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IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Neuronal
Firing in the Suprachiasmatic Nucleus and Circadian
Rhythms in Locomotor Activity
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Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily
rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and
hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (IA)
voltage-gated K � (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of
SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4�/�), Kv4.2 (Kv4.2�/�), or Kv4.3 (Kv4.3�/�),
the pore-forming (�) subunits of IA channels. Mice lacking either Kv1.4 or Kv4.2 � subunits have markedly shorter (0.5 h) periods of
locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4 �/� and Kv4.2�/� SCN
neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of
wheel-running activity in Kv4.3�/� mice and firing in Kv4.3�/� SCN neurons were indistinguishable from WT animals and neurons.
Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel � subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed
constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded IA channels
regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms
in SCN neuron firing and locomotor behavior.

Introduction
The suprachiasmatic nucleus (SCN) acts as a master circadian
pacemaker driving daily rhythms in physiology and behavior
(Dibner et al., 2010; Welsh et al., 2010). SCN neurons undergo
changes in membrane potential and repetitive firing with a near
24 h period (Schwartz and Zimmerman, 1991; Welsh et al., 1995;
Colwell, 2011). During the day, SCN neurons depolarize and fire
action potentials repetitively; during the night, however, SCN
neurons hyperpolarize and rarely fire. These daily rhythms in
membrane potential and spontaneous firing depend on (Liu et
al., 1997; Herzog et al., 1998; Albus et al., 2002; Nakamura et al.,
2002) and modulate a transcription-translation feedback loop
(Lundkvist and Block, 2005; Nitabach et al., 2005; Brown and

Piggins, 2007). Currently, the mechanisms linking the daily
changes in gene expression and membrane excitability are poorly
understood.

The resting and active membrane properties of SCN neurons are
determined by the interaction of multiple ionic conductances that
function at the resting potential (Pennartz et al., 2002; Häusser et al.,
2004; Jackson et al., 2004). The spontaneous daytime depolarization
in membrane potential of SCN neurons is accompanied by an in-
crease in input resistance (de Jeu et al., 1998, 2002; Kuhlman and
McMahon, 2004) suggesting that decreased subthreshold K� con-
ductance(s) mediate the daytime depolarization and the increased
firing of action potentials. Conversely, the nighttime hyperpolariza-
tion is associated with a decrease in input resistance, consistent with
increased subthreshold K� conductance(s). In addition, injection of
depolarizing current converts SCN neurons from the electrically
quiet nighttime state to regular firing, further supporting the hy-
pothesis that subthreshold K� channels are crucial regulators of the
excitability of SCN neurons (Kuhlman and McMahon, 2004, 2006).
Although specific roles for various K� currents in determining the
excitability of SCN neurons have been proposed (Kononenko et al.,
2008; Colwell, 2011), exploring these hypotheses directly has been
hindered by a lack of knowledge about the channel proteins respon-
sible for individual currents and the limited availability of selective
channel blockers.

A-type (IA) voltage-gated K� (Kv) channels activate and in-
activate rapidly on membrane depolarization and, on hyperpo-
larization, recover rapidly from inactivation (Connor and
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Stevens, 1971a; Birnbaum et al., 2004; Jerng et al., 2005; Covarru-
bias et al., 2008). In many neurons, these properties impact re-
petitive firing rates (Connor and Stevens, 1971b; Kang et al.,
2000; Kim et al., 2005; Yuan et al., 2005; Khaliq and Bean, 2008).
In some cells, IA channels are active at subthreshold membrane
potentials, influencing cell input resistances and excitability (de
Jeu et al., 2002; Yuan et al., 2005). IA is readily detected in SCN
neurons and has been suggested to function in the regulation of
repetitive firing rates (Huang, 1993; Bouskila and Dudek, 1995; Al-
vado and Allen, 2008). Using mice harboring targeted disruptions in
the genes encoding the voltage-gated K� (Kv) channel pore-
forming (�) subunits, Kcna4 (Kv1.4�/�), Kcnd2 (Kv4.2�/�), or
Kcnd3 (Kv4.3�/�) (Norris and Nerbonne, 2010), we directly tested
the necessity of these � subunits in the generation of IA in SCN
neurons and in regulating circadian rhythms in SCN neuron firing
and locomotor behavior.

