
Fiducial marker-based correction for involuntary motion in weight-bearing
C-arm CT scanning of knees. Part I. Numerical model-based optimization

Jang-Hwan Choia)

Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical
Engineering, Stanford University, Stanford, California 94305

Rebecca Fahrig and Andreas Keil
Department of Radiology, Stanford University, Stanford, California 94305

Thor F. Besier
Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand

Saikat Pal
Department of Bioengineering, Stanford University, Stanford, California 94305

Emily J. McWalter
Department of Radiology, Stanford University, Stanford, California 94305

Gary S. Beaupré
VA Palo Alto Health Care System, Palo Alto, California, 94304

Andreas Maierb)

Department of Radiology, Stanford University, Stanford, California 94305

(Received 21 March 2013; revised 10 July 2013; accepted for publication 18 July 2013; published 7
August 2013)

Purpose: Human subjects in standing positions are apt to show much more involuntary motion than
in supine positions. The authors aimed to simulate a complicated realistic lower body movement
using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also
investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-
dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality im-
provement were investigated after applying each method.
Methods: An optical tracking system with eight cameras and seven retroreflective markers enabled
us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at
60◦ of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the
optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six
parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could
be synchronized with the optical markers’ location at each time frame. The control points of the
XCAT were tessellated into triangles and 248 projection images were created based on intersections
of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2)
and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee
model. The authors defined eight skin control points well distributed around the knees as pseudo-
fiducial markers which functioned as a reference in motion correction. Motion compensation was
done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping
in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was
implemented and combined with the three correction methods in order to speed up the simulation
process. Correction fidelity was evaluated as a function of number of markers used (4–12) and marker
distribution in three scenarios.
Results: Average optical-based translational motion for the nine subjects was 2.14 mm (±0.69 mm)
and 2.29 mm (±0.63 mm) for the right and left knee, respectively. In the representative central slices
of Subject 2, the authors observed 20.30%, 18.30%, and 22.02% improvements in the structural
similarity (SSIM) index with 2D shifting, 2D warping, and 3D warping, respectively. The perfor-
mance of 2D warping improved as the number of markers increased up to 12 while 2D shifting
and 3D warping were insensitive to the number of markers used. The minimum required number of
markers for 2D shifting, 2D warping, and 3D warping was 4–6, 12, and 8, respectively. An even dis-
tribution of markers over the entire field of view provided robust performance for all three correction
methods.
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Conclusions: The authors were able to simulate subject-specific realistic knee movement in weight-
bearing positions. This study indicates that involuntary motion can seriously degrade the image qual-
ity. The proposed three methods were evaluated with the numerical knee model; 3D warping was
shown to outperform the 2D methods. The methods are shown to significantly reduce motion artifacts
if an appropriate marker setup is chosen. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4817476]
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1. INTRODUCTION

Flat-panel angiography systems are suitable for assessing
three-dimensional (3D) kinematics and stresses on bone and
cartilage because they have high spatial resolution, good
bone contrast, and highly flexible angulation. In evaluation
of human subjects, the feasibility for CT reconstruction was
demonstrated using a rotational angiogram in standing po-
sition, i.e., weight-bearing position.1 Novel dedicated cone-
beam CT (CBCT) systems for orthopedics have also been
developed to acquire weight-bearing imaging of the lower
extremities.2, 3 CBCT systems with a flat panel provide su-
perior spatial resolution with wide volumetric beam coverage
along the axial direction compared to conventional CT, which
allows high-resolution 3D images of entire knee in a single
sweep without table translating per rotation. However, sub-
jects in standing position are likely to show more involuntary
motion than those in supine or prone positions. It is not guar-
anteed that the reconstructions of the standing subject data
will be of diagnostic image quality. Therefore, the impact of
the involuntary movements on the reconstruction image qual-
ity should be evaluated. In order to understand involuntary
knee motion in weight-bearing positions, we tracked nine sub-
jects holding a squat at 60◦ of knee flexion for 20 s. The sub-
jects holding a squat position showed an average motion of
about 2.4 mm at both knees, which is about 8 times larger
than the detector resolution (0.308 × 0.308 mm pixel size af-
ter 2 × 2 binning) of a flat-panel angiography system.1 Since
we expect greater motion in patients with knee pain, motion
correction is likely required.

Two-dimensional (2D) and 3D motion compensation tech-
niques have been developed previously. Retrospective elec-
trocardiographic gating techniques have been implemented
to reduce blurring from motion in reconstructed 3D cardiac
images.4–6 Specifically, the projections corresponding to the
desired cardiac phase were chosen retrospectively among
the acquired projections of sometimes multiple sweeps of a
C-arm. Multiple sweep acquisition requires longer acquisition
time and motion estimation is available for respiratory and
cardiac motions that are periodic. Moreover, inaccurate gating
and imperfect periodic respiratory or cardiac motion results
in residual motion blurring.7 Several studies have proposed
using prior four-dimensional (4D) treatment planning CT im-
ages to acquire accurate 4D motion vector fields (MVF) or
using predefined 4D MVFs.8–12 The results of these investiga-
tions showed fewer view-aliasing artifacts in simulated data9

compared to respiratory-correlated techniques. However, 4D
deformable MVF estimation from a clinical projection image

