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Human PIEZO1: Removing Inactivation
Chilman Bae, Philip A. Gottlieb, and Frederick Sachs*
Department of Physiology and Biophysics and The Center for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo,
New York
ABSTRACT PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located
in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two
sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant
(DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation
was accompanied by ~30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope
sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed
and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites
are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The
channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance.
The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening
rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant
cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite
sides of the membrane.
INTRODUCTION
PIEZO1 is a eukaryotic mechanosensitive cation-selective
channel (1–3) of ~2500 amino acids containing 30 putative
transmembrane domains (1,4,5). It has electrophysiological
properties similar to many endogenous cationic mechano-
sensitive ion channels (MSCs), with a reversal potential
around 0 mV, voltage-dependent inactivation, and inhibition
by the peptide GsMTx4 (6,7). PIEZO1 forms homotetra-
meric aggregates (2), but it is not known whether the pore
is located in the monomers or at the interfaces.

The channel is sensitive to its physical environment
because the gating kinetics are not identical in patch and
whole-cell recordings (8). The channels appear to exist in
physical domains that can be fractured at stresses below
the lytic strength of the bilayer (7). The domains might
consist of clusters of channels, lipid phases, or cytoskeletal
corrals (9).

Mutations (M2225R and R2456H) that produce human
hereditary xerocytosis (an autosomal dominant anemia)
have slower inactivation rates than wild-type (WT)
(7,10,11) and an increased latency to activation (7). The
longer open times due to slow inactivation will produce
the larger cation fluxes that seem to be associated with
hereditary xerocytosis (7,10,11), but longer latencies will
reduce the flux for transient stimulations such as passage
through capillaries. The mutations do not seem to act via
changes in residue charge because the conservative muta-
tion of arginine to lysine at position 2456 slowed
inactivation.
Submitted May 8, 2013, and accepted for publication July 16, 2013.

*Correspondence: Sachs@buffalo.edu

Editor: Michael Pusch

� 2013 by the Biophysical Society

0006-3495/13/08/0880/7 $2.00
A double mutant, DhPIEZO1, substitutes an arginine for
a methionine at position 2225 (M2225R), which is associ-
ated with hereditary xerocytosis, and a lysine for an arginine
at position 2456 (R2456K), which we created. The single-
site mutants inactivated slower than WT (7), but the double
mutant did not inactivate at all. To examine whether the two
sites interacted to produce the loss of inactivation, we did a
mutant cycle analysis and estimated the free energy for inac-
tivation for WT, single-site mutants, and the double mutant.
The analysis shows a strong interaction.

Other properties of DhPIEZO1 were similar to WT,
including the near-zero Na/K reversal potential and inhibi-
tion by GsMTx4. The gating curves (the Boltzmann rela-
tionship of open probability vs. pressure) showed that the
dimensional change between closed and open states was
similar to WT, although the midpoint of the gating curve
was shifted to lower pressures. The channel kinetics of all
channel types, even for complex stimuli, could be fit with
a simple three-state closed loop model (closed–open–inacti-
vated) in detailed balance with only two pressure-dependent
rates.
MATERIALS AND METHODS

The bath solution contained (in mM) 150 NaCl, 5 KCl, 1 MgCl2, 2.5 CaCl2,

10 HEPES, pH 7.4 (adjusted with NaOH). The pipette solution contained

(in mM) 150 CsCl, 10 HEPES, 5.0 EGTA, 1.0 MgCl2, 1.0 CaCl2, pH 7.3

(adjusted with CsOH), or 150 KCl, 10 HEPES, 0.25 EGTA, 0.5 MgCl2,

pH 7.3 (adjusted with KOH). Patch pipettes had resistances of 2–5 MU.

The mechanical stimulus for patches was pipette suction for cell-attached

patches and pipette pressure for outside-out patches. All pressure stimuli

were applied by a high-speed pressure clamp (ALA Scientific Instruments,

Farmingdale, NY). Whole-cell and patch-clamp currents were recorded us-

ing an Axopatch 200B amplifier (Axon Instruments), sampled at 10 kHz,
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and low pass filtered at 1 kHz. Patch capacitance and conductance were

measured as previously described (12,13) using an EG&G 5208 two-phase

lock-in analyzer (Oak Ridge, TN).

