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Abstract
We have developed a rigorous computational screening protocol to identify novel fragment-like
inhibitors of N5-CAIR mutase (PurE), a key enzyme involved in de novo purine synthesis that
represents a novel target for the design of antibacterial agents. This computational screening
protocol utilizes molecular docking, graphics processing unit (GPU)-accelerated molecular
dynamics and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) free energy
estimations to investigate the binding modes and energies of fragments in the active sites of PurE.
PurE is a functional octamer comprised of identical subunits. The octameric structure, with its
eight active sites, provided a distinct advantage in these studies because, for a given simulation
length, we were able to place eight separate fragment compounds in the active sites to increase the
throughput of the MM/PBSA analysis. To validate this protocol, we have screened an in-house
fragment library consisting of 352 compounds. The theoretical results were then compared with
the results of two experimental fragment screens, Nuclear Magnetic Resonance (NMR) and
Surface Plasmon Resonance (SPR) binding analyses. In these validation studies, the protocol was
able to effectively identify the competitive binders that had been independently identified by
experimental testing, suggesting the potential utility of this method for the identification of novel
fragments for future development as PurE inhibitors.
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INTRODUCTION
The rise of antibiotic-resistant bacteria has become so pronounced that it now threatens
global public health on an unprecedented scale. Multidrug-resistant (MDR) bacterial strains,
emerging bacterial pathogens and bioterrorism threat organisms have all emerged as new
public health concerns.1 Furthermore, the economic and societal impact of bacterial
resistance is pronounced, due to the greater expense of treatment, longer treatment durations,
and decreased prognosis in resistant infections. Alarmingly, recent studies on deaths caused
by just a portion of MDR organisms revealed that each year these infections result in an
estimated 12,000 deaths in the U.S. and 29,000 deaths in European countries.2
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Unfortunately, despite the increasing prevalence of drug resistance in bacterial pathogens,
the rate of new antibacterial drugs entering the market is extremely low and most large
pharmaceutical companies and many biotechnology companies have abandoned this
research area altogether.3 Amongst the solutions to these critical issues are the identification
and validation of new antibacterial drug targets and the design and application of novel
screening methods for hit and lead identification.

One promising, but largely unexplored pathway for antibacterial drug design is the de novo
purine biosynthesis pathway. Purine biosynthesis is essential to all life forms except
protozoa.4 Decreases in the virulence of purine auxotrophs have been reported in
Salmonella5, Escherichia coli6, Bacillus anthracis6, 7, Yersinia pestis8, Staphylococcus
aureus9 and Streptococcus pneumoniae10, demonstrating this pathway’s essentiality in key
bacterial organisms. Recent studies have shown that there are key differences in the purine
biosynthesis pathways between microbes and humans that can potentially be exploited for
antibacterial drug discovery (Figure 1).11, 12 These differences are centered on the synthesis
of a key intermediate, 4-carboxyaminoimidazole ribonucleotide (CAIR). In bacteria, two
enzymes are required to synthesize this intermediate. First, carboxyaminoimidazole
ribonucleotide (AIR) is first converted to N5-CAIR in an ATP-dependent manner by N5-
CAIR synthetase (PurK). N5-CAIR is subsequently converted to CAIR in a second step by
N5-CAIR mutase (Class I PurE). In humans, AIR is directly carboxylated by AIR
carboxylase (Class II PurE). Biochemical studies have shown that the Class I and Class II
PurE enzymes are different and highly specific for substrate selection; Class II PurE cannot
use N5-CAIR as a substrate and Class I PurE cannot directly use AIR and CO2.13 Genetic
studies have shown that microorganisms deficient in the purE gene are unable to grow in
minimal media, human serum or mouse models.6, 9, 10, 14 Furthermore, PurE has been
identified as a virulence factor and mutations that affect enzymatic activity significantly
attenuated virulence.6, 10 Despite the demonstrated essentiality and novelty of this target,
very few inhibitors, typically substrate mimics, for PurE have been reported, confirming the
need to search for PurE inhibitors.15

PurE is a functional octamer comprised of eight identical subunits with eight active sites at
the interface of three monomers each (Figure 2).16 The crystal structure of E. coli PurE in
complex with CAIR has revealed that the active site is solvent exposed, yet still contains a
small, hydrophobic pocket. The phosphate-binding site is the most solvent exposed, and here
the substrate forms hydrogen bonds with serine and arginine residues. The substrate’s ribose
hydroxyl groups form hydrogen bonds with an aspartate residue and a glycine amide group.
The substrate’s imidazole ring is buried in a small, hydrophobic pocket and forms hydrogen
bonds with backbone groups. A conserved histidine residue is believed to serve as the acid
and base for this reaction.13 A channel runs through the center of the octamer along the
fourfold-symmetry axis and we propose that this could be a relatively promiscuous binding
site for small molecules (see Discussion below). The octameric structure, with its eight
active sites, provided a distinct advantage in our molecular dynamics (MD) based fragment
studies. This is because, for a given simulation length (assuming independence of the active
sites, see Discussion below), we were able to improve the throughput of our MD-based
virtual screens against this drug target by simultaneously incorporating eight different
ligands in one simulation run.