is still very difficult and computationally expensive.8 More-
over, previous CT scanning might not match well with a
current scan and is sometimes difficult to acquire. Recently,
an increasing number of studies have proposed novel itera-
tive motion correction algorithms.13–18 Iterative reconstruc-
tion first calculates the line of integrals through the initial
volumetric image. Then, the forward-projected image is com-
pared with the acquired 2D projection image. Based on the
difference between them, the initial volume is updated by
backward-projection as many times as necessary.13 Although
iterative methods provide a higher signal-to-noise ratio (SNR)
compared to the analytical reconstruction algorithms,19, 20

they are sometimes impractical due to high computational
costs with relatively longer reconstruction times. Several stud-
ies have proposed either internal or external fiducial markers
to track subjects’ motion.21–25 Fiducial marker-based methods
are advantageous because they do not require additional scan-
ning such as multiple sweeps or a prior CT scan, so there is
no additional dose exposure to patients. Marchant et al.22 es-
timated the mean static 3D position for each marker by iden-
tifying its coordinates in multiple projections and applying
the exact thin plate spline (TPS) mapping26 to warp projec-
tion images before reconstruction. The estimated static 3D
position serves as a reference to correct temporal motion. It
has been shown that the method does not perform well for
overlaying objects with different motion in a 2D projection
image. In this study, as an extension to the 2D projection
warping method in Marchant et al.,22 we use the approxi-
mate TPS mapping27 to prevent unrealistic warping due to
the noise in the marker locations. An alternative method, the
2D projection shifting method of Ali and Ahmad23 does not
use a well-defined global reference. We adapted this method
to use the estimated static 3D marker positions as a refer-
ence. Since marker locations in 2D projection images do not
accurately represent their genuine location in 3D, especially
in cases with different depths along the x-ray path, we also
developed a 3D rigid-body warping method. To our knowl-
edge, these fiducial marker-based motion correction algo-
rithms have not previously been applied to lower body motion
compensation.

A 4D knee phantom is needed to evaluate reconstruction
and motion compensation methods. Current phantoms in CT
are based on simple mathematical primitives.28, 29 On the one
hand, the knee has a complicated movement resulting from
individual six-degree-of-freedom (6DOF) motion of patella,
femur, and tibia. Thus, it is very hard to define a realistic knee
motion for manipulating a virtual phantom. Manufacturing
mechanical motion-controlled phantoms using motors20, 22 is
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FIG. 1. Seven markers (small circles on the body) were suitably placed to
track a lower body. Six joint centers (big circles in the body) were estimated
from the markers. Figure generated using OpenSim available on Simtk.org.

also challenging due to the aperiodicity of knee motion. In
this study, we used the acquired optical motion tracking data
of nine subjects holding a squat as an accurate representa-
tion of the human knee kinematics and successfully imple-
mented the complex motion into the 4D extended cardiac-
torso (XCAT) model.30 In the following, we will describe the
reconstruction methods that are able to compensate for the
motion of the knee during a standing acquisition on simulated
data.

2. METHODS AND MATERIALS

2.A. Motion capture of a lower body

In order to animate the XCAT model in a realistic way, we
captured a healthy volunteer’s lower body movement using
an eight-camera Vicon optical motion capture system (Vicon,
Oxford, UK) and seven retroreflective markers while squat-
ting at 60◦ of knee flexion. Three markers were attached on
the sacrum (SACR), the right- and left-anterior superior iliac
spine (R.ASIS and L.ASIS) to track the pelvis movement as
shown in Fig. 1. Four markers were attached to the right- and
left-lateral epicondyle of the knee (R.KNE and L.KNE) and
the right- and left-malleolus lateralis (R.ANK and L.ANK)
to track the lower extremities. The marker positions in three
dimensions were recorded at a rate of 120 Hz and smoothed
using a second-order low-pass Butterworth filter with a cut-
off frequency of 6 Hz in order to filter out photogrammetric
measurement errors from the real human involuntary motion.

The functional right- and left-hip joint center (R.HJC and
L.HJC) were estimated using a regression formula31 and
SACR, R.ASIS, and L.ASIS. The right- and left-knee joint
centers (R.KJC and L.KJC) were defined as the midpoint be-
tween the medial and lateral femoral epicondyles and approx-
imated using R.KNE and L.KNE. The right- and left-ankle
joint centers (R.AJC and L.AJC) were defined as the mid-
point between the medial and lateral malleoli of the tibia and
approximated using R.ANK and L.ANK.

The resulting tracking data of nine subjects holding a squat
at about 60◦ of knee flexion for 20 s are shown in Table I. In
order to quantify the magnitude of the lower body motion,
we calculated the translational deviation of R/L.KJC and the
squatting angle (flexion) deviation as indicated in Fig. 1. Lat-
eral knee motion along the Y-axis and flexion about the Y-axis
dominated translational deviation and flexional deviation, re-
spectively. Among the nine subjects, Subject 2 showed the
largest motion in terms of translation and flexion; these data
will be used to animate the model since it represents the worst
case scenario. The Subject 5 data with the smallest motion
will be used to represent a subject with minor motion.

TABLE I. Results of the involuntary movement at the right and left knee of nine healthy subjects while standing in a 60◦ position. In general, Subject 2 and
Subject 5 (indicated in bold face) showed the largest and the smallest motion, respectively.

