells after
NBT incubation with 100% methanol for 15 minutes. The cells
were washed twice with 70% methanol and left to dry overnight
in a fume hood. Cells were lysed by addition of 62.5µl per well
of KOH and 75µl per well DMSO and homogenized by shaking
the plate. 100µl of the lysate was transferred to a 96 well plate.
The experiment was performed in duplicates and color
development was recorded at 650 nm.

For visualization of formazan crytals, cells were grown on
coverslips and treated for the same time. 250µl of 0.2% NBT
was added per well after washing with DMEM and incubated
for 1 hour before fixation. Cells were fixed with 4% PFA for 15
minutes and nuclei were counterstained for 30 seconds by
0.1% safranin O (Sigma-Aldrich, Missouri, USA) in PBS. Cells
were microscopically analyzed using the AxioVert 40
Microscope (Zeiss) and images acquired via the Axio Vision
Rel. 4.4 software (Zeiss).

Luciferase reporter assays
Transient transfections were carried out in colon cancer cells

with lipofectamine (Invitrogen, CA, USA) by using 750ng of the
luciferase reporter plasmids containing three binding sites for
NF-κB, AP-1 or CREB. NF-κB and AP-1 luciferase reporter
plasmid were kindly provided by Florian Greten and Roland M.
Schmid, respectively. CREB plasmid was constructed by
Behnam Kalali. Cells were cotransfected with 20ng of simian
virus 40-Renilla luciferase plasmid (Promega, Mannheim,
Germany) to account for differences in transfection efficiency.
The expression of firefly and renilla luciferases was measured
using the Dual Luciferase Reporter Assay System (Promega,
Mannheim, Germany) after a certain treatment period,
according to the manufacturer’s instructions. The experiment
was performed in duplicates and the relative luciferase activity
was defined as luciferase reporter plasmid activity normalized
to renilla luciferase values.

Immunofluorescence
Cells (1x104 per well) were grown in 8 well chamber slides.

Cells were serum starved for 20 hours after attachment.
Culture medium was replenished with 10% serum before
treatment with recombinant HBgGT or infection with H. bilis.
Following treatment for 20 hours, the cells were washed once
with PBS and fixed with 2.6% PFA in 75mM sodium phosphate
pH 7.4 for 15 minutes. Following washing for 3 times with PBS
chamber slides were transferred to a humidified chamber and
permeabilized in 0.05% Triton-X100, 3% BSA, 1% saponin
PBS for 15 min at room temperature. Permeabilization buffer
was removed and cells incubated with p65 primary antibody
(diluted 1:300 in 3% BSA, 1% saponin, PBS) overnight at 4°C.
Incubation with fluorescence labeled Alexa Flour 488 rabbit
anti-mouse secondary antibody (diluted 1:750 in 3% BSA, 1%
saponin PBS) was for 4 hours at 4°C. After incubation,
antibody solution was removed and cells were washed 3 times
for 5 minutes with 1% saponin PBS. Actin filaments were
subsequently stained with phalloidin, diluted 1:10 in PBS for 30
minutes. Cells were washed 3 times with PBS before mounting
with Vectashield containing DAPI (Vector laboratories, CA,
USA).

Samples were visualized with a confocal florescence
microscope. Images were acquired with LAF-AS (Leica,
Wetzler, Germany) arranged and assembled with the ImageJ
software (National Institutes of Health, MD, USA) and
Photoshop CS (Adobe Systems, CA, USA).

Western blot
For analysis of the phosphorylated or total protein levels of

IκBα, c-jun and CREB; stimulated cells at different time points
were rinsed twice with PBS and then lysed in SDS lysis buffer
(0.25M Tris-HCl, pH 6.8, containing 20mM DTT, 6% SDS, 10%
glycerol and 2.5mg bromophenol blue). Cell lysates were
sonicated and boiled before protein separation on a 10% SDS–
PAGE gel. After electrophoresis, proteins were transferred onto
nitrocellulose membranes (Whatman/GE Healthcare, Freiburg,
Germany), which were blocked in 5% skim milk for 1 hour at
room temperature and incubated with primary antibodies
following manufacturer’s instructions. After washing, secondary
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antibodies were incubated for 1 hour at RT and finally
visualized by ECL Western Blotting Detection reagents. β-actin
was used as a loading control.