Because the active site of PurE is relatively small, our laboratory has a keen interest in
screening fragment libraries (molecular weight <300 Da) against this target. Fragment-based
screening is now established as an emerging paradigm for drug discovery due to its efficient
sampling of chemical space and high hit rates.17 Several recently described fragment-based
lead discovery campaigns provide illustrative examples of the development of low-affinity
fragments into high-affinity inhibitors against various targets.18–22 Because the binding
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affinities of fragments are much weaker (usually in 0.1–10 mM range) compared to drug-
like compounds, sensitive biophysical screening methods are typically used to detect
binding.23 There are two strategies in the practical application biophysical fragment
screening; the first is to detect fragment binding only, without further information related to
the binding site; while the second is able to provide detailed binding site information, albeit
at a higher cost in terms of through-put and method complexity. Initial fragment screens are
typically conducted by using the first strategy, using techniques such as Thermal Shift (TS),
Surface Plasmon Resonance (SPR), Mass Spectrometry (MS), and non-competition NMR
spectrometry. Secondary screening using techniques such as competition NMR spectrometry
and/or X-ray crystallography is able to provide additional information regarding hit
fragments binding specificity and even the exact binding site and conformation.

Experimental fragment-based screening has proven to be useful in drug discovery but is
limited by low-throughput and high expense. Computational fragment-based drug design
approaches can bypass these issues but suffer from limited representations of protein
flexibility and solvation effects, which can lead to difficulties with the prediction of binding
poses and energies for fragments. To overcome these limitations, we have combined
molecular docking with molecular dynamics and Molecular Mechanics/Poisson-Boltzmann
Surface Area (MM/PBSA) free energy estimations for the identification of novel, fragment-
like compounds with PurE inhibitory activity. In order to validate this method and optimize
the protocol, we have screened a small, in-house fragment library which consists of 352
compounds using MD-MM/PBSA and compared the results with experimental screens of
the same library, including both initial screens using NMR and SPR, and a s secondary
screen to confirm active site specificity by competition NMR spectrometry. AU-ROC and
enrichment metrics have been used to compare the computational and experimental results
from both the primary and secondary experimental screens and the results are compared
with standard docking approaches.

MATERIALS AND METHODS
Protein and fragment library preparation

The X-ray crystal structure of E. coli PurE in complex with CAIR (PDB code 1D7A) was
prepared using the Protein Preparation Wizard available in the Schrödinger Suite 2011.
Histidine 45 was protonated due to its essential role in catalysis.13 Hydrogens and charges
were added using the OPLS2005 force field and hydrogens were refined using restrained
minimization. The fragments were prepared using Schrödinger’s LigPrep software.24

Ligands were desalted and tautomers generated. The OPLS2005 force field was used for
geometric optimization. Generation of multiple ligand ionization states and tautomeric forms
at pH 7.5 ± 0.5 was completed using Schrödinger’s EPIK software.25 A maximum of two
stereoisomers were retained in prepared libraries in situations where fragment compounds
contained chiral centers. Single low energy ring conformations were generated for fragment
compounds containing non-aromatic ring systems. Additional settings for both protein and
ligand preparation utilized default parameters.

Molecular docking and molecular dynamics simulations
Molecular docking was performed with GOLD v5.0.1.26 The binding site sphere was
defined with a 10 Å radius around the AIR ligand present in the crystal structure, and 100
docking runs were performed for each fragment ligand. GOLD score was used as the scoring
function and “Generate Diverse Solutions” was set to TRUE (Cluster Size = 2, rmsd = 1).
Other fitness and search options were set to default settings unless otherwise stated below.
Search efficiency genetic algorithm (GA) settings were set to 200% and default values were
used for other GA settings. Two solutions of each compound (the best scoring and the most
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diverse/greatest RMSD from the best scoring conformation) were selected for the molecular
dynamics studies discussed below.

All MD calculations in this study were performed using the Amber 11 suite of programs.
The protein parameters used the ff99SB force field, and ligands were parameterized using
antechamber with the GAFF force field and AM1-BCC charges.27–29 Each protein-ligand
complex was solvated in an octahedral box of TIP3P water molecules extending 10 Å
outside the protein on all sides, resulting in more than 19,000 waters added per complex.30

The electrostatics were treated using the particle-mesh Ewald method.31 The simulations
used a residue-based long-range electrostatic cutoff of 8 Å and 2 femtosecond time steps.
Bonds involving hydrogen atoms were constrained using the SHAKE algorithm.32 The
solvated complexes were minimized using 10000 steps of conjugate gradient minimization,
which was followed by MD equilibration for 600 picoseconds. The equilibration included
heating to 300 K over 50 picoseconds, 50 picoseconds of density equilibration using 2 kcal
mol−1 Å−2 restraints on the complex, and 500 picoseconds of constant pressure equilibration
with 0.5 kcal mol−1 Å−2 restraints on the complex at 300K. After equilibration, 8
nanosecond production runs were performed to assess free energy convergence and
coordinates were extracted every 2 picoseconds. Simulation stability was assessed by root
mean squared deviation (RMSD) analyses, which were performed using the ptraj module of
Amber 11 (see Supporting Information).