Right knee deviation Left knee deviation

Translation (mm) Flexion (deg) Translation (mm) Flexion (deg)

Mean Max Mean Max Mean Max Mean Max

Subject 1 2.0335 4.9470 0.6529 1.4243 2.1952 6.4104 0.6970 1.8155
Subject 2 (largest) 3.1735 12.0740 0.6758 2.1538 3.6851 12.7455 0.5908 1.7939
Subject 3 3.3414 6.5166 0.8406 1.7762 1.4478 4.9131 0.8381 1.6329
Subject 4 1.7856 3.4351 0.4677 1.6745 2.4477 5.5710 0.3932 0.9036
Subject 5 (smallest) 1.6426 5.4937 0.2657 0.6736 2.0744 5.6992 0.3087 0.9186
Subject 6 1.3605 5.4032 0.3668 1.0102 1.9260 5.9417 0.3557 1.0119
Subject 7 1.6972 3.6773 0.4050 0.9777 1.8435 4.5844 0.3330 0.6978
Subject 8 2.3376 7.5767 0.4139 1.0475 2.6664 6.4644 0.4317 1.0034
Subject 9 1.9283 5.5196 0.4449 1.1570 2.3398 6.6324 0.3869 1.2416
All subjects 2.1445 12.0740 0.5037 2.1538 2.2918 12.7455 0.4817 1.8155
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2.B. Affine transformation of the XCAT knee model

The anatomical structure of the knee model is based on the
surface data that is provided with the XCAT phantom. The
outline of the XCAT NURBS surface is determined based on
the location of its control points. Thus, we manipulated the
control points to generate a 6DOF (three rotations and three
translations) subject-specific knee joint model and synchro-
nized its motion to the volunteer’s motion represented by the
location of the optical markers. The XCAT model was seg-
mented into the upper leg and the lower leg. The upper leg
is the part above the knee from KJC to HJC including the
patella. The lower leg is the part below the knee from AJC
to KJC. The two parts of each leg were animated individu-
ally using an affine transformation matrix constructed using
a series of translations, scaling, and rotations in homogenous
space. The patella was transformed one more time due to its
distinct movement separate from that of the upper leg. The
six joint center points (R/L.HJC, R/L.KJC, and R/L.AJC) in
the XCAT phantom were manually identified. We defined two
affine transformation matrices to map the vector (�vXCAT

upper ) from
KJC to HJC in the XCAT onto the vector (�vmarker

upper ) from KJC
to HJC estimated from the markers and to map the vector
(�vXCAT

lower ) from AJC to KJC in XCAT onto the vector (�vmarker
lower )

from AJC to KJC from the markers for the upper leg and the
lower leg, respectively.

For the case of the right upper leg, its transformation in
homogenous space was done in seven steps using �vXCAT

upper and
�vmarker

upper as shown in Fig. 2. Here, �v(n)
upper represents the vector

at the step n and v
(1)

−upper = [ �vXCAT
upper 1

]T = [ �v(1)
upper 1

]T
is a

homogenous vector at step (1) before transformation. Vector
�v(1)

upper was translated to the origin using a translation matrix T1

so that v
(2)

−upper starts from the origin. Then, v(2)
−upper was rotated to

have the same direction as �vmarker
upper while maintaining its start-

ing point at the origin using a rotational matrix R1. Now, v(3)
−upper

was scaled to have the same length as �vmarker
upper using a scaling

matrix S. Vector v
(4)

−upper was rotated about itself to properly
position the patella relative to patient front using a rotation

FIG. 2. Transformation procedures to map �vXCAT
upper onto �vmarker

upper in the upper

leg. The same steps were used to transform �vXCAT
lower onto �vmarker

lower in the lower
leg except for step (7). The vectors are labeled with (1)–(7) representing each
step. The vectors were transformed to the next step using a translation matrix
T, a rotation matrix R, and a scaling matrix S.

matrix R2. Vector v
(5)

−upper was translated to �vmarker
upper so that v

(6)
−upper

is equal to �vmarker
upper using a translation matrix T2. Finally, the

patella was rotated about the vector from R.KJC to L.KJC
from the markers using a rotational matrix R3. The magni-
tude of the rotation angle for the patella was determined by
its relationship to the flexion–extension angle for the knee:32

v
(7)

−upper = Mupper · v
(1)

−upper = R3T2R2SR1T1 · v
(1)

−upper, (1)

v
(7)

−lower = Mlower · v
(1)

−lower = T2R2SR1T1 · v
(1)

−lower . (2)

This process is repeated at 248 different time frames for the
Vicon system, synchronized to the acquisition rate of the 8 s
scanning protocol used by the C-arm CT system.