Materials and Methods
Animals. Mice were maintained on a C57BL/6 background in the Dan-
forth and Medical School animal facilities at Washington University. The
four genotypes of mice used in this study were wild-type (WT) mice and
mice harboring targeted genetic disruptions of the Kcna4 (Kv1.4 �/�)
(London et al., 1998), Kcnd2 (Kv4.2 �/�) (Guo et al., 2005), or Kcnd3
(Kv4.3 �/�) (Niwa et al., 2008) locus. All procedures were approved by
the Animal Care and Use Committee of Washington University and
conformed to US National Institutes of Health guidelines.

Behavioral recordings. Adult (8- to 10-week-old) Kv1.4 �/� (n � 17),
Kv4.2 �/� (n � 17), Kv4.3 �/� (n � 6), and WT (n � 19) male mice were
housed individually in cages equipped with a running wheel in light-tight

chambers illuminated with fluorescent bulbs (2.4 � 0.5 � 10 18 photons/
s*m 2; General Electric). Running-wheel activity was recorded in 6 min
bins (ClockLab software; Actimetrics) for 5–10 d in a 12 h light (L)/dark
(D) cycle (lights on at 7:00 A.M.), 11–12 d in constant (DD), 10 –18 d in
the LD cycle (lights on at 7:00 A.M.), 15–16 d in a 6 h delayed LD cycle
(lights on at 1:00 P.M.), and finally for 15–17 d in a 6 h advanced LD cycle
(lights on at 7:00 A.M.).

The period of behavioral rhythmicity of each mouse was determined
using � 2 periodogram analysis (Sokolove and Bushell, 1978) from con-
tinuous recordings of 10 d in DD (ClockLab software). Rhythmicity was
considered statistically significant if the � 2 periodogram value exceeded
the 99.9% confidence interval (Qp value). Additionally, the phase angle
of entrainment in LD, number of days to re-entrain after shifts in the LD
cycle, and total daily activity counts in DD were calculated for each
mouse (ClockLab).

Cell culture and multi-electrode array recordings. SCNs were explanted
from 3- to 7-d-old Kv1.4 �/�, Kv4.2 �/�, Kv4.3 �/�, or WT mice housed
in a 12 h LD cycle. Genotypes were confirmed by PCR of tail DNA. For
dispersed cultures, 4 – 6 tissue punches (400 �m in diameter), containing
the SCN, were obtained from 200-�m-thick coronal slices, and neurons
were enzymatically dissociated using papain, as previously described
(Herzog et al., 1998). Viable neurons were plated at a density of at least
10,000 neurons/mm 2 onto poly-D-lysine and laminin-coated multi-
electrode arrays according to published methods (Aton et al., 2005) (60
10 �m diameter electrodes; Multichannel Systems). We maintained dis-
persed neuronal cultures in 1 ml of CO2-buffered DMEM (Sigma-
Aldrich) medium with 10% fetal calf serum at 37°C with 5% CO2 for 2
weeks and then recorded extracellular action potentials for at least 5 d as
described previously (Aton et al., 2005). Action potentials were digitized
in real time (MC-Rack Software; Multichannel Systems) and discrimi-

Figure 1. The period of circadian locomotor behavior is reduced in Kv1.4 �/� and Kv4.2 �/� mice. A, Representative recordings of wheel-running activity of WT, Kv1.4 �/�, Kv4.2 �/�, and Kv4.3 �/�

mice over 72 consecutive days in different LD cycles (blue and white backgrounds, respectively). Each line plots wheel revolutions per minute over a 48 h period; data from the subsequent days are plotted on the
line below. B, The cumulative distribution of the dominant periods reveals that nearly 80% of the Kv1.4 �/� (n�17) and Kv4.2 �/� (n�17) mice had shorter periods in constant darkness than WT (n�19)
or Kv4.3 �/� (n �6) mice. Kv1.4 �/� (n �17) and Kv4.2 �/� (n �17) mice also started running earlier in an LD cycle than WT (n �19) or Kv4.3 �/� (n �6) mice; mean�SEM time of onset of activity
for each genotype is plotted in C. Normalized averaged total activity plots (D) also reveal the elevated activity of Kv1.4 �/� (n�17) and Kv4.2 �/� (n�17) during the subjective day compared with WT (n�
19) or Kv4.3 �/� (n � 6) mice. All genotypes showed increased activity following cage changes (e.g., on days 19, 31, 45, and 59 in the WT trace).
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nated off-line using principal component analysis (Offline Sorter;
Plexon). Firing rates were binned in 10 min intervals (NeuroExplorer;
Plexon).

Firing rate rhythms were evaluated by a Fast Fourier transformation as
previously described (Aton et al., 2005). Data with a relative amplitude
�0.2 defined neurons with a statistically significant circadian rhythm.
Peak and trough firing rates were compared for the four genotypes. We
used the Rayleigh test (Batschelet et al., 1981) to determine whether the
times of peak firing for groups of SCN neurons were clustered or uni-
formly distributed.

Electrophysiological recordings from acute brain slices. Brain slices were
prepared from 3- to 6-week-old WT, Kv1.4 �/�, Kv4.2 �/�, and
Kv4.3 �/� mice using standard procedures (Aton et al., 2005). Briefly,
mice housed in a 12 h LD cycle, with lights on at 7:00 A.M., were deeply
anesthetized with 1.25% Avertin (2,2,2-tribromoethanol and tert-amyl

alcohol in 0.9% NaCl; 0.025 ml/g body weight) between 12:00 and 2:00
P.M. and then perfused transcardially with ice-cold cutting solution con-
taining the following (in mM): 240 sucrose, 2.5 KCl, 1.25 NaH2PO4, 25
NaHCO3, 0.5 CaCl2, and 7 MgCl2, saturated with 95% O2/5% CO2 be-
fore cooling. The brains were rapidly removed and placed in oxygenated
ice-cold cutting solution. Coronal slices (350 �m) containing the SCN
were cut on a Leica VT1000 S vibrating blade microtome (Leica Micro-
systems). Slices were incubated in a holding chamber with oxygenated
artificial CSF (ACSF) containing the following (in mM): 125 NaCl, 2.5
KCl, 1.25 NaH2PO4, 25 NaHCO3, 2 CaCl2, 1 MgCl2, and dextrose 25 at
room temperature for at least 30 min before transfer to the recording
chamber. Recordings were obtained from SCN neurons in the acute slice
between 1:00 and 5:00 P.M.

Whole-cell voltage-clamp recordings were obtained at room tem-
perature (22�24°C) from visually identified SCN neurons using dif-
ferential interference contrast with infrared microscopy. Data were
collected using a Multiclamp 700B patch-clamp amplifier interfaced
with a Digidata 1332 and the pCLAMP 9 software (Molecular De-
vices) to a Gateway computer. Series resistances were compensated
electronically by �90%. Signals were acquired at 20 kHz and filtered
at 10 kHz before digitization and storage. The recording pipette so-
lution contained the following (in mM): 130 KCl, 10 HEPES, 10 glu-

Figure 2. Loss of Kv1.4 and Kv4.2 channels affects resynchronization rates and total
locomotor activity. A, Mice lacking Kv1.4-encoded (n � 17) or Kv4.2-encoded (n � 17) IA

channels entrained faster when the light cycle was advanced by 6 h. B, In contrast,
entrainment of Kv1.4 �/� and Kv4.2 �/� animals was indistinguishable from WT (n �
19) and Kv4.3 �/� (n � 6) when the light cycle was delayed by 6 h. C, Kv1.4 �/� mice
consistently showed higher total wheel-running activity compared with the other geno-
types. Data shown are means � SEM.