MM/PBSA, normal mode and ligand efficiency calculations
MM/PBSA was used to calculate fragment compound binding free energies.33 The binding
free energy, ΔGbind, is calculated using a simple thermodynamic cycle from the energy
difference between the complex and the unbound forms. The values for the free energy of
binding of each fragment compound were calculated according to the following equation:

(1)

Where Gcomplex is the calculated Gibb’s free energy of the fragment-enzyme complex,
Greceptor is the Gibb’s free energy for the apo-enzyme receptor, and Gligand is the Gibb’s free
energy calculated for the ligand. The free energy values for each of these terms were
estimated as the sum of the four terms shown here:

(2)

Where EMM is the molecular mechanics energy of the molecule expressed as the sum of the
internal energy of the molecule plus the electrostatics and van der Waals interactions,
Gpsolv is the polar contribution to the solvation energy of the molecule, Gnpsolv is the
nonpolar solvation energy, T is the absolute temperature, and S is the entropy of the
molecule estimated by normal mode analysis.

The python script, MMPBSA.py, included in AMBER11 was used to perform the MM/
PBSA calculations.34 Snapshots for the calculations were taken every 20 picoseconds from
the last 2 nanoseconds of the MD production runs, resulting in a total of one hundred
snapshots per run. The three monomers forming one complete active site were defined as
“receptor” for the ligand located in that particular active site for MM/PBSA calculations.
The ionic strength in molarity was set to 0.1 and the internal dielectric constant was set as
2.0 (see Discussion below). Other options were set to default settings unless otherwise stated
below. Both normal-mode analysis (NMA) and quasi-harmonic analysis (QHA) were
employed to compute the vibrational, rotational, and translational entropy for the complex,
receptor and ligand using a single trajectory protocol wherein the snapshots used in the
individual calculations were extracted from a single MD trajectory of the complex system
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(see Discussion below). The results were averaged across all snapshots to obtain the
estimated binding entropy. Ionic strength used in nmode calculations (in molarity) was set as
0.1. QHA was calculated using the ptraj program in AmberTools with default settings.
Because of the high computational cost and considering that the deviation of entropy is
relatively small for different conformations,35 we selected 12 regularly spaced snapshots
along the last 2 ns production trajectory for the entropy calculations when using
normalmode analysis.

Ligand efficiency (LE) values were calculated using the method of Hopkins, et al. by
dividing calculated free energy (ΔG) by the number of heavy (non-hydrogen) atoms (NHA)
for ranking compounds and a cutoff of 0.3 was chosen for virtual hits selection.36, 37

(3)

Enrichment Metrics
The virtual screening performance of each method was quantified by AU-ROC (the Area
Under the Receiver-Operating Characteristic), enrichment factor at 5% and 10%, and TPR
(true positive rate) at 5% and 10% FPR (false positive rate). One-sided p-values were
calculated to test whether the virtual screening methods performed better than random, and
two sided p-values were used to compare the results of the different methods. Detailed
procedures have been described in a previous study,38 and the recommended statistical
analyses were employed here as shown in the equations below:

(4)

(5)

(6)

(7)

(8)

where erfc(x) is the complementary error function, ΔAUROC is the difference in AUC
values, SEΔ is the standard error in ΔAUROC, VarΔ,d is the variance associated with the
mean of TPR, and VarΔ,a is the variance associated with the mean of FPR.

Protein expression and purification
The Bacillus anthracis PurE enzyme was used in all experimental binding studies. B.
anthracis PurE was cloned, expressed, and purified as previously described.39 Briefly, the
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purE gene was PCR amplified from B. anthracis genomic DNA using primers designed in-
house and cloned into the pET15b plasmid vector, which adds an N-terminal His6 tag for
purifications and contains an ampicillin resistance cassette. After sequence confirmation, the
plasmid vector was transformed into E. coli BL21-Gold (DE3) cells for expression. Cells
were grown at 37 °C in TB (Terrific Broth) medium containing 100 µg/mL ampicillin until
the optical density (OD) at 600 nm reached approximately 0.6 (approximately four hours)
and induced with 1 mM IPTG for four additional hours at 37 °C, at which time the cells
were harvested by centrifugation and lysed by sonication. Recombinant PurE was purified
by affinity chromatography on a HisTrap HP column (GE Healthcare); enzyme eluting
fractions were confirmed by SDS-PAGE, pooled and concentrated to 5 mg/mL. The His6 tag
was cleaved by thrombin from PurE for 1 hour at 37 °C for enzyme kinetics measurements
and SPR experiments. After thrombin digestion, samples were reloaded on to HisTrap HP
column again to remove His6 tags and uncleaved His6-PurE. Flow through was collected
and concentrated. The uncleaved protein was used in NMR experiments described below.

Cooperativity analysis and enzymatic assay
The Hill coefficient was calculated by fitting the activity data to the three Parameter Hill
equations by OriginPro 8.5 (OriginLab, Inc.) using the following equation:

(9)

Where v is enzyme activity (velocity), [S] is the substrate concentration, K’ is a constant
consisting of interacting terms for each binding site and the intrinsic dissociation constant,
Ks, Vmax is the maximal activity from three independent assays, and n is the Hill coefficient,
which describes the cooperativity of the reaction. The activity of the B. anthracis PurE
enzyme was measured using a spectrophometric assay with the CAIR product, by following
a decrease in the absorbance at 260 nm as CAIR is converted to the N5-CAIR substrate in
the reverse reaction. The assay was performed in an assay buffer containing 50 mM Tris, pH
7.5 and 75 mM NaCl. A series of substrate concentrations (0 to 200 µM final concentration)
were prepared and 100 µL each was distributed in 96-well UV microplates (Corning Inc.).
The enzyme reaction was initiated by adding 100 µL PurE (10 nM final concentration). The
plate was shaken for 30 seconds, and UV absorbance at 260 nm was monitored continuously
for 10 minutes with an Envision 2104 Multilabel plate reader (Perkin Elmer). The same
series of substrate concentrations without any enzyme was also measured as a control.