The dose–response data were fit to a Boltzmann relationship, and when

we had two different types of channels in a patch, the data were fit to the

sum of two Boltzmann functions:

I¼Aþ Im1 �
�
1� 1

1þ eðq1 �ðp1�pÞÞ

�
þ Im2

�
�
1� 1

1þ eðq2 �ðp2�pÞÞ

�
;

where Imi is the maximum available current for channel type i, pi is the

pressure at half activation, qi is the slope sensitivity, and A is an instru-

mental offset.

Whole-cell mechanical stimulation used a fire-polished glass pipette

(diameter of 2–4 mm) positioned at an angle of 30� with respect to the cover
glass to press on voltage clamped cells. The probe was coarsely positioned

~15 mm above the cell; from that position, we applied a trapezoidal down-

ward waveform with a piezoelectric stage (P-280.20 XYZ NanoPositioner,

Physik Instrumente). The indentation depth with 40-nm resolution was

controlled using LabVIEW. The probe velocity was 0.15 mm/ms during

transitions, and the indentation was held constant for 300 ms. Currents

were generally recorded at a holding potential of �60 mVat room temper-

ature. Hypotonic swelling was initiated by adding distilled water in equal

volume to the bath solution.

To compute the channel kinetics, we applied a series of square suction

pulses with variable off times (3.0, 2.0, 1.0, 0.5, 0.25, 0.1 s, and the reverse)

usually in the cell-attached mode. These multichannel currents were

analyzed using the MAC routine of QuB software (www.qub.buffalo.edu).
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HEK-293 cells were transfected with 750 ng cDNA using Fugene (Roche

Diagnostic, Indianapolis, IN) according to manufacturer’s specification and

transfected cells were tested 24–48 h later. The peptide GsMTx4 was syn-

thesized, folded, and purified as previously described (14) and applied

through an ALA perfusion system. Data acquisition and stimulation were

all controlled by QUBIO software (www.qub.buffalo.edu).
RESULTS

Whole-cell data

At a given membrane potential, the currents increased with
indentation depth (Fig. 1, A and B). In contrast to the WT
channel (Fig. 1 A) and the single-site mutants (M2225R
and R2456K) (7) that displayed faster or slower inactivation,
respectively, DhPIEZO1 produced a steady-state current
with sustained indentation (Fig. 1 B). DhPIEZO1 currents
are mechanically sensitive, have no inactivation, and rela-
tive to WT, the channels are sensitized toward the open
state. The fact that the DhPIEZO1 current persisted in
steady state suggests that in the domains containing the
channels there is no time-dependent adaptation of the local
stimulus (13,15).

Osmotic pressure is often applied as an alternative stim-
ulus to direct mechanical stimulation, but much of the
osmotic stress is contained in the deep cytoskeleton, not the
bilayer (16), so osmotic pressure is not an equivalent stimulus
to direct stress.Nonetheless,we have found that hypoosmotic
µm

µm

 1 µm

FIGURE 1 DhPIEZO1 does not inactivate. (A)

Whole-cell currents of WT hPIEZO1 rapidly inac-

tivate. (B) Whole-cell currents of DhPIEZO1 as a

function of indentation depth showed no inactiva-

tion. Note the slow rate of deactivation after the

stimulus is removed. (C)WT channels are sensitive

to hypotonic swelling. Prior to swelling, there was

less current for the same incremental indentation

than after swelling. Also shown is the response of

DhPIEZO1 prior to swelling. (D) Comparison of

DhPIEZO1 responses before and after hypotonic

swelling with 50% osmolarity. The inset shows

the same data normalized. The sensitivity to inden-

tation is similar, suggesting that the channels are

already near a saturated level of stress in the resting

state. (E) Deactivation is extremely slow and

voltage independent. Deactivation for this channel

may represent the kinetics of domain reformation

rather than channel kinetics. (F) The I/V curve of

peak currents shows a reversal potential near

0 mV for DhPIEZO1, indicating that the mutations

do not affect the pore.
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pressure increased the sensitivity of WT hPIEZO (Fig. 1 C)
similar to results reported for the mouse channel (mPIEZO1)
(8). In contrast, DhPIEZO1 proved insensitive to cell
swelling, even when 50% distilled water was added to the
bath (Fig. 1, C and D). This implies that the resting stress
in the channel (prestress) is nearly saturated.