2.C. Rendering and projection generation
of the knee model

The knee is one of the pivotal hinge joints in our body. In
our model, the upper leg and the lower leg were rigidly trans-
formed individually with R/L.KJC as a pivotal hinge point.
Thus, the NURBS control points in the upper leg located close
to the pivot point may collide or overlap with other control
points in the lower leg, leading to unrealistic wrinkle or dis-
continuity of body soft tissue as shown in Fig. 3(a). Weighting
based on the proximity to the joint was applied to body soft
tissue deformation in order to avoid unrealistic wrinkles in the
acute angle of the joint. To explain the description in a mathe-
matical manner, we defined Mupper and Mlower as affine trans-
formation matrices for the upper leg and lower leg, respec-
tively. The weighting factor is defined to apply both Mupper

and Mlower to control points, but differently depending on their
proximity to the pivot point:

w = z − zupper limit

zupper limit − zlower limit
, (3)

where z is the z-coordinate of the control point of interest,
and zupper limit and zlower limit are the upper and lower bound-
ary in z, respectively, where the weighting factor takes effect.
For our model, we put 70 mm for the value of zupper limit and
zlower limit.The final location of the control point ( �ptransformed) is
determined as

�ptransformed =w · Mupper · �pinitial+(1−w) · Mlower · �pinitial,

(4)

where �pinitial is the initial location of the control point in x, y,
z coordinates. The proposed simple weighting method effec-
tively eliminated the unrealistic shape of the NURBS surface
in the vicinity of the pivot point in a computationally inex-
pensive way. Note that the XCAT model becomes subject-
dependent after this transformation with respect to motion and
patient size, as the correct length of the upper and lower legs
are supplied to the algorithm.

For the generation of projections at a certain point in time,
the XCAT knee model was tessellated to triangles accord-
ing to the transformed control points �ptransformed. The XCAT
knee model consists of three relevant materials: bone, bone
marrow, and body soft tissue. For each detector element, all
intersections with the model were determined and a
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FIG. 3. The XCAT knee model was tessellated and rendered as shown in (b). To avoid unrealistic wrinkles in the acute angle of the joint as shown in the
windowed region in (a), weighting based on the proximity to the joint was applied.

monochromatic absorption model was evaluated. In total 248
views with a resolution of 620 × 480 and a pixel spacing
of 0.61 mm in [u, v] were generated (Fig. 4). We assumed
70 keV of monochromatic beam energy for projection gener-
ation. As we were only interested in the motion and the re-
spective artifact, we did not add noise. The source to detec-
tor distance was 1198 mm and the source to patient distance
780 mm. The angular increment between each projection was
0.8◦. A detailed description of the rendering process is given
in Maier et al.33

2.D. Motion compensated reconstruction

We chose different configurations of control points on the
skin around each knee in XCAT and used them as pseudo-
fiducial markers. In the following this will be referred to
as a marker. The markers’ position in 3D at the first time

FIG. 4. Based on ray casting, 248 Projections with a pixel resolution of
620 × 480 were generated. Two projection views through the volume (AP
and oblique) are shown.

frame was defined as a reference, �ri = (x̄i , ȳi , z̄i) to correct
for time-dependent motion of the lower body, where the sub-
script i is the marker number. The forward-projected refer-
ence point in a projection image is referred to as 2D reference,
�ri,j = (ui,j , vi,j ) where the subscript j is the projection image
number. Here, the marker’s 3D position at all time points sub-
sequent to the referential first frame was assumed unknown.
In case of a clinical scan, the true 3D positions of the refer-
ences are not available so one additional step is required to
estimate the reference position in 3D.21, 34

2.D.1. Method 1: Simple projection shifting in 2D

Figure 5 shows a projection before and after shifting. The
references (again, the markers at their 3D positions in the first
time frame) were forward-projected onto a projection (+).
The markers at a time corresponding to the projection were
also forward-projected on to the projection (×). The means of
the 2D references, �rj and markers, �mj were calculated as

�rj = (
ur

j , v
r
j

) =
(∑n

i=1 ur
i,j

n
,

∑n
i=1 vr

i,j

n

)
, (5)

�mj = (
um

j , vm
j

) =
(∑n

i=1 um
i,j

n
,

∑n
i=1 vm

i,j

n

)
, (6)

where n is the number of markers used in the projection j.
The r and m superscripts label the detector coordinates (u, v)
belonging to the 2D references and markers, respectively. The
differences (�u, �v) in 2D between the two means were
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FIG. 5. A projection was shifted by the deviation (�u, �v) of the markers’ mean from the 2D references’ mean in a detector coordinates (u, v). The left shows
the projection before shifting and the right shows the projection after shifting.

calculated:

�uj = ur
j − um

j , (7)

�vj = vr
j − vm

j . (8)

Then, the projection j was shifted by the amount of the dif-
ference (�uj, �vj) in the u and v directions. As a result of
shifting, a thin black boundary was generated at left and bot-
tom of the projection and �mj exactly overlapped �rj . Within
the 248 projection images, |�u| varies from 0 at the first pro-
jection up to a maximum of 7.9 pixels and |�v| varies from 0
up to a maximum of 5.0 pixels.