NMR and SPR experimental screening and competition binding assays
The in-house fragment library of 352 compounds (Zenobia Therapeutics) was tested at 200
µM in 8-fragment cocktail mixtures, using both Saturation Transfer Difference (STD) and
WaterLOGSY NMR experiments. The samples were prepared in 50 mM phosphate buffer
(pH 7.5) with 75 mM NaCl and 10% D2O. The PurE enzyme concentration was 20 µM.
Fragment cocktail deconvolution was performed and individual fragment compounds tested
when activity was noted. A small subset of fragments was further characterized for the
specificity of binding by STD competition experiments (see Discussion below). In these
experiments the same buffer and PurE concentration was used. The samples were prepared
as 5-fragment cocktail mixtures, using 400 µM of each compound. After the first STD
spectrum was collected, 500 µM CAIR was added to the sample and an additional STD
spectrum was collected. All spectra were acquired at 10 °C with a Brucker 900 MHz NMR
spectrometer with water and DMSO double solvent suppression STD pulse sequence. All
NMR spectra were processed with the TopSpin3.1 (Bruker Biospin Ltd.) software.
Competitive binding compounds were defined as those with greater than a 10% decrease in
binding response after CAIR was added.

Zhu et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2014 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For surface plasmon resonance (SPR) experiments, the PurE enzyme was prepared in PBS
buffer (10 mM phosphate, pH 7.4, 2.7 mM KCl, 137 mM NaCl) and immobilized on a CM5
sensor chip using standard amine-coupling at 20 °C with running buffer HBS-P (10 mM
HEPES, 150 mM NaCl, 0.05% surfactant P-20, pH7.4) from GE healthcare. Flow channels
1 and 3 were activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDC)/ N-hydroxy succinimide (NHS) mixture, and the activated surfaces were blocked
using ethanolamine (pH 8.5) as controls. The PurE enzyme was diluted in 10 mM sodium
acetate (pH 4.5) and immobilized to flow channel 2 and 4 after sensor surface activation
with EDC/NHS with a 7 minutes injection followed by ethanolamine blocking on
nonimmobilized surface area. PurE immobilization level of flow channel 2 and 4 were
~10,500 response units (RU) and ~11,500 RU, respectively. All fragment compounds were
prepared as 10 mM stock in 100% DMSO and were diluted in the assay buffer (10 mM
phosphate, pH 7.4, 2.7 mM KCl, 137 mM NaCl, and 2% DMSO) to 150 µM final
concentration in 384-well plates. Each compound was injected for 30 seconds of association
and 30 second of dissociation time at flow rates of 50 µL/min into all four channels. All data
were referenced for blank injections on flow channel 1 and 3. All assays were done in
duplicate. Compounds with a cut-off of 4 RU or greater were selected as hits.

RESULTS AND DISCUSSIONS
With over 400,000 fragment compounds available commercially,40 the attractiveness of an
accurate fragment virtual screening method with reasonable throughput that can be utilized
as a pre-filter for more traditional low-throughput methods, such as NMR or crystallography
for hit confirmation, is readily apparent. With respect to the PurE target, the nature of the
active site makes a fragment-based drug discovery approach particularly appealing. The site
is shallow, solvent-exposed with a low volume of approximately 800 Å3 and maximum
depth of 12.5 Å (Figure 2). However, difficulties with docking and scoring of fragment
compounds have been well documented.41 Most scoring functions have been parameterized
using drug-like compounds that are larger and more complex in terms of protein interactions
than fragment compounds. These same scoring functions may also underestimate the
entropy penalty to fragment compound binding, which have more translational and
rotational freedom compared with drug-like compounds.

Strategies which utilize more complex energy functions, such as QM/MM, MM/PBSA, and
MM/GBSA have increasingly been employed to improve computational predictions of
fragment binding.42 Quantum mechanical approaches such as QM/MM, while accurate, are
still too computationally intensive for virtual screening of large libraries, while the MM/
GBSA and MM/PBSA approaches have generally been shown to lead to improved
enrichments when used to rescore docked fragments, and are significantly less
computationally expensive.43–46 Other approaches to binding energy predictions such as
free energy perturbation (FEP), thermodynamic integration (TI), or linear interaction energy
(LIE) calculations are less applicable to hit identification by virtual screening than they are
to lead optimization due to their requirement for known active compounds for comparisons
(FEP/TI) or training (LIE). For screening against the PurE target, the MM/PBSA method
that was employed here can give the improvement in energy predictions that we sought,
while still allowing for a reasonable screening throughput, as discussed below.

It should be noted that the crystal structure of the E. coli PurE was used in all computational
studies, while the B. anthracis PurE enzyme was used in experimental studies. Although
there is a B. anthracis structure available, it is an apo structure, while the E. coli structure
contained the bound ligand (AIR) that facilitated the preparation and completion of the
computational studies. We note the high overall identity and similarity between the two
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enzymes, 59% and 89%, respectively, and the 100% identity of the active site residues
within five angstroms of the bound AIR ligand.