Figure 3. Kv channel � subunit expression levels in the SCN do not vary with CT.
Transcript levels of Per2 (A) and of the IA channel pore-forming (�) subunits, Kcnd2,
Kcnd3, and Kcna4 (B), were examined in the SCN as a function of CT. Transcript levels in
each sample were determined by qRT-PCR and normalized to the Hprt transcript, as de-
scribed previously (see Materials and Methods). Mice were maintained in constant dark-
ness for two days before beginning these experiments. SCN tissue samples were collected
(and frozen for subsequent RNA isolations) at the times indicated. Data are presented as
means � SEM (n � 4 mice per time point).

Granados-Fuentes, Norris et al. • IA Channels Regulate Circadian Rhythms J. Neurosci., July 18, 2012 • 32(29):10045–10052 • 10047



cose, 0.83 CaCl2, and 2.6 BAPTA, and 3 MgATP and 0.5 NaGTP were
added the day of recording, pH 7.4 (300 mOsm). Tetraethylammo-
nium (3 mM), CdCl2 (0.1 mM), and tetrodotoxin (100 nM) were added
to the ACSF immediately before recordings. All reagents were from
Sigma unless otherwise noted.

The rapidly activating and rapidly inactivating Kv current, IA, was
isolated by a two-step voltage protocol, using previously described pro-
cedures (Norris and Nerbonne, 2010). Briefly, total whole-cell Kv cur-
rents were first evoked in response to 4 s depolarizing voltage steps to
potentials between �40 and �40 mV (in 10 mV increments) from a
holding potential of �70 mV. A prepulse paradigm that included a brief
(60 ms) step to �10 mV before the 4 s depolarizing voltage steps to
potentials between �40 and �40 mV (in 10 mV increments) was then
used. Off-line subtractions of the currents evoked with the prepulse from
the currents evoked without the prepulse were performed to isolate IA.
The steady-state outward Kv current (ISS) was measured as the current
remaining at the end of the 4 s depolarizing steps. Data were compiled

and analyzed using ClampFit (Molecular Devices), Microsoft Excel, and
Prism (GraphPad Software).

Quantitative real-time PCR. Eight-week-old C57BL/6 mice were housed
12 h LD cycle for a week and then switched to constant darkness for 48 h.
Mice were killed at specific circadian times (CT0, 4, 8, 12, 16, and 20; n � 4
per CT) on the third day of constant darkness and SCN punches (400 �m in
diameter) were collected. Total RNA was isolated from the SCN and RNA
concentrations were determined by optical density measurements. The ex-
pression levels of genes encoding the Kv4.2 (Kcnd2), Kv4.3 (Kcnd3), and
Kv1.4 (Kcna4) � subunits, as well as the endogenous control gene hypoxan-
thine guanine phosphoribosyl transferase (HPRT) were determined using
Taqman-based real-time PCR in a two-step process as described previously
(Yang et al., 2010); experiments were conducted on a 7900HT Sequence
Detection System (Applied Biosystems). Data were analyzed using the
threshold cycle relative quantification method and were normalized to the
expression value for HPRT in the same sample (Schmittgen and Livak, 2008)
and evaluated for rhythmicity using COSOPT (Abraham et al., 2005).