2.D.2. Method 2: Deformable projection warping in 2D

The projection images were warped from 2D to 2D space
using the TPS.26 Figure 6 shows a projection image before
and after warping in 2D. The markers and the 2D references
were used as control points. The markers and the 2D refer-
ences represent the original shape and the target shape, re-
spectively. In an arbitrary projection, �ci = (ui, vi) are the con-
trol points for the original shape and �c′

i = (u′
i , v

′
i) are those

for the target shape where the subscript i is the number of
the respective control point/marker. Deviations of �ci from
�c′
i in u- and v-directions are the point loads, ��i = (�u,i,

�v,i) = (u′
i − ui, v

′
i − vi). Additionally, the four corner

points in the projection were used as control points with
zero point loads.22 Thus, the total number p of the control
points was increased by four corner points. The TPS was
mapped over the control points to acquire the spline inter-

polation function, fu(u, v) four-direction mapping first. The
interpolant for the u-direction has the form:

fu(u, v) = a0 + a1u + a2v +
p∑

i=1

bi · {(ui − u)2

+ (vi − v)2} · log
√

(ui − u)2 + (vi − v)2. (9)

We define the matrices necessary to calculate the unknown
coefficients of fu(u, v) as[

K P

PT O

]
(p+3)×(p+3)

·
[ �b

�a

]
(p+3)×1

=
[ ��u

�O

]
(p+3)×1

,

(10)

where �a = [ a0 a1 a2 ]T, �b = [ b1 b2 · · · bp ]T,
��u = [ �u,1 �u,2 · · · �u,p ]T, and �O = [ 0 0 0 ]T.
The control point locations could have noise especially in
experimental data due to measurement error. Moreover, the
control points in 2D do not accurately represent their location
in 3D. This may be true even if two points appear to be
close to each other in 2D; in 3D, the separation could be
considerable if they are located at different depths along the
x-ray path. Thus, the exact spline interpolation was relaxed
by regularization parameter λ.27 The target surface did not
go exactly through the control points. With the regularization
parameter, the submatrices K, P, and O can be written as

Kij = {(ui − uj )2 + (vi − vj )2}

· log
√

(ui − uj )2 + (vi − vj )2 + Iij · λ, (11)

FIG. 6. A projection was warped using approximate TPS mappings. The markers (×) were mapped smoothly onto the 2D references (+). The left and right
show the projection before and after warping, respectively. The grid lines were inserted to better see overall warping of the projection.
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⇀

Pi = [
1 ui vi

]
, (12)

Oij = 0, (13)

where the subscripts i and j are the row and column num-
ber, respectively, and I is the identity matrix. As shown in

Eq. (10), an inversion of a large matrix,

[
K P
PT O

]
(p+3)×(p+3)

with high condition number is necessary to compute the
TPS model coefficients. In order to lower the condition
number, a computationally inexpensive scaling strategy35

was adopted. In our case, the two-norm condition number
of the matrix decreased roughly 14 orders of magnitude.
Then, the same steps were taken to acquire the spline in-
terpolation function, fv(u, v) for v-direction mapping with
��v = [

�v,1 �v,2 · · · �v,p

]T
instead of ��u.

2.D.3. Method 3: Rigid body warping in 3D

A 3D transformation matrix performs three rotations and
three translations in x, y, and z directions in order to map ref-
erences onto the identified markers. The six parameters for
the matrix were optimized to minimize the distance of trans-
formed references from the identified markers in a projection.
A rotation matrix Rj and a translation matrix Tj for a projec-
tion number j were defined as

Rj =

⎡
⎢⎢⎢⎢⎣

cos γj − sin γj 0 0

sin γj cos γj 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos βj − sin βj 0

0 sin βj cos βj 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

cos αj 0 sin αj 0

0 1 0 0

− sin αj 0 cos αj 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (14)

Tj =

⎡
⎢⎢⎢⎢⎣

1 0 0 tx,j

0 1 0 ty,j

0 0 1 tz,j

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (15)

where α, β, and γ represent Euler angles using the y–x–z con-
vention and tx, ty, and tz are translations along x, y, and z di-
rections, respectively. Now we want to find the optimal Rj

and Tj which minimize the deviation of transformed 2D ref-
erences (�r ′

i,j ) from markers ( �mi,j ). Again, ri is a 3D reference
of marker number i:(

�r ′
i,j

1

)
ξj = Pj · Tj · Rj ·

(
�ri

1

)
, (16)

where Pj is a projection matrix with 3 × 4 elements describing
the acquisition geometry of a C-arm CT system:36

min
αj ,βj ,γj

tx,j ,ty,j ,tz,j

∑
i

∥∥r ′
i,j − �mi,j

∥∥2
. (17)

Optimization was done using the Nelder–Mead simplex direct
search algorithm37 for every projection. While sequentially
backprojecting each projection, entire voxels were trans-
formed in 3D using the acquired Tj and Rj.

2.D.4. Reconstruction

Reconstructions of the projection images were performed
using filtered back projection using CONRAD (A Software
Framework for CONe-beam in RADiology) (Ref. 38) de-
veloped by our group. The reconstruction process was ac-
celerated using graphics hardware (GPU),39 resulting in 512
(Ref. 3) voxels with an isotropic spacing of 0.5 mm and
32-bit depth. In case of 2D projection-based motion correc-
tion, projection images were preprocessed with the motion
compensation methods before reconstruction while the 3D
image warping method warped 3D images during the process
of backprojection. The reconstruction pipeline consists of
the following five-step sequential procedure: cosine weight-
ing filter,40 Parker redundancy weighting filter,41 truncation
correction,42 ramp filtering using Shepp–Logan ramp filter
with roll-off,40 and CUDA-enabled GPU backprojection.39

A modified Shepp–Logan ramp filter with a smooth cutoff
at high frequencies (cutoff frequency: 0.73 cycles/pixel, cut-
off strength: 1.8) was used to suppress high frequency noise
components. The frequency response of the kernel reaches its
maximum at 69% of the Nyquist frequency and decreases to
close to 0% at the Nyquist frequency.