Enzyme Cooperativity Analysis
A key factor influencing the utility of the multiple binding site method described here is the
effect of cooperativity on binding. The method we have described assumes that there is no
positive or negative cooperativity influencing the fragment binding, whereby fragments that
bind to one active site of the octamer influence the binding of successive fragments. In order
to confirm this lack of cooperativity we performed detailed enzyme kinetics studies to
determine the Hill coefficient of binding. The Hill coefficient is used to determine the
stoichiometry of substrate-enzyme interactions and is modeled using Equation 9 as
described above. In cases where there is no significant positive or negative cooperativity, the
Hill coefficient will be near unity and Equation 9 reduces to the standard Michaelis-Menten
equation. Hill coefficients significantly greater than 1 indicate positive cooperativity while
those significantly less than 1 are indicative of negative cooperativity.47

The Hill coefficient for binding of CAIR to PurE was close to one (n =1.38 ± 0.04), which
indicates a homogenous population of non-cooperative binding sites, meaning that ligand
binding to one site did not significantly alter ligand affinity at other binding sites.
Additionally, the crystal structures of apo E. coli PurE (PDB code 1QCZ) and its complexes
with AIR (PDB code 1D7A) and NAIR (PDB code 2ATE) show nearly identical active
sites, which suggests that there is no significant local conformational change upon ligand
binding that causes conformational changes at nearby binding sites and thereby affecting
their ligand affinity. Furthermore, the weak molecular interactions of fragment compounds
with PurE are not expected to produce any significant induced fit effects on local or
neighboring binding sites. Taken together, we feel that this molecular and structural data
justifies our placement of different fragment compounds in each of the eight active sites of
the PurE octamer for MD-MM/PBSA screening to increase the throughput of the protocol.
Additionally, our use of fragment compounds and the negligible induced fit seen with the
PurE system justifies our use of a single trajectory approach for MM/PBSA calculations, as
discussed in Methods.48

Comparison of virtual methods with experimental results
384 fragment compounds (352 unique compounds and 32 tautomers/stereoisomers) were
prepared and docked into eight separate active sites of PurE as discussed above (see
Methods). In order to account for possible inaccuracies in fragment docking pose selection
as well as a likely dependence of the final MD results on fragment starting position, we
selected two conformations for each fragment compound to take into the MD-MM/PBSA
simulations. The highest scoring pose for each fragment as well as the pose with the largest
RMSD from the highest scoring pose were selected. In total, 96 MD simulation runs were
performed with eight different ligands in each run. The lowest delta G estimated by MM/
PBSA from the multiple docked conformations and tautomers/stereoisomers for each
compound was selected for ligand efficiency calculation. Virtual ‘hits’ were defined as
compounds with a calculated ligand efficiency of 0.3 or greater (see Methods).

The full results of the virtual and experimental screens are included in Table S1 of the
Supporting Information. Virtual screening using this MD-MM/PBSA protocol against our
in-house fragment library (Zenobia Therapeutics) yielded 103 virtual hits (~30% virtual hit
rate), 83 of which agreed with NMR and/or SPR studies (Figure 3). To evaluate the
predictive power of the MM/PBSA protocol, receiver operator characteristic (ROC) curves
were generated and compared along with calculated enrichment factors at 5%, 10% and true
positive rate (TPR) at 5%, 10% false positive rate (FPR).49 ROC analysis is a powerful
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method for the evaluation and comparison of the predictive abilities of virtual screening
methods.50 A comparison of the areas under ROC curves (AU-ROCs) for the different
methods being tested allows for the direct comparison of the overall sensitivity and
specificity of a given method. To quantify the significance of any observed difference in the
AUC values of virtual screens compared to random selection and with each other, p-values
were calculated as described above (see Methods). At a significance level (α) of 0.05, p-
values less than 0.05 indicate significant improvement over random selection when one-
sided p-values are calculated, and significant differences (significantly better or significantly
worse) when two-sided p-values are calculated for other methods under comparison, while
p-values greater than 0.05 indicate no significant improvement over random selection or
significant difference from other methods under comparison. Enrichment factors were
calculated to allow for the comparison of the early enrichment of the methods. Values of 5%
and 10% were selected in this case for enrichment factors due to the smaller size of the test
library. TPR at 5% and 10% FPR were further calculated for the comparison of the early
enrichment ability between the different datasets as enrichment factor values are influenced
by composition differences.51

Table 1 summarizes the results of the protocol validation. When comparing standard
docking with the MM/PBSA protocol against the full fragment library (with actives defined
as those fragments determined to bind using the experimental methods) a significant
improvement in enrichment factors, TPR at fixed FPR, and AU-ROC was seen with the
MM/PBSA protocol. The MM/PBSA protocol showed almost two-fold enrichment over
random selection, while the docking protocol performed under random selection (EF = 1) at
both EF 5% and EF 10%. The difference in AU-ROC values (Figure 4A, Table 1) is
statistically significant for the pairs under comparison except one pair (MM/PBSA with or
without NHA weighting). The AU-ROC values (Figure 4A, Table 1) for the MM/PBSA
protocol were significantly improved over the standard docking, which performed at or
under the levels expected from random compound selection (AU-ROC = 0.5). For the MM/
PBSA and standard docking protocols against the complete dataset, we further tested
whether a heavy atom (NHA) weighted method improved the performance. There was no
significant improvement associated with heavy atom (NHA) weighting compared to the
original, non-weighted, results. We note that the enrichment factor and AU-ROC values,
although improved over standard fragment docking performed here, are still lower than what
is typically seen with validated docking protocols using drug-like compounds.52–54 We
believe the reasons for this are two-fold: the first being the inherent difficulty of scoring
fragments bound to a protein receptor, even using a more rigorous method such as MM/
PBSA; the second being the possibility that the ‘actives’ used here, which were identified as
binders using the experimental methods, may be nonspecific, or allosteric, binders. We
discuss this second possibility in further detail below.