Because the rate of inactivation in WTand single-site mu-
tants is voltage sensitive (1,6–8), we examined DhPIEZO1
from �60 to þ60 mV. Fig. 1 E shows that the rate of
inactivation was close to zero at all potentials. DhPIEZO1
deactivation was extremely slow relative to that of single-
site mutants and WT, suggesting a structural correlation
between inactivation and deactivation. All channel types
had a similar ionic selectivity with a Na/K reversal potential
of ~0 mV (Fig. 1 F), so that the mutations are not likely to be
located near the pore.
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FIGURE 2 (A) The gating curve as a function of pressure fit to a Boltz-

mann. p1/2 and the slope sensitivity q are indicated in the table. q is a mea-

sure of the dimensional change between closed and open states. q is the

same for DhPIEZO1 (n ¼ 12), WT (n ¼ 18), and the single-site mutants,

implying that the mutations have no effect on the key activation processes.

However, p1/2 was left-shifted relative to WT, representing a change in the

intrinsic stress of the channel environment favoring the opening state. (B)

To calibrate the absolute stress sensitivity, we cotransfected cells with bac-

terial MscL (7) and DhPIEZO1. Fit to a sum of two Boltzmanns, the slope

sensitivities of both channels were nearly identical (n¼ 5), meaning that the

dimensional changes of both channels are similar and also similar to WT

and single-site mutants. The dimensional changes are equivalent to an

in-plane area change of 20 nm2.The inset shows an expansion of the region

containing DhPIEZO1’s response.
Patch data

Cell-attached patches of DhPIEZO1 are mechanically sensi-
tive and showed no inactivation, but had an increased latency
for activation. The steady-state gating curve of DhPIEZO1
(Fig. 2 A) in patches was well fit by a Boltzmann function
of I ¼ A þ Imax � (1 � 1/(1 þ exp(q � (p � p1/2)))), where
Imax is the maximum available current, p is the pressure,
p1/2 is the pressure at half activation, and q is the slope sensi-
tivity to pressure. For DhPIEZO1, p1/2¼�9.95 0.6mmHg,
and the slope sensitivity, q, was 0.15 5 0.01 mmHg�1

(SD, n ¼ 12). For WT, the midpoint p1/2 ¼ �38.1 5
0.4 mmHg and q¼ 0.155 0.01 mmHg�1 (SD, n¼ 18) com-
parable to previouslymeasured values (7). The q-values of all
channel types were the same, implying that the dimensional
changes between the closed and open states are the same. The
decrease in p1/2 with constant q implies that the mutations
added resting stress to the structure (prestress), favoring the
open state. In terms of energy, the data indicate that the
mutations decreased the energy of the open state while main-
taining the difference in energy between the closed state
and the barrier peak.

To calibrate the absolute sensitivity of DhPIEZO1, we
cotransfected cells with a eukaryotic-expressing bacterial
MSC called MscL that has been calibrated in bilayers
(17,18). These cotransfection data were fit to the sum of
two Boltzmanns, simultaneously solving for q and p1/2 for
both channels in the same patch (see inset in Fig. 2 B).
The ratio of slope sensitivities for DhPIEZO1 to MscL
was 0.98 (n ¼ 5), so that both channels had similar dimen-
sional changes between the closed and open states, equiva-
lent to 20 nm2 of in-plane area (17,19).

DhPIEZO1 was highly sensitive to the absolute level of
pressure as a result of the leftward shift of the dose–response
curve for pressure. A typical single-channel recording
(Fig. 3 A) shows that a 3-mmHg change of suction,
from �12 to �15 mmHg, resulted in a significant change
in the number of active channels. These data were fit to a
Biophysical Journal 105(4) 880–886
two-state model with a pressure-dependent opening rate
and the same slope sensitivity asWT (Fig. 3A). This extreme
sensitivity is interesting considering that the resting patch is
already under a large resting tension on the order of 1 to
2 mN/m because of adhesion of the gigaseal (15,20,21).
Consistentwith the higher absolute sensitivity ofDhPIEZO1,
we observed an increase in spontaneous openings (Fig. 3 B).