2.D.5. Image quality metrics and investigations

For quantitative image quality comparison, we used the
root-mean-square error (RSME) and the structural similarity
(SSIM) index43 as image quality metrics. SSIM is an image
quality metric that describes the amount of distortion in an im-
age, compared to a gold standard, based on the degradation of
structural information. Thus, if there is a structural infidelity
as in our application, SSIM outperforms simple RMSE. SSIM
index varies from 0 to 1, where one means that the degraded
and gold standard images are identical.

We also investigated the effects of number of markers,
from a minimum of six markers up to a maximum of 14, on
the image quality in order to determine how many markers are
needed for each motion compensation method.

Finally, the effect of marker location on correction was also
investigated using eight markers. In order to determine candi-
date marker placements, the follow factors were considered:
(i) No markers on a certain surface means that there is no
information about motion in the vicinity of that surface. We
assumed that a more uniform placement of markers across
the field of view would provide an improved estimate of mo-
tion. (ii) We can place markers only on the skin. (iii) Markers
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FIG. 7. Reconstructed slices of the projections generated using the tracking data of Subject 2 with the largest motion. The first row (a) shows central axial
slice and the second row (b) shows lower off-center axial slice containing tibia and fibula. The third row (c) shows upper off-center axial slice containing femur.
The fourth row (d) shows sagittal slice and the fifth row (e) shows coronal slice. The slices were reconstructed with and without the motion correction methods
according to the label at the bottom of each column.

are made of metal (tantalum) such that there is a chance that
they may induce metal artifacts by photon starvation. Based
on these factors, we used three different marker placement
setups. The first setup, “EVEN,” evenly distributes markers
across the entire skin area as shown in Fig. 8(c). The second
setup “TB1” evaluates evenly spaced markers placed only at
the top and the bottom of the field of view. The last setup
“TB2” is the same as the second one except that two markers
were taken, one each from the top and bottom of the field of
view and placed on the skin covering each patella.

3. RESULTS

The projections generated using the optical tracking data
of the subject with the largest motion (Subject 2) and smallest
motion (Subject 5) were reconstructed with the three differ-
ent motion compensation methods. Figure 7 shows the repre-
sentative reconstructed slices for Subject 2. The first column

shows references reconstructed with zero motion. The first
row is a central axial slice around a knee joint center and the
second row is a lower axial slice containing tibia and fibula.
The third row is an upper axial slice including the middle of
the femoral shaft. These three slices were used to make a com-
parison of image quality between the three different motion
compensation methods.

Compared to the slices before motion correction shown
in the second column, slices with all three different methods
show fewer motion-induced artifacts. In general, 3D warping
works best by showing the clearest recovered bone edge and
2D shifting and 2D warping show comparable performance
in the three different axial slices (a), (b), and (c). Calculated
RSME and SSIM index are shown in Table II below. Only
the voxels in the circular field of view were included for the
calculation of SSIM index and RSME.

For the three axial slices of Subject 2 with the largest mo-
tion of the nine measured data sets, 3D warping outperformed
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TABLE II. Image quality comparison of Subject 2 and Subject 5 data using a different motion correction method. The “Central” is a central axial slice around a
knee joint center. The “Lower” is a lower axial slice containing tibia and fibula and the “Upper” is a upper axial slice with a femoral shaft in it. The best values
are reported in bold face.

No correction 2D shifting 2D warping 3D warping

Axial slice SSIM RSME SSIM RSME SSIM RSME SSIM RSME

Subject 2 (largest motion) Central 0.4682 29.78 0.6712 18.70 0.6512 17.62 0.6884 17.59
Lower 0.4918 28.85 0.6457 17.30 0.6613 16.89 0.6808 15.05
Upper 0.6206 23.56 0.7151 18.68 0.7165 18.23 0.7449 15.26

Subject 5 (smallest motion) Central 0.6630 20.28 0.8085 10.42 0.8305 8.73 0.7993 10.56
Lower 0.6630 25.05 0.8325 8.26 0.8168 9.61 0.8254 8.13
Upper 0.7431 13.00 0.8013 9.43 0.8202 7.00 0.8287 9.17

(higher SSIM, lower RSME) the 2D methods as also shown
qualitatively in Fig. 7. Subject 5 in Table II shows that a higher
SSIM index does not guarantee lower RSME.43 2D shifting
and 2D warping showed comparable performance over all. In
the three axial slices of Subject 5, which had the smallest mo-
tion of the nine data sets, the three methods showed similar
image quality improvement with a relatively higher SSIM in-
dex to begin with, compared to Subject 2. Even before mo-
tion correction in the first column, some slices show com-
parable image quality to the postmotion-correction slices of
Subject 2.

Figure 8 shows how the image quality in terms of SSIM
index changes as the number of markers used increases. Each
motion correction technique responded differently to the in-
crease of marker number. Figures 8(a) and 8(b) show that
SSIM indices calculated for 2D shifting almost stay the same
from marker number 6 up to 14. The SSIM index for 3D warp-
ing increases very slowly to the maximum marker number
in the central slice in Fig. 8(a) and fluctuates initially from
marker number 6 to 8 and then seems to converge around
0.70 in the lower off-center slice in Fig. 8(b). The 2D warping
correction shows the largest increase in SSIM index over the
entire marker number range. In the central slice in (a), SSIM
index for 2D warping keeps increasing until marker number
12 and then reaches a plateau and in the lower slice in (b),
SSIM continues to rise with increasing number of markers al-
though the slope of the interpolated fit line decreases as the
marker number increases.