Figure 4. IA densities are reduced in Kv4.2 �/� and Kv1.4 �/� SCN neurons. Aa–Da, Representative whole-cell Kv currents, recorded in response to voltage steps to potentials ranging from�40
to �40 mV (in 10 mV increments) from a holding potential of �70 mV in WT (Aa), Kv4.2 �/� (Ba), Kv4.3 �/� (Ca), and Kv1.4 �/� (Da) SCN neurons, are displayed. In each cell, outward Kv
currents evoked at the same test potentials were also recorded following a brief prepulse to �20 mV to inactivate IA. The amplitudes of IA in individual cells of each genotype were then obtained by
digital off-line subtraction (a-b) of the recordings with the prepulse (b) from the recordings without the prepulse (a); the subtracted records are also shown on an unexpanded time scale to facilitate
direct comparisons. Mean (�SEM) IA (E) and steady-state Kv current (ISS) densities (F ) in WT (n � 10), Kv4.2 �/�(n � 20), Kv4.3 �/� (n � 5), and Kv1.4 �/� (n � 14) SCN neurons are plotted
as function of test potential. *Values indicated are significantly different at the p � 0.001.
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The primers sequences used to detect transcript expression were as
follows: Kv4.2 (Kcnd2): 5�-TGAATCACGTTTGTGTCATTAGTGA
and 5�-TTCAACTTGCGCTCATCTTAGG; Kv4.3 (Kcnd3): 5�-GCCG
CAGCACCTAGTCGTT and 5�-CACCACGTCGATGATACTCATG
A; Kv1.4 (Kcna4 ): 5� AGAGGCGGATGAACCCACTA and 5� GCCC
ACCAAAACGCATCT; and HPRT: 5�-TGAATCACGTTTGTGTCA
TTAGTGA and 5�-TTCAACTTGCGCTCATCTTAGG.

Results
The period of locomotor activity is altered in Kv1.4 �/� and
Kv4.2 �/� mice
Representative recordings of wheel-running activity per unit
time (actograms) in WT, Kv1.4 �/�, Kv4.2 �/�, and Kv4.3 �/�

mice are presented in Figure 1 A. In
constant darkness (DD), Kv1.4�/� and
Kv4.2�/� mice displayed locomotor ac-
tivity patterns with shorter circadian peri-
ods than WT or Kv4.3�/� mice (one-way
ANOVA, p � 0.001; 23.8 � 0.02 h for WT
and 23.8 � 0.04 h for Kv4.3�/�; 23.4 �
0.07 h for Kv1.4�/� and 23.5 � 0.07 h for
Kv4.2�/�, mean � SEM). Over 50% of
the Kv1.4- or Kv4.2-deficient mice had
periods shorter than WT mice (Fig. 1B).
In addition, when housed in a 12 h LD
cycle, Kv1.4�/� and Kv4.2�/� mice initi-
ated daily wheel running �0.5 h earlier
(Fig. 1C,D; one-way ANOVA, p � 0.04)
than WT mice.

The Kv1.4�/� and Kv4.2�/� mice also
required fewer days to establish a stable
phase relationship to the time of daily light
onset following a 6 h advance in the light
cycle (one-way ANOVA, p � 0.004; Fig. 2).
It is also of interest to note that the Kv1.4�/�

mice showed more total daily wheel
running than WT (one-way ANOVA,
p � 0.003), Kv4.2 �/� or Kv4.3�/� mice,
primarily due to an increase in the
amount of time they were active each
night) (Figs. 1A,D, 2; one-way ANOVA,
p � 0.003). In marked contrast to the
Kv1.4�/� and the Kv4.2�/� mice, the cir-
cadian period, phase angle of entrain-
ment, ability to adjust to shifts in light
schedule, and the daily wheel-running ac-
tivity of Kv4.3�/� mice were statistically
indistinguishable from WT mice.

IA densities are reduced in Kv1.4 �/�

and Kv4.2 �/� mice
The observation that the alterations in the
circadian patterns in wheel-running behav-
ior of the Kv1.4�/� and Kv4.2�/� mice,
compared with WT mice, were similar sug-
gests that Kv1.4- and Kv4.2-encoded IA

channels play similar roles in determining
the onset and the period of circadian loco-
motor rhythms. Quantitative real-time PCR
(qRT-PCR) analyses of mRNA transcripts
from SCN samples revealed that the Kv1.4,
Kv4.2, and Kv4.3 transcripts were readily
detected in the mouse SCN. In contrast with
Per2, the expression levels of the three Kv �

subunits did not vary significantly with CT (Fig. 3; COSOPT test,
p 	 0.3).