In contrast to WT channels that had no measurable
latency for activation, DhPIEZO1 had a pronounced latency
of ~250–350 ms followed by sudden activation (Fig. 3, B
and C). The kinetics of the activation cannot be fit by simply
adding more closed states prior to opening. We have pro-
posed that the observed latency represents the time required
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FIGURE 3 (A) DhPIEZO1 single-channel currents show high pressure

sensitivity because of the left shift in the gating curve. The current trace

is shown in black and the theoretical fit is in red. With a change of only

3 mmHg, there is a significant increase in the number of open channels.

The kinetics are well fit by a two-state model with only the activation

rate being pressure dependent. (B) Single-channel currents of DhPIEZO1

have a pronounced latency for activation, and this occurs with no significant

change in patch capacitance, suggesting that the latency does not arise from

large changes in the patch structure. The capacitance measuring noise level

was 0.12 fF RMS, equivalent to ~0.012 mm2 (assuming a specific capaci-

tance of 1 mF/cm2, or 10 fF/mm2). Note the spontaneous (background) chan-

nel openings of DhPIEZO1 during the recording that is a result of its higher

absolute sensitivity and tension from the gigaseal. (C) The distribution of

latencies fit to a Gaussian gives a mean latency of 3445 133 ms. We attri-

bute these latencies to the time required for domain fracture under stress.
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FIGURE 4 DhPIEZO1 channels in whole-cell patches were reversibly

inhibited by 10 mM extracellular D-GsMTx4. (A) By fitting exponentials,

we extracted a mean association time constant of 3.0 5 0.6 s and a mean

dissociation time constant of 13.4 5 0.8 s (n ¼ 4). The estimated associa-

tion and dissociation rates are 2.6� 104 M�1 s�1 and 0.08 s�1, respectively,

and the equilibrium constant calculated from the ratio is KD ~3 mM. (B)

D-GsMTx4 inhibition of DhPIEZO1 in the absence of inactivation. This

suggests that the mechanism of action of D-GsMTx4 does not involve inac-

tivation domains. The bar graph (inset) shows the average peak currents 5

SD (n ¼ 3) illustrated in Fig. 4 B. (C) The dose–response relationship shifts

to higher stress with GsMTx4, as expected for a gating modifier (12).
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for the domain boundary to fracture and to change the stress
on the channels (7). A change in the domain, such as frac-
turing a caveolus, might produce a change in area and hence
a change in patch impedance. We tried to measure such a
change (12,13) but we observed none (Fig. 3 B). The mea-
surement noise level placed an upper limit on any area
change to < 0.01 mm2. This suggests that the domain
fracture probably did not involve opening of a vesicular
structure such as a caveolus.
Inhibition by GsMTx4

PIEZO1 currents are reversibly inhibited by the D-enan-
tiomer of GsMTx4, a specific inhibitor of cationic MSCs
(6,22). The lower graph of Fig. 4 A shows whole-cell peak
Biophysical Journal 105(4) 880–886
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currents as a function of time from GsMTx4 exposure
through washout. From single exponential fits, the associa-
tion time constant was 3.0 5 0.63 s and the dissociation
time constant was 13.45 0.76 s. The ratio gives an equilib-
rium affinity of ~3 mm. Fig. 4 B shows that D-GsMTx4
inhibition occurs in the absence of inactivation so that the
peptide does not seem to interact with the inactivation
domain(s) of the channel. At �60 mV, 10 mM GsMTx4
caused an 89% reduction in peak current (Fig. 4 B). In
outside-out patches (Fig. 4 C), the inhibition was >90%.
GsMTx4 is a gating modifier acting on closed channels
(6), and we estimated its efficacy to be equivalent to
~60 mmHg by the increase of suction required to obtain
equal channel activity with and without GsMTx4.
Channel kinetics: Cell-attached patches

We stimulated the patch with a series of square suction
pulses with varying time intervals between them (typically
3.0, 2.0, 1.0, 0.5, 0.25, 0.1 s, and the reverse). The response
to the entire sequence could be fit using the MAC routine of
QuB (www.qub.buffalo.edu). This nonstationary approach
has many advantages over traditional single- or double-
A

B
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step analyses in that the responses need not reach equilib-
rium before the next pulse is applied. Furthermore, the fit
is a global optimum for the entire sequence (i.e., the series
is treated as a single stimulus; see Fig. 5 A).