Comparison of virtual methods with NMR competition binding assay
Although the NMR and SPR methods described above (see Methods) are able to identify
fragment compounds that bind to the PurE enzyme target, they are not able to directly
distinguish between specific (active-site) binders and non-specific binders. As discussed in
the introduction, the PurE octameric structure contains a large, central channel which may
serve as a promiscuous binding site for fragment compounds (Figure 2). For this reason,
some of the compounds identified as ‘actives’ in the validation study discussed above may
be false positives that would not be identified as a ‘hit’ using the computational protocols,
which may explain in part the low EF and AU-ROC values for both the docking and MM/
PBSA protocols. In order to confirm active site binding of the fragments identified
experimentally, we have tested a subset of the fragment ‘binders’ using a CAIR competition
binding assay that employed Saturation Transfer Difference (STD) NMR (see Methods). A
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limited amount of the CAIR substrate (synthesized in-house) prevented the testing of all
experimental binders. Fragment compounds were selected for testing based upon their high
signal-to-noise ratio (greater than five) which typically indicates stronger binding; and
compounds were classified as active-site, or competitive binders, if they showed a greater
than 10% decrease in binding response after the CAIR ligand was added.

Of the 156 unique fragment compounds that were identified as binding by NMR methods,
we selected 65 compounds for testing in the CAIR competition assay. Of the 65 compounds
selected for testing, 36 had also been identified as hits by the MM/PBSA protocol, as
discussed above. Twenty fragment compounds, roughly one-third of the tested subset, were
confirmed to bind to the PurE active site by the CAIR competition assay, which confirmed
our suspicions that a large number of ‘binders’ were non-specific. Encouragingly, 16 of the
20 active site binders had also been identified as hits by our MM/PBSA protocol. A
representative, competitive fragment binder identified and characterized by SPR,
competition NMR and computational predictions is shown in Figure 5. The ability of our
protocol and standard docking to discriminate the active-site binders (confirmed competition
with CAIR) from noncompetitive binders was further examined by ROC analysis,
enrichment factors and TPR at fixed FPR; similar to the full library studies discussed above.
The results of these studies are listed in Table 1 and shown in Figure 4B.

Significant improvements were seen in the early enrichment metrics, EF at 5%, 10% and
TPR at 5%, 10% FPR, for both MM/PBSA and traditional docking, with MM/PBSA
outperforming traditional docking for both heavy atom weighted and non-weighted metrics.
The greater than 3-fold enrichment seen with the MM/PBSA protocol is more closely
aligned with the enrichments seen with traditional docking of drug-like compounds, which
indicates that non-specific binders, or false-positives, had affected the results, at least in part,
described above. The difference in AU-ROC values (Figure 4B, Table 1) is statistically
significant for the pairs under comparison except one pair (MM/PBSA with or without NHA
weighting). The AU-ROC values (Figure 4B, Table 1) for the MM/PBSA protocol were also
significantly improved over the standard docking. Significant improvement was also
observed with heavy atom (NHA) weighted GOLD scores compared to non-weighted
scores. For the MM/PBSA and standard docking protocols, additional performance testing
was completed for comparison of the 65- compound subset to the complete data set, partly
due to this composition difference noted above. Noticeable improvement was seen in the
early enrichment ability as significant differences were observed for TPR at 5% and 10%
FPR for both the MM/PBSA protocol (~ 2 fold differences) and the traditional docking
method (~ 8 fold differences). The AU-ROC values were also improved, modestly for the
MM/PBSA protocol, and significantly for the traditional docking method. This improvement
in the performance of docking for the 65-compound subset over the full dataset can be
explained in part by the binding affinity differences between the two datasets. Because the
compounds in the subset were selected by their higher signal-to-noise, their binding
affinities are expected to generally be higher than the full fragment set. Docking and scoring
of compounds with high ligand efficiencies (LE) is believed to be more accurate than that
for low LE compounds, as suggested by the studies conducted by Verdonk and coworkers at
Astex Pharmaceuticals.55

Comparison of MM/PBSA with standard docking
The improvement in scoring efficiency discussed above for the MD-MM/PBSA protocol
over traditional docking can be attributed to several factors, including the conformational
refinement of docking poses by molecular dynamics, an unbiased energy function, and the
more detailed treatment of the entropic contribution to binding in the energy function.
Entropy is commonly estimated by one of two methods: normal-mode analysis (NMA) and
quasi-harmonic analysis (QHA). It has been shown that QHA can provide more accurate and
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efficient entropy estimations than NMA.56, 57 In these studies, we have applied both
methods of entropy calculation (See Methods) and performed a cross-comparison of the
results with respect to the enrichment values seen with the 65 compound subset (See
Supporting Information, Figure S1). We noted that in our system QHA yielded much larger
entropy values which appeared to be unrealistic leading to positive free energies of binding
in many cases. This overestimation of entropy has been reported in other studies.58, 59 Due
to this observation, all subsequent studies utilized NMA as the method for entropy
calculations. Figure 6 shows an ROC analysis of the contributions of the enthalpic and
entropic MM/PBSA components of the overall binding energy to the fragment screening
enrichment for the complete fragment set. The AU-ROC for the enthalpy component was
0.66 and the AU-ROC for the entropy component was 0.61, while the overall AU-ROC was
0.7. The overall improvement in enrichment upon the combination of the two components
was modest; however a significant improvement in early enrichment is readily apparent.
Similar results were seen when the same analysis was applied to the competing fragment
subset: enthalpy AU-ROC 0.76, entropy AU-ROC 0.59, overall 0.79, and a noticeable
improvement in early enrichment (see Supporting Information, Figure S2). We observed a
marked difference between the shapes of the enthalpy ROC, entropy ROC and overall ROC
between the complete set and the competitive compounds subset. We attribute this observed
phenomenon to the difference in compound composition and binding affinities between the
two compound sets.