Table III below shows the image quality comparison be-
tween the three different marker placement setups.

Each motion correction method responded differently to
the three marker placement setups. In general, 2D shifting,
2D warping, and 3D warping showed best performance with
the marker placement setup of TB2, EVEN, and TB1, respec-
tively. However, the differences in the SSIM index of each
marker placement setup with respect to other setups using the
same motion correction method remained less than 2% (0.02)
except for only 2 axial slices. The largest difference in the
SSIM index was observed in the slices with 2D warping and
the differences in the SSIM index between three placement
setups with 2D warping were relatively larger than 2D shift-
ing and 3D warping.

4. DISCUSSION

The three proposed motion correction methods in either
2D projection or 3D image space effectively reduced motion-
induced artifacts. 3D warping showed better performance
than the 2D methods for the data sets with relatively large
motion (Subject 2 XCAT knee model). Data sets with large
motion are of particular interest to us since we are planning to
generate weight-bearing volumetric images of patients with
an injured joint for clinical assessment and these patients are
expected to show more severe involuntary motion during a
scan. It is also shown in Fig. 8 that 3D warping performance
was better especially in the off-center slices than in the cen-
tral slice. Lateral knee motion along the Y-axis and flexion
about the Y-axis dominated three translational and three rota-
tional deviations. Due to the knee flexion about the Y-axis, the
amount of motion becomes greater as the slice number moves
away from the knee joint. The 2D methods performed rela-
tively poorly since they do not incorporate rotational move-
ments of the lower and upper leg. For the data sets with small
motion (Subject 5 XCAT knee model), all the three methods
showed comparable performance since rotational motion is
relatively negligible. Note that we did not evaluate the area
with the truncation artifacts for SSIM index and RSME.

The 2D shifting with six markers well distributed on a
lower body as in (c) showed comparable performance and
additional markers do not improve image quality. It is not
presented here, but we confirmed that the performance of 2D
shifting does not decrease even with only four markers. Thus,
a marker number from 4 to 6 is adequate for 2D shifting. Im-
age quality following correction using 2D warping improves
as the number of markers increases up to 12 in the central
slice. Even more markers obviously help compute the TPS
model coefficients by decreasing the condition number of the

large matrix,

[
K P
PT O

]
(p+3)×(p+3)

in Eq. (10) and eventu-

ally result in improved image quality. Care has to be taken
not to make two or more markers overlap each other as the
number of markers is increased in a projection image. We ex-
pect that it is not easy to avoid overlapping of more than 12
markers in a projection image during actual experiments and
thus recommend a total of 12 markers for 2D warping. When
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FIG. 8. (a) and (b) An image quality comparison of motion compensated
axial slice images of Subject 2 using different number of markers. The data
points were interpolated using smooth cubic B-splines (the dotted lines).
(c) Individual marker locations in an AP view and sequential ID number.
Markers with an ID number from 1 to 11 were used for reconstruction with
11 markers.

two markers with different depth along the x-ray path are ad-
jacent to each other or overlap in a 2D projection, unrealistic
body warping around the two markers is estimated. This is be-
cause as the two markers are highly likely to have a different
point load, the TPS interpolant has to enforce mapping the
two adjacent markers to their 2D reference but with a large
difference in point load. For that reason the exact spline inter-
polation was relaxed using a regularization parameter λ. 2D
warping is similar to the method of Marchant et al.22 except
for the regularization parameter λ. Although 3D warping with
six markers has lower SSIM index than that achieved using 14
markers by 0.0115 (1.1%), we expect errors in marker loca-
tion in a real scenario. We estimate that 8 markers may be
required for 3D warping in order to get a stable transforma-
tion matrix. The image quality with 3D warping is better than
2D methods since the 3D correction can correct for opposite
motions at different depths along the projection rays. How-
ever, it is limited in that our 3D warping assumes rigid body
motion. An easy solution to this might be applying two differ-
ent transformations to the upper leg and lower leg, since knee
flexion is the dominant motion in the knee joint. Further ex-
tensions will be marker-less image-based motion estimation
and deformable motion correction in 3D.

As shown in Table III, 2D warping with respect to other
techniques was relatively sensitive to different marker place-
ment setups. In Central 1 and Central 2 slices with 2D warp-
ing, TB1 placement performed worst since the spline inter-
polant does not have motion information to fit in the central
field of view and TB2 placement brought better image qual-
ity close to that with EVEN placement by providing central
motion information from the marker on the patella. There-
fore, an optimal marker placement setup for 2D warping is
EVEN. Marker placement setups at the top and the bottom of
the field of view (TB1 and TB2) showed comparable perfor-
mance to the uniform marker distribution (EVEN) especially
with 2D shifting and 3D warping. TB1 and TB2 setups would
be a better choice than EVEN when metallic markers induce
metal artifacts and thus deteriorate image quality in the central
field of view. However, we did not observe serious metal arti-
facts from 1 mm tantalum markers in the real data scenarios.34

More practical considerations, such as overlapping markers,
and markers leaving the FOV due to motion, may also limit
the use of TB1 and TB2. Therefore, EVEN is a more robust
choice for 2D shifting and 3D warping.