Whole-cell voltage-clamp recordings from SCN neurons in
acute brain slices demonstrated that IA was present in all SCN
cells examined, consistent with previous reports (Bouskila and
Dudek, 1995; Itri et al., 2010), and that the densities of the cur-
rents were similar among SCN neurons. Voltage-clamp record-
ings from Kv1.4�/� and Kv4.2�/� neurons revealed that the loss
of Kv1.4 or Kv4.2 attenuated mean IA densities (Student’s t test,
p � 0.001) by �50% (Fig. 4). The mean IA density in Kv4.3�/�

SCN neurons, in contrast, was not significantly different from

Figure 5. Kv1.4- and Kv4.2-encoded IA channels set the period and amplitude of circadian firing patterns in SCN neurons.
Discharge profiles were recorded continuously over 5 d from dispersed SCN neurons as described previously (see Materials and
Methods). A, Representative recordings from three SCN neurons of each of the four genotypes are illustrated. The circadian firing
periods of individual cells were measured and averaged over the 5 d of recordings, and cumulative frequency plots of the measured
mean values for each of the four genotypes are presented in B. Nearly 40% of Kv1.4 �/� (n � 200) and Kv4.2 �/� (n � 130) SCN
neurons displayed markedly shorter circadian firing periods than WT (n �106) or Kv4.3 �/� (n �30) SCN neurons. C, Plotting the
cumulative distribution of mean peak and trough firing rates illustrates the marked increases in both (peak and trough) firing rates
in Kv1.4 �/� (n � 200) and Kv4.2 �/� (n � 130) compared with WT (n � 106) or Kv4.3 �/� (n � 30) SCN neurons.
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WT neurons, suggesting that Kv4.3 � subunits are not required
for the generation of functional IA channels in SCN neurons.

Firing rates of Kv1.4 �/� and Kv4.2 �/� SCN neurons are
increased and circadian periods are shorter
To determine whether the markedly shortened periods in wheel-
running activity seen in mice lacking either Kv1.4 or Kv4.2 relate
to changes in circadian rhythms in SCN neuron firing, we mea-
sured the functional consequences of disrupting IA on the firing
rates of isolated SCN neurons directly. Using multi-electrode ar-
rays, we observed circadian patterns of electrical activity in SCN
neurons from WT, Kv1.4�/�, Kv4.2�/�, and Kv4.3�/� mice
(Fig. 5A), although the circadian periods of firing of Kv1.4�/�

and Kv4.2�/� SCN neurons were significantly shorter (0.5 h)
than in WT or Kv4.3�/� SCN neurons (Fig. 5A; one-way
ANOVA, p � 0.03). The measured periods were 23.9 � 0.1 h
(mean � SEM) for WT, 23.7 � 0.2 h for Kv4.3�/�, 23.4 � 0.1 h
for Kv1.4�/�, and 22.7 � 0.2 h for Kv4.2�/� neurons. The mag-
nitude of this effect (0.5 h) is similar to the shortening of the period
of locomotor activity seen in Kv1.4�/� and Kv4.2�/� mice (Fig. 1).
Analyses of these data also revealed that the circadian periods of
firing were shorter in only �40% of the Kv1.4�/� or Kv4.2�/� SCN
neurons, whereas the remaining cells had circadian periods sim-
ilar to WT or Kv4.3�/� cells (Fig. 5B; Kolmogorov–Smirnov test,
p � 0.02).

Kv1.4�/� or Kv4.2�/� SCN neurons also fired at higher fre-
quencies during both the subjective night and day than either WT
or Kv4.3�/� SCN neurons significantly (Fig. 5C; Kolmogorov–
Smirnov test, p � 0.01). The grouping of the daily peaks in the
firing rates among Kv1.4�/� or Kv4.2�/� SCN neurons, how-
ever, was not significantly different from WT neurons (Fig. 6;
Rayleigh test, p 	 0.05).

Discussion
Together, the findings here demonstrate that the Kv1.4 and Kv4.2
� subunits encode IA channels in the SCN that control the intrin-
sic excitability, set the circadian firing period, and modulate the
firing rates of SCN neurons. The voltage-clamp experiments re-
vealed that the loss of either Kv1.4 or Kv4.2 reduces IA density in
SCN neurons by �50%. Although Kv4.3 mRNA is expressed in
the SCN and the Kv4.3 protein can associate and form hetero-
multimeric channels with Kv4.2 (Guo et al., 2002) and has been
shown to encode IA channels in cortical pyramidal neurons (Nor-
ris and Nerbonne, 2010), the loss of Kv4.3 expression had no
measureable effects on IA densities, electrical activity, or circadian
rhythms in SCN neurons.