MM/PBSA and MM/GBSA methods combined with MD have recently emerged as
relatively fast and accurate methods to estimate binding free energy. MD simulations using
programs such as AMBER29 are still relatively computationally expensive and high-
throughput screening using MD-MM/PBSA protocol is admittedly more time consuming
compared to traditional docking methods. In our studies, two strategies were employed in
order to reduce the running time and achieve higher throughput: GPU acceleration of
AMBER MD simulations and simultaneously incorporating different ligands in one
simulation run. Early GPU vs. CPU benchmarking studies performed in-house (data not
shown) indicated that for the PurE system we could achieve approximately 3x acceleration
using GPU’s over CPU’s for the MD and MM/PBSA calculations (10 ns per day vs. 3 ns per
day at maximum efficiency). The time for one run (8 compounds in the octamer) is
approximately 500–600 CPU/GPU hours (roughly 48 hours on a 2-GPU/12-CPU node). We
believe this is in a practical time range for screening the small to medium size libraries
typically seen with fragment sets, if one is utilizing parallel processing resources such as the
National Science Foundation’s Extreme Science and Engineering Discovery Environment
(XSEDE). By way of comparison, in our studies the docking (384 compounds) was
performed on a 4-processor (CPU) in-house workstation in approximately six hours, while
the MD-MM/PBSA (768 compounds) was accomplished in just under 30 days on the TACC
Lonestar cluster which contains eight GPU nodes, each consisting of two NVIDIA M2070
GPU’s (448 cores each) and two Intel Xeon hexa-core CPUs. With the availability of cluster
resources such as this and others, as well as the relatively low-cost and accessibility of GPU
workstations, the screening of larger fragment libraries using MD-MM/PBSA or MM/
GBSA-based methods is becoming more realistic.

Effect of solute dielectric constant, simulation time, and multiple ligand conformations
A dielectric constant (εin) of unity (1.0) is typically used for the solute in simulations such as
these. However, for a highly charged binding interface, higher εin values have been
recommended to consider the electronic polarization effect.60, 61 In order to optimize εin, we
compared the experimental binding free energies of CAIR (Km = 22.2 ± 4.6 µM) and AIR
(Ki = 236 ± 15 µM)62 for PurE to values computed theoretically using three different solute
dielectric constants (1.0, 2.0, and 4.0). The results are listed in Table 2. The results shown
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indicate that the calculations are sensitive to the value of solute dielectric constant. The
calculated experimental ΔG values for CAIR and AIR show that the CAIR ligand has a
higher binding affinity for the PurE enzyme than the AIR ligand (a decarboxylation product
of CAIR as well as a substrate for PurK, the precursor enzyme to PurE in this pathway). By
using a value of εin = 2 over εin = 1 or εin = 4 we were better able to differentiate the two
compounds by relative binding free energy, although the absolute binding free energies of
these two ligands was more closely calculated using εin = 1. In addition, we have compared
the effects of different solute dielectric constant values on the overall MM/PBSA virtual
screening performance. The difference in AU-ROC values (Figure S1, Table 2) is
statistically significant for the pairs under comparison. The AU-ROC value (Figure S1,
Table 2) for εin = 2 was significantly improved over εin = 1 or εin = 4. The active site of
PurE is solvent exposed and there are two charged residues in the active site of PurE, Arg46
and Asp19. Because these charged residues are likely to form ionic interactions with
charged groups of the fragment sets, we felt that the larger value for the solute dielectric
constant was justified.

In order to investigate the effect of the simulation length on predictions, we conducted a
comparative study of free energy calculations by using three different MD simulation
production lengths: 2 ns (100 snapshots), 4 ns (200 snapshots), and 8 ns (400 snapshots).
The results are listed in Table 2. The length of MD simulations had only slight impact on the
ΔG predictions. In order to demonstrate system equilibration, we calculated the enzyme
backbone and ligand RMSD values for the complexes of CAIR and AIR with PurE (shown
in Figure S3, Supporting Information). The CAIR/PurE system achieved equilibration after
approximately 2 ns, and AIR/PurE system achieved equilibration after approximately 4 ns.
To further demonstrate system stability, the fluctuations of enthalpies for CAIR/PurE and
AIR/PurE were also calculated over the different time courses (shown in Figure S4,
Supporting Information). The enthalpies were variable, but the mean values became stable
after short MD simulation lengths of approximately 2 ns. The estimated binding energies
between ligands and receptors are not extremely sensitive to fine conformational
adjustments, which can occasionally be reflected in the appearance of energy convergence
(fast energy convergence), while the system’s conformation appears to have yet converged
(slow conformational convergence).53 We observed this phenomenon in our studies and we
believe that it can be partly explained by the fragment-like nature of the compounds in our
screening sets. Although the data suggested that shorter MD simulations would be justified
(particularly for analysis of larger libraries), we chose 8 ns as the length of MD simulations
in these studies because the initial complexes of fragments with the PurE enzyme were
computationally derived and the test fragment library was relatively small.

