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Neural Mechanisms for the Abstraction and Use of Pitch
Information in Auditory Cortex
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Experiments in animals have provided an important complement to human studies of pitch perception by revealing how the activity of
individual neurons represents harmonic complex and periodic sounds. Such studies have shown that the acoustical parameters associ-
ated with pitch are represented by the spiking responses of neurons in A1 (primary auditory cortex) and various higher auditory cortical
fields. The responses of these neurons are also modulated by the timbre of sounds. In marmosets, a distinct region on the low-frequency
border of primary and non-primary auditory cortex may provide pitch tuning that generalizes across timbre classes.

Questions on pitch encoding mechanisms in auditory cortex
Animal studies have provided useful information at the neuronal
level for understanding pitch processing mechanisms in auditory
cortex. Auditory cortex in non-human primates contains a
“core” region, composed of primary auditory cortex (A1), rostral
area (R), and rostral-temporal area (RT) (Fig. 1 A, B). The core is
surrounded by “belt” and “para-belt” regions (Kaas and Hackett,
2000; Hackett et al., 2001). Other mammals also have a “core”
region in auditory cortex [Al and anterior auditory field area
(AAF)], surrounded by secondary areas (ferret, Wallace et al., 1997;
Bizley et al., 2005; cat, Winer and Lee, 2007) (Fig. 1C,D). The simi-
larities in auditory cortex organization make it possible to compare
data obtained from different species, although one also must bear in
mind the differences among species during this practice.

There are several scenarios of how pitch could be encoded in
auditory cortex. Cortical areas with an orderly tonotopic organiza-
tion, like A1, can represent pitch in frequency regions corresponding
to individual harmonic components, orthogonal to the tonotopic
axis (Langer et al., 1997). Alternatively, pitch can be extracted by
neurons tuned to low frequencies in a tonotopically organized cor-
tical area (Bendor and Wang, 2005) or in a specialized cortical region
(Griffiths and Hall, 2012). One would also like to know in any of
such scenarios whether a representation of pitch can be generalized
to all types of sounds bearing the same pitch (including missing
fundamental sounds), and whether a particular neural representa-
tion is linked to pitch perception measured behaviorally. We will
review below studies that address these questions.
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Neurophysiological studies of pitch and periodicity coding in
auditory cortex
Following the discovery that macaque monkeys (Tomlinson and
Schwarz, 1988) and cats (Heffner and Whitfield, 1976) can per-
ceive the pitch of missing fundamental harmonic complex
sounds, neurophysiologists embarked on attempts to identify
neurons in Al that have the same periodicity tuning for pure
tones and missing fundamental sounds. Initial attempts per-
formed in awake monkeys were unsuccessful. Two research
groups found that while the pure tone frequency tuning of many
Al neurons (i.e., characteristic frequency; CF) is consistent with
the neuron’s responses to harmonic tone complexes, their peri-
odicity tuning does not extend to harmonic sounds with missing
fundamentals (Schwarz and Tomlinson, 1990; Fishman et al.,
1998). Such results dispelled early expectations of finding a single
neuron explanation of pitch perception at the level of Al.
Several studies have, nevertheless, demonstrated that A1 neu-
rons are tuned to a variety of acoustical cues that may be impor-
tant prerequisites to pitch encoding. Neurons in Al are arranged
according to their CF, forming a tonotopic map of frequency
preference across its surface. In the Al of monkeys, the low-
frequency harmonics of periodic click trains are represented as
distinct areas of activation across the low-CF region of the tono-
topic map (Steinschneider et al., 1998). This might serve to rep-
resent the resolved harmonics of periodic sounds (Oxenham,
2012). The temporal envelope modulations of higher (presum-
ably unresolved) harmonics, on the other hand, are represented
in the phase-locked responses of high-CF neurons (Steinsch-
neider et al., 1998). Therefore, acoustical properties that are
necessary for spectral- and temporal-based pitch extraction pro-
cesses are represented across the population of neurons in Al.
A subpopulation of “multi-peaked” neurons have been iden-
tified in cats (Sutter and Schreiner, 1991) and marmosets (Kadia
and Wang, 2003) which may be capable of harmonically fusing
complex sounds. These neurons respond preferentially not just
to a particular CF, but also to tones at frequencies that are har-
monically related to their CF, particularly 1.5*CF and 2*CF. In
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some cases, spiking responses to the CF in
the presence of its harmonics were en-
hanced over the response to CF alone (Ka-
dia and Wang, 2003). Similarly, a small
proportion (12%) of neurons in the two
core auditory cortical fields of awake ferrets
(Al and AAF) have been shown to be har-
monically sensitive (Kalluri et al., 2008). In
these neurons, linear spectro-temporal fil-
ters computed from the cell’s response to
inharmonic sounds could not accurately
predict the response to harmonic complex
sounds. These studies show that multiple
harmonic components of complex periodic
sounds are integrated and represented as
spike rate codes in a subpopulation of neu-
rons in Al.