The XCAT knee model with optical tracking markers was
able to simulate the complex involuntary lower body move-
ment of the standing patient. In the optical tracking measure-
ments of motion, some errors could potentially be introduced
due to inaccurate estimation of joint centers acquired with
seven retroreflective markers and a regression formula with
regard to the lower body anatomy. Since we need a regres-
sion equation and three noninvasive optical markers to iden-
tify the HJC, errors of HJC location are expected to be greater
than those of KJC or AJC which only requires knowledge of
the medial and lateral condyles of the femur and malleoli,
respectively. Stagni et al. estimated the effect of poor HJC
estimation on knee joint angles and moments and showed
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TABLE III. Image quality comparison of Subject 2 using different combinations of motion correction methods and marker placement setups. As explained in
Table II, the “Central 1” and “Central 2” are representative central axial slices in the field of view. The “Lower” and “Upper” are a lower off-center axial slice and
a upper off-center axial slice, respectively. The best values among different marker placement setups (“EVEN,” “TB1,” and “TB2”) with each motion correction
method are reported in bold face.

2D shifting 2D warping 3D warping

Axial slice No correction EVEN TB1 TB2 EVEN TB1 TB2 EVEN TB1 TB2

Central 1 0.4604 0.6717 0.6766 0.6793 0.6531 0.6375 0.6481 0.6811 0.6921 0.6927
Central 2 0.4795 0.6766 0.6870 0.6890 0.6598 0.6347 0.6597 0.6827 0.6992 0.6980
Upper 0.5743 0.6838 0.6963 0.6949 0.7028 0.6966 0.6998 0.7178 0.7209 0.7082
Lower 0.5048 0.6659 0.6723 0.6754 0.6286 0.6356 0.6684 0.7018 0.7076 0.7075

that “the effect of HJC mislocation on knee angles and mo-
ments can be considered negligible.”44 However, even in a
worst-case scenario, where errors of joint center identifica-
tion become significant, the errors will not impact the amount
of estimated patients’ involuntary motion since joint centers
were linearly shifted in x-, y-, and z-directions. Therefore, the
amount of mislocation at each time frame will be constant and
consistent.

The impact of involuntary motion on image quality was es-
timated quantitatively and qualitatively. In vivo human subject
data with the three methods show similar image quality im-
provement as the results of XCAT model simulation.34 Note
that our XCAT model is limited as it uses a monochromatic
absorption model, although we do not expect effects such as
beam hardening and scatter will have a large influence on mo-
tion compensation. Moreover, the details of the soft tissues in
the lower body of the XCAT phantom are lacking. Our XCAT
model has only bone, bone marrow, and body soft tissue.
Other tissues (e.g., cartilage, ligaments, tendon, meniscus,
and muscle) are not represented in the phantom legs, which
makes it hard to predict the effect of their motion on image
quality. We can, however, see on the in vivo data experiments
with subjects holding the squat positions that the three differ-
ent motion models for the three methods are accurate enough
for the amount of motion that is present in the data.34 Since
the relative motion of bone and internal soft tissues (e.g., mus-
cle, fat) to the external fiducial markers was minor, the motion
compensated reconstruction based on fiducial trackers was
able to visualize edges of soft tissue as well as bone. CBCT
equipped with flat panels is advantageous over conventional
CT in that it has high spatial resolution (e.g., 150 μm isotropic
for flat-panel angiographic CT). Considering cartilage contact
area45 and thickness46, 47 changes on the order of submillime-
ter as loads were applied, conventional CT could lead to inac-
curate measurements of soft tissue structures and alignment
of the bones (e.g., patella, femur, and tibia) in knee. Thus, flat
panel CBCT could extract useful information of the knee joint
under loading conditions which was not currently achievable.
Other future work includes applying the three methods to the
XCAT knee model while taking into account the impact of
marker tracking errors. Tracking of multiple fiducial markers
in previous studies48, 49 sometimes showed marker detection
errors larger than the flat panel detector resolution in a C-arm
CT system. Given marker tracking errors, the three methods
show different amounts of image quality degradation.

5. CONCLUSIONS

The XCAT knee model with optical tracking markers was
able to simulate the complex involuntary realistic lower body
movement of the standing patient. The impact of involun-
tary motion on image quality was estimated quantitatively
and qualitatively. Subjects in a squatting position showed mo-
tion amplitudes about 8 times larger than the detector resolu-
tion and thus considerable motion artifacts were observed in
reconstructed images. Three different fiducial marker-based
motion compensation methods (2D projection shifting, 2D
projection warping, and 3D image warping) without need of
prior CT scanning were developed and tested. 2D shifting, 2D
warping, and 3D warping resulted in improved SSIM index
by 20.30%, 18.30%, and 22.02%, respectively, in the repre-
sentative central slices of Subject 2 and by 15.39%, 16.95%,
and 18.90% in the representative lower off-center slices of
Subject 2. As markers in 2D do not accurately represent their
location in 3D, 3D image warping outperformed 2D-based
methods. The three methods were also evaluated with human
subject data in vivo. The suggested number of markers for
2D shifting, 2D warping, and 3D warping are 4–6, 12, and 8,
respectively.
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