The effects of using multiple ligand poses from the docking results versus a single, high-
scoring docking pose in the MD simulations were also compared. ROC analysis for both
scenarios was performed (shown in Figure S5, Supporting Information). As expected, using
multiple conformations improved the performance of the MM/PBSA protocol over the use
of a single pose. This was particularly evident when the analysis was applied to the
competitive fragments subset, which showed significant improvement with the multiple
poses over the single pose. An analysis of the poses that resulted in the best ligand
efficiencies for each compound revealed that 49% from the complete set and 43% from the
subset resulted from the RMSD poses rather than the highest scoring pose. Docking pose
selection of fragments can be more difficult compared to drug-like compounds because the
energy differences between possible binding modes are small and difficult to detect using
standard scoring functions. While a typical drug-like molecule will only fit into an active
site in limited ways, a fragment will often have many more binding modes due to its smaller
size and weaker interactions. For these reasons, it has been recommended that multiple,
diverse conformations of ligands be used to improve the performance of fragment-based
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virtual screening protocols.63 Considering the relatively small active site of PurE and the
high computational cost of using multiple poses, we only selected two diverse docking poses
for the MD-MM/PBSA studies described here.

CONCLUSIONS
Fragment-based approaches and MD-based virtual screening methods are being increasingly
utilized in drug discovery. The combination of these two techniques can provide new
avenues to efficiently sample chemical space in inhibitor design. Herein, we have described
the development of a novel fragment-based, MD-MM/PBSA virtual screening protocol to
identify potential inhibitors of antibacterial target, PurE. The protocol was able to effectively
identify the weak binders that had been confirmed by experimental testing. By
simultaneously incorporating GPU acceleration and the use of multiple, distinct fragment
compounds in one simulation run, we were able to improve the throughput of our MD-based
virtual screens to reach a time scale that is realistic for the screening of medium- to large-
size fragment libraries, depending on the resources available. The virtual screening protocol
described here is currently being employed to screen larger fragment libraries to prioritize
compounds for purchase and experimental testing against this and other targets, significantly
reducing the time and expense of experimental testing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

MM/PBSA Molecular Mechanics/Poisson-Boltzmann Surface Area

NMR Nuclear Magnetic Resonance

SPR Surface Plasmon Resonance

MD Molecular Dynamics

VS Virtual Screening

CAIR 4-Carboxyaminoimidazole Ribonucleotide

AIR Carboxyaminoimidazole Ribonucleotide

NAIR 4-Nitroaminoimidazole Ribonucleotide

N5-CAIR N5-Carboxyaminoimidazole Ribonucleotide

RMSD Root Mean Square Deviation

STD Saturation Transfer Difference
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WaterLOGSY water–ligand observed via gradient spectroscopy

GPU Graphics Processing Rnit

RU Response Units

MDR Multidrug-Resistant

NMA Normal Mode Analysis

QHA Quasi-Harmonic Analysis

AU-ROC Area Under the Receiver-Operating Characteristic

TPR True Positive Rate

FPR False Positive Rate
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Figure 1. Differences in de novo purine biosynthesis between microbes and humans
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Figure 2. Structure of Class I PurE
A. Ribbon diagram of the E. coli PurE octamer (PDB: 2ATE) with the eight monomers
shown in different colors. 4-Nitroaminoimidazole ribonucleotide (NAIR), an analog of the
product CAIR, is shown in ball-and-stick representation. B. Ribbon diagram of the PurE
monomer, color-coded by secondary structure and with NAIR shown in ball-andstick
representation. C. Close-up view of the active site residues associated with NAIR. Dashed
lines represent hydrogen bonds. Images were prepared using Discovery Studio Visualizer
3.0, Accelrys, 2011.
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Figure 3. Venn diagrams showing overlaps of hits from different screenings
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Figure 4. ROC Comparison of MM/PBSA vs. GOLD Docking
A. The complete data set is shown; actives are defined as compounds determined to bind
PurE by experimental methods. B. A 65 compound subset that has undergone CAIR
competition studies is shown; actives are defined as compounds competitive for the CAIR
product in the PurE active site.
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Figure 5. Identification and characterization of a novel fragment binder, ZT0073
A. The NMR spectrum of compound ZT0073 (top) shows a decrease in integration
following addition of CAIR (bottom, asterisks). B. SPR sensor grams of ZT0073 colored in
red and a non-binder (ZT0006) colored in black as reference. C. Computational binding
prediction by MD-MM/PBSA protocol: three monomers forming the complete active site
are colored as blue, plum and green; ZT0073 is colored in yellow; hydrogen bond is shown
in green dash lines. The surface of two residues which forming hydrogen bonds with the
ligand is highlighted in red. Images were prepared using Chimera v1.6.1, UCSF, 2012.64
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Figure 6. Effect of MM/PBSA components on enrichment
The contribution of enthalpy and entropy to overall binding energy and fragment screening
enrichment are shown here using ROC plots.
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