Skip to main content
. Author manuscript; available in PMC: 2014 Nov 17.
Published in final edited form as: Risk Anal. 2013 May 17;34(1):135–151. doi: 10.1111/risa.12066

Table II.

Models and configurations (including true BMD, ξ10, at BMR = 0.10) for the Monte Carlo evaluations.

Configuration: A B C D E F
Constraint: R(0) = 0.01 0.01 0.10 0.05 0.30 0.10
R(12)=
0.04 0.07 0.17 0.30 0.52 0.50
R(1) = 0.10 0.20 0.30 0.50 0.75 0.90

Model Parameters

Quantal-linear (2A) β0 0.0101 0.0101 0.1054 0.0513 0.3567 0.1054
β1 0.0953 0.2131 0.2513 0.6419 1.0296 2.1972
ξ10 1.1056 0.4944 0.4193 0.1641 0.1023 0.0480
Quantal-quadratic (2B) γ0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000
β1 0.0953 0.2131 0.2513 0.6419 1.0296 2.1972
ξ10 1.0514 0.7032 0.6475 0.4052 0.3199 0.2190
Logistic (2C) β0 −4.5951 −4.5951 −2.1972 −2.9444 −0.8473 −2.1972
β1 2.3979 3.2088 1.3499 2.9444 1.9459 4.3944
ξ10 1.0401 0.7773 0.5535 0.3974 0.1619 0.1700
Probit (2D) β0 −2.3263 −2.3263 −1.2816 −1.6449 −0.5244 −1.2816
β1 1.0448 1.4847 0.7572 1.6449 1.1989 2.5631
ξ10 1.0476 0.7372 0.5331 0.3567 0.1606 0.1575
Two-stage (3A) β0 0.0101 0.0101 0.1054 0.0513 0.3567 0.1054
β1 0.0278 0.0370 0.0726 0.5797 0.4796 0.1539
β2 0.0675 0.1761 0.1788 0.0622 0.5501 2.0433
ξ10 1.0602 0.6756 0.5911 0.1783 0.1818 0.1925
Log-logistic (3B) γ0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000
β0 −2.3026 −1.4376 −1.2528 −0.1054 0.5878 2.0794
β1 1.6781 1.8802 1.7603 1.3333 1.9735 3.3219
ξ10 1.0648 0.6676 0.5848 0.2083 0.2439 0.2760
Log-probit (3C) γ0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000
β0 −1.3352 −0.8708 −0.7647 −0.0660 0.3661 1.2206
β1 0.7808 0.9794 0.9456 0.8189 1.2261 1.9626
ξ10 1.0711 0.6575 0.5789 0.2267 0.2608 0.2794
Weibull (3D) γ0 0.0100 0.0100 0.1000 0.0500 0.3000 0.1000
β0 −2.3506 −1.5460 −1.3811 −0.4434 0.0292 0.7872
β1 1.6310 1.7691 1.6341 1.0716 1.4483 1.9023
ξ10 1.0634 0.6716 0.5874 0.1852 0.2072 0.2025