Circadian locomotor activity is altered in Kv1.4 �/� and
Kv4.2 �/� mice
The results presented here demonstrate that the loss of either
Kv1.4- or Kv4.2-encoded IA channels has very striking effects on
the circadian period of behavioral rhythms in locomotor activity.
Interestingly, loss of either Kv1.4 or Kv4.2 has a much larger effect
on the circadian period than the loss of other genes, including
some canonical clock genes, such as Clock (DeBruyne et al.,
2007). In addition, the 0.5 h shortening of the period of circadian
rhythms in locomotor activity of mice lacking either Kv1.4 or
Kv4.2 contrasts with the recently reported 0.5 h lengthening of
the period of circadian behavior in mice lacking one copy of
Scn1a, which encodes the voltage-gated sodium channel � sub-
unit, Nav1.1 (Han et al., 2012). The results here also contrast
markedly with the results of several previous studies conducted
on mice with other channel deficiencies, including mice lack-

ing the large conductance, Ca 2� and voltage-dependent, BK
(Kcnma1); K� channel subunit (Meredith et al., 2006); the
voltage-gatedCa2� channel subunit,Cav2.2(Cacna1b) (Beuckmannet
al., 2003); or the Kv channel subunits, Kv3.1 and Kv3.2 (Kcnc1 and
Kcnc2) (Kudo et al., 2011). In contrast with the findings here for
Kv1.4�/� and Kv4.2�/� mice, negligible changes in circadian period
were reported in BK-, Cav2.2-, or Kv3.1/Kv3.2-deficient mice, suggest-
ing that Kv1.4- and Kv4.2-encoded IA channels subserve unique and
important roles in modulating the functioning of the SCN and in regu-
lating circadian biology.

Kv1.4- and Kv4.2-encoded IA channels regulate the intrinsic
excitability of SCN neurons
The finding that both peak and trough firing rates were increased
in Kv1.4�/� and Kv4.2�/� SCN neurons indicates that Kv1.4-
and Kv4.2-encoded IA channels play critical roles in regulating
the intrinsic excitability of SCN neurons during the day and dur-
ing the night, i.e., throughout the circadian cycle. In addition, the
qRT-PCR analyses revealed that the expression levels of the tran-
scripts encoding these subunits do not vary with CT, consistent
with previously published in situ hybridization (Lein et al., 2007)
and DNA microarray data (Panda et al., 2002; Kasukawa et al.,
2011). It has, however, recently been reported that IA density is
higher during the day than at night in a subpopulation of SCN
neurons (Itri et al., 2010). It is certainly possible that IA densities
are altered in SCN neurons as a result of circadian regulation of

Figure 6. Circadian periods of individual SCN neurons are synchronized to each other inde-
pendent of genotype. Rayleigh plots show the time of peak firing for each neuron (filled trian-
gle) on a representative recording day. The Rayleigh statistic calculates the mean phase of the
population of neurons (arrow) and the probability that the measured phases were uniformly
distributed ( p 	 0.05). For these representative cultures from each of the four genotypes, the
Rayleigh statistic indicates that the phases of the individual neurons were not random and were
similarly distributed, suggesting that the loss of Kv1.4, Kv4.2, or Kv4.3 did not impact the
synchronization of circadian firing patterns among SCN neurons.
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the transcripts encoding critical accessory or regulatory proteins.
Interestingly, and consistent with the hypothesis that accessory
subunits could play a critical role, it was recently reported that the
circadian regulation of Kv4.2-encoded Ito,f channels in mouse
ventricular myocytes reflects circadian changes in the accessory
Kv channel interacting protein, KChIP2, not in the Kv4.2 � sub-
unit (Jeyaraj et al., 2012). Alternatively, post-transcriptional
mechanisms, such as changes in Kv � subunit protein expres-
sion, localization and/or degradation, or altered interactions with
other Kv � subunits, accessory subunits, or other regulatory pro-
teins (Covarrubias et al., 2008; Norris et al., 2010) could mediate
circadian changes in IA densities in SCN neurons. Additional
experiments aimed at exploring each of these possibilities directly
will be of considerable interest.