ELISA
Cells were grown in 12 well tissue culture plates. Following

treatment, supernatants from the cells were collected and
cleared by centrifugation at 13000 rpm. IL-8 ELISA was
performed in duplicates according to the manufacturer’s
instructions using the IL-8 kit from eBioscience, (CA, USA).

Glutamine supplementation experiments
To elucidate protective effects of L-glutamine

supplementation, cells were seeded as described earlier with
an initial input concentration of 2mM L-glutamine in the culture
medium. Cells were serum starved for 24 hours before serum
free medium was replaced with DMEM containing 10% FBS
and 2mM input L-glutamine. Cells were then either infected as
described earlier or treated with HBgGT pre-incubated medium
(PIM), (described in the recombinant protein section). After
infection and/or treatment of cells, supplementary amounts of
L-glutamine (Supplementary Gln) were added to the culture
medium, in addition to that present before infection (2mM input
L-glutamine). Cells cultured in glutamine free medium (no input
Gln) were also used as a comparative control in addition to the
ones cultured in medium containing 2mM input glutamine.

Statistics
Mean values and SEMs were calculated from at least three

independent experiments. Statistical analysis was performed
using the Student’s T-Test. Statistical significance was
established when p value was ≤ 0.05.

Supporting Information

Figure S1.  A) gGT screening PCR was performed to confirm
insertion of a chloramphenicol resistance cassette into the gGT
sequence leading to gene disruption in the H. bilis Δggt strain.
H. bilis wild type bacterium was used as a control.
B) gGT activity assay measured in supernatants of H. bilis wild
type and ΔgGT bacteria.
C) Recombinant HBgGT protein as well as the heat inactivated
HBgGT protein were analysed via SDS PAGE to determine
purity.
D) gGT activity assay of the recombinant HBgGT and the
inactive enzyme after heat inactivation at 95°C for 5 minutes.
(TIF)

Figure S2.  A) NF-κB and AP-1 transcriptional activity in
infected DLD-1 cells as well as CREB transcriptional activity in
LS174T cells. Transiently transfected DLD-1 and LS174T cells
were co-cultured with H. bilis and H. bilis Δggt at MOI 5 and 50
for 24 hours. Bars represent mean of relative luciferase values
to renilla normalized to the untreated control of 3 independent
experiments. *p<0.05, ** p<0.005, ***p<0.0005. Asterisks on

top of bars indicate significance relative to untreated control;
asterisks on bars indicate significance level between indicated
conditions.
B) Western blot analysis of p-IκBα and c-jun protein levels in
DLD-1 cells and p-CREB expression in LS174T after 10 hours
H. bilis infection. TNFα (20ng/ml), forskolin (10µM) and PMA
(0.5µg/ml) were used as positive controls. β-actin was used as
a loading control. One representative blot is shown.
(TIF)

Figure S3.  A) NF-κB, AP-1 and CREB transcriptional activity
in DLD-1 and LS174T cells after glutamine supplementation of
H. bilis (MOI 50) infected cells. Cells were transiently
transfected with a luciferase reporter plasmid and infected with
H. bilis at an MOI of 50. 3mM of L-glutamine (Supplementary
Gln) was added in addition to the 2mM already present in the
culture medium. H. bilis Δggt infected cells, at MOI of 50 were
used as a control. L-glutamine free medium was used to starve
the cells of glutamine. Results are expressed as mean of
relative luciferase activity to renilla of three independent
experiments, normalized to the untreated control.
*p<0.05,**p<0.005, ***p<0.0005. Asterisks on top of bars
indicate significance relative to untreated control; asterisk on
bars indicate significance level between indicated conditions.
B) Western blot analysis of p-IκBα and c-Jun protein levels
after glutamine supplementation of H. bilis (MOI 50) infected
DLD-1 cells after 10 hours of treatment. CREB phosphorylation
was investigated in LS174T cells after 10 hours of treatment.
One representative blot is shown.
(TIF)

Figure S4.  A) IL-8 production in HCT116 cell culture
supernatants determined by ELISA in response to increasing
supplementary L-glutamine concentrations after 24 hours of H.
bilis (MOI 50) infection. Results from two independent
experiments conducted in duplicates are shown.
B) IL-8 levels after glutamine supplementation of HBgGT PIM
treated HCT116 cells at increasing dosage. Supernatants of 24
hour treated cells were collected and IL-8 secretion determined
by ELISA. Data from two independent experiments conducted
in duplicates are shown.
(TIF)
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