DhPIEZO1 kinetics were fit with a simple three-state loop
model (closed, open, and inactivated) in detailed balance (at
all stimuli). To simplify comparison of the kinetics to WT
and single-site mutations that required three states, we fit
the DhPIEZO1 kinetics to the three-state model even though
it had no inactivation. Detailed balance in a loop requires a
minimum of two pressure-dependent rates, and we found we
could satisfy that constraint with a pressure-dependent
opening rate and inactivated-closed rate (Fig. 5 B). One of
the most striking results of the kinetic analysis was that
all channel types had identical slope sensitivities, q ¼
0.155 0.005 mmHg�1 (Fig. 5 B) so that the conformational
change between the closed and open states of all channels
was identical. Furthermore, all the channels had to be in do-
mains with similar local stress. The preexponential coeffi-
cients of the activation rates were 10 � 10�3 s�1, 4.62 �
10�3 s�1, 6.13 � 10�3 s�1, and 3.28 � 10�3 s�1 in
hPIEZO1, M2225, R2456K, and DhPIEZO1, respectively,
at �60mV. The mutations had little or no effect on the
FIGURE 5 Channel kinetics. (A) Multichannel

currents for different types of channels. The stim-

ulus was a series of square pressure pulses applied

with varying off intervals (typically 3.0, 2.0, 1.0,

0.5, 0.25, 0.1 s, and the reverse, top trace). Pressure

pulses were 0 to�70 mmHg for HPIEZO1, 2555R

PIEZO1, and 2456K PIEZO. For DhPIEZO1, they

were 0 to –40 mmHg. The data trace is in black and

the QuB fit in red. Notice how hPIEZO1 effec-

tively summed currents from the applied stresses

at short off-times of the stimulus. However, the

mutant M2225R tended to accumulate inactiva-

tion in the same part of the stimulus (lower peaks

at shortest resting intervals), but this can be

accounted for simply by a change in the rate con-

stants and requires no additional states. The kinetic

parameters that characterize the behavior of all

channels are presented in (B). (B) Tabulation of

the quantified kinetics with the three-state loop

in detailed balance. The states are named

C ¼closed state, O ¼ open state, and I ¼ inacti-

vated state. Although DhPIEZO1 does not appear

to have an inactivated state, we included it for

consistency to better compare the models. The

pressure dependence for all channel types is con-

tained in the opening rate and the inactivated-

closed rate. The pressure sensitivity of the rates

is indicated by the parameter q [mmHg�1]. q was

consistent across all types of channels at ~0.15 so

that the conformation associated with opening in

all channel types is identical. The DhPIEZO1 trace

ends with a jump that is probably closure of the last

open channel.
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0-mmHg opening rates (the preexponential coefficients).
Because the preexponential term contains the entropy of
activation, we infer that the mutations also did not change
that component of the free energy.

Inactivation is fast in hPIEZO1, M2225R, and R2456K
(12.7 s�1, 9.8 s�1, 12.4 s�1 at �60 mV, respectively), and
DhPIEZO1 effectively did not inactivate (< 1.6 � 10�6

s�1 at�60 mV). When we examined deactivation, hPIEZO1
and M2225R were faster than the pressure clamp’s response
time, but R2456K was slow enough to measure (6.2 s�1),
and DhPIEZO1 was even slower (2.4 s�1). Deactivation rep-
resents the process of going from open to closed and is char-
acterized by the energy difference between the open state
and the energy barrier between the open and closed state.
If the change in deactivation rate was due to a change in bar-
rier height, we would expect that the slope sensitivity for
opening, q, would also change, but it did not, so the change
in deactivation rate appears to represent changes in the open
state energy. Slow deactivation of DhPIEZO1 may represent
reforming of the domain, the inverse of fracturing. The
C-terminal domain, where the mutations are located, is
presumably involved in domain creation (7).

To explore whether the two mutation sites were indepen-
dent, we did a mutant cycle analysis of inactivation (23). If
the two sites were independent, the free energy difference
for inactivation of DhPIEZO1 should be the sum of the
energies of the single mutants. However, the data showed
that the energy of the dual mutant is much larger than the
sum of the two single mutant energies, so they must be
interacting. The basic calculation is as follows, where DGi

is the free energy with mutation of residue i, and DDGi is
the free energy changes with mutation of residue i.