As classically described, the properties of rapid activation and
inactivation position IA as a critical regulator of interspike inter-
val and firing frequency (Connor and Stevens, 1971a,b). In addi-
tion, in some neurons, IA has been shown to contribute to resting,
subthreshold K� conductance, influencing input resistances, and
excitability thresholds (de Jeu et al., 2002; Yuan et al., 2005).
These unique properties, together with variable dendritic expres-
sion patterns, allow IA channels to play important roles in mod-
ulating the responses to synaptic inputs and to influence synaptic
integration and neuronal output properties (Birnbaum et al.,
2004; Jerng et al., 2004). In spontaneously active neurons, like
those in the SCN, therefore, IA channels would be expected to
function to regulate excitability and the initiation of firing by
opposing membrane depolarizations, resulting from the closing/
opening of other channels, as well as influence the voltage trajec-
tory during the interspike interval, which will regulate repetitive
firing rates (Connor and Stevens, 1971b; Kang et al., 2000; Kim et
al., 2005; Yuan et al., 2005; Khaliq and Bean, 2008) Although IA

was previously hypothesized to be critical in regulating the tran-
sition from the silent night state to the spontaneously active day
state (Kim and Dudek, 1993; Bouskila and Dudek, 1995), the
results presented here demonstrate that Kv1.4- and Kv4.2-encoded
IA channels are instead critical in determining the threshold for firing
of SCN neurons during the day and during the night. Other, yet to be
identified subthreshold K� channels, therefore, must be involved in
determining the transitions between the night and day patterns of
electrical activity in the SCN.

The role of IA in setting the circadian period of rhythmic firing
seems likely to be intrinsic to individual SCN neurons. The ex-
periments here demonstrated that dispersed Kv1.4�/� and
Kv4.2�/� SCN neurons remain synchronized in the timing of
daily maximum and minimum firing rates. In addition,
Kv1.4�/� and Kv4.2�/� SCN neurons display a shortened circa-
dian period in vitro that is very similar to the shortened period
observed in locomotor behavior in Kv1.4�/� and Kv4.2�/�

mice. The change in period observed at the cellular level supports
the hypothesis that membrane excitability likely is an integral
part of the core circadian clock (Nitabach et al., 2002, 2005; Lun-
dkvist and Block, 2005). We conclude that IA functions to reduce
the intrinsic excitability of SCN neurons, thereby contributing to
the lengthening of circadian periods of firing and behavior.

The results presented here also hint at a novel role for Kv1.4
outside of the SCN. The increased duration of daily locomotion
of mice lacking Kv1.4, for example, could reflect alterations in
sleep–wake cycles, specifically reductions in daily sleep duration.
Because the durations in daily firing patterns in SCN neurons
deficient for Kv1.4 were not significantly different from WT SCN
neurons, the behavioral phenotype may result from the function-
ing of Kv1.4-encoded IA channels outside the SCN. Together with

previous studies linking Kv channel functioning to sleep in mice
and in flies (Vyazovskiy et al., 2002; Cirelli et al., 2005; Douglas et
al., 2007; Espinosa et al., 2008; Koh et al., 2008), the results here
support the interesting possibility that modulation of Kv chan-
nels (and other conductances that regulate intrinsic neuronal
excitability) play critical roles in both circadian biology and sleep.

In summary, these results demonstrate that, in the SCN, Kv1.4
and Kv4.2, but not Kv4.3, are critical subunits for the generation
of rapidly activating and inactivating K� currents that regulate
the excitability, firing rate, and, consequently, the circadian pe-
riod of firing and locomotor behavior.
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