DDG2225 ¼ DG2225 � DGWT:
DDG2456 ¼ DG2456 � DGWT:
DDGDhPIEZO1 ¼ DGDhPIEZO1 � DGWT:

DG ¼ DDGDhPIEZO1 � ðDDG2225 þ DDG2456Þ

¼ DGDhPIEZO1 þ DGWT � DG2225 � DG2456

¼ �kBT �
�
ln

�
5:4 � 10�4

141:46

�
þ ln

�
8:59

1:19

�

� ln

�
12:19

4:40

�
� ln

�
2:84

115:10

��

¼ 7:82 kBT:

The difference of free energy DG¼ 7.82 kBT shows that the
sites are not independent despite on apparently opposites
sides of the bilayer (7).
DISCUSSION

A striking feature of activation is that the slope sensitivity
q was identical for all channel types. This means that the
energy between the closed and open states was identical.
Perhaps even more surprising is that this also implies that
the local stresses sensed by the channel were identical:
The domains were similar enough that the internal stresses
were the same. The free energy of gating is well approxi-
mated by DG ¼ TDA, where T is the local tension and DA
is the change of in-plane area so that a change in Twill pro-
duce a change inDG. The data on DhPIEZO1 also show that
activation is effectively uncoupled from inactivation.

The kinetics of all mutants could be fit with the three-state
loop model with the same two pressure-dependent rates so
that the mutations did not appear to introduce any new states
(Fig. 5). The fact that the kinetics of all the channels could
be fit with a pressure-sensitive opening rate and a pressure-
independent closing (deactivation) rate means that the
energy barrier between the states is located close to the
open state.

Because the slope sensitivity for activation was constant
across all mutations, slowing the inactivation rate increases
the channel open time for a transient stimulus. We have pre-
viously shown that PIEZO1 inactivates and does not adapt
(8). To slow inactivation, one elevates the energy barrier
between the open and inactivated states. But because the
slope sensitivity for activation, q, was unchanged among
the mutants, the difference in energy between the closed
state and the barrier peak has to remain constant. Thus,
the slowing of inactivation appears to represent a lowering
of the energy of the open state.

The fact that the mutations caused changes in both the
inactivation rate and the deactivation rate suggests that the
two processes are coupled. A channel with fast inactivation,
such as the WT, also has fast deactivation. When inactiva-
tion is slow (DhPIEZO1), then deactivation is slow. We pre-
viously suggested that inactivation may reflect an increased
interaction between monomers to form clusters (domains)
and that the regions of the channel altered by the mutations
are also involved in intermonomer binding (7). DhPIEZO1
channels with no inactivation and slow deactivation may
exist in loose, easily fractured clusters. The DhPIEZO1
kinetic behavior is quite similar to what we observed with
the removal of the C-terminal domain (7).

Mutant cycle analysis of inactivation using WT, single-
site mutants, and DhPIEZO1 (23) showed that the two sites
interacted with ~8 kBT of energy (Fig. 6). What is the mech-
anism of coupling? It could be part of a common flexible
region of the channel or possibly affect binding to the cyto-
skeleton and extracellular matrix, but that is doubtful given
that we have previously demonstrated that disruptors of the
cytoskeleton, such as CytochalasinD, disrupt whole-cell
currents. However, we know that the channels are still
present because patches from those cells show functional
channels. The cytoskeletal disruptors probably do not affect
the channel itself but more likely the mechanical path-
ways that affect the local distribution of stress (8). A lack
of interaction with cytoskeletal proteins is supported by
Biophysical Journal 105(4) 880–886



FIGURE 6 Mutant cycle analysis. The energy difference between open

and inactivated states for WT, single-site mutants, and DhPIEZO1. The

free energy change in DhPIEZO1 (DDGDhPIEZO1) is larger than the sum

of free energy changes for the two single mutants by ~8 kBT, showing

that the sites are not independent but exhibit positive cooperativity.
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mass-spectrum analysis of mPIEZO1 that shows no addi-
tional proteins bound to the purified channel (2).

DhPIEZO1 may be a good candidate for developing a
high throughput screen for inhibitors of PIEZOs. Given
that it lacks inactivation, a persistent mechanical stimulus
to DhPIEZO1 will induce a persistent calcium influx, mak-
ing the assay insensitive to variations in the rates of inacti-
vation. Furthermore, inhibition by the specific reagent
GsMTx4 is a positive control.
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