Extracellular recordings and intrinsic
optical imaging of responses in gerbil and
cat Al to pure tones and sinusoidally
amplitude-modulated (SAM) tones have
suggested that a topographic gradient of
best modulation frequencies may exist for
complex, periodic sounds that is distinct
from, or even orthogonal to, the tonotopic
map (Schulze and Langner, 1997; Schulze et
al., 2002; Langner et al., 2009). Topographic
organization of best modulation rates has
not yet been found in primate A1l (Schwarz
and Tomlinson, 1990; Fishman et al., 1998).
In an intrinsic optical imaging study of pri-
mary and secondary auditory cortices in fer-
rets, Nelken et al. (2008) did find a gradient
of best modulation tuning for SAM tones,
but here the gradient ran approximately
parallel to the tonotopic map, in contrast to
earlier studies in humans (Langner et al.,
1997) and gerbils (Schulze et al., 2002).
Moreover, although periodicity gradients
were also observed for high-pass click trains
and high-pass iterated rippled noise, there
was no consistent arrangement of periodic-
ity preference gradients across the three
stimulus types (Nelken et al., 2008). The stimulus specificity of these
periodicity preferences means that they cannot be interpreted as
generalized pitch maps. Neuronal sensitivity to confounded fea-
tures, such as harmonic spacing due to critical bandwidths (Fishman
et al., 2000) or cochlear distortion products (Wiegrebe and Patter-
son, 1999), have been offered as potential explanations for the ob-
served organization of modulation preferences for SAM tones.

Although A1 neurons can extract acoustical cues that are nec-
essary to compute the pitch of a variety of periodic sounds, the
response properties of a single A1 neuron would be insufficient to
represent the pitch of the entire range of pitch-evoking sounds,
particularly those with missing fundamentals. For most sounds
that humans and animals encounter in their natural environ-
ments, such as vocal calls, these neural representations may be
sufficient for pitch extraction. This possibility was examined by
Bizley et al. (2010), who trained statistical “neurometric” algo-
rithms to discriminate the periodicity of artificial vowel sounds
(i.e., bandpass-filtered click trains) based on the responses of
neurons in ferret auditory cortex. They found that neurometrics
based on the response of small populations of auditory cortical
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Schematics of auditory cortex across four species: A, Macaque; B, marmoset; C, cat; and D, ferret. In each panel, the top
schematic shows an outline of the brain with auditory cortex indicted (dotted line, gray). The bottom schematic in each panel
shows a closer view of the auditory cortex, with sulci (solid lines) and field boundaries (dotted lines). Core auditory cortexis shaded
gray, and the orientations of known tonotopic maps are indicated with an arrow from low (L) to high (H) frequencies. A1, Primary
auditory cortex; A2, secondary auditory area; AAF, anterior auditory field; ADF, anterior dorsal field; AL, anterolateral belt; CL,
caudolateral belt; (M, caudomedial belt; DZ, dorsal zone; ML, mediolateral belt; MM, mediomedial belt; PAF, posterior auditory
field; PPF, posterior pseudosylvian field; PSF, posterior suprasylvian field; r, rostral field; RM, rostromedial belt; RT, rostral temporal
field; RTL, rostrotemporal lateral belt; RTM, rostrotemporal medial belt; VP, ventral posterior field.

neurons, but not single neurons, provided sufficient FO discrim-
ination to account for ferrets’ thresholds on an equivalent behav-
ioral task, in which ferrets were trained to categorize the same
sounds as “low” or “high.” This group further showed that al-
though neurons that were sensitive to the periodicity of artificial
vowels could be found across 5 examined fields of primary and
secondary auditory cortex, these neurons were not selective (i.e.,
specialized) for pitch (Bizley etal., 2009). A neuron that was sensitive
to vowel pitch almost always carried information about the timbre
or spatial location of the vowel as well. For a subset of these neurons,
feature representations were multiplexed within separate response
time windows, so the pitch and timbre of vowels can be invariantly
represented in a single auditory cortical neuron (Walker etal., 2011).
It may therefore be instructive for future studies to examine pitch
tuning in multiple time windows throughout a neuron’s response to
sounds, since tuning properties across the onset, sustained, and off-
set windows can be fundamentally different (Wang et al. 2005).
Given that humans and animals do experience a percept of
pitch that generalizes across a variety of sounds with the same
periodicity (including missing fundamental sounds), it seems
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reasonable to expect to find neurons at some level of the auditory
system that integrate the periodicity cues described above to
compute a stimulus-invariant pitch representation. Such neu-
rons may be distributed throughout the auditory cortex, but hu-
man imaging studies suggest that pitch neurons are likely to be
concentrated in a region of auditory cortex that is specialized to
encode the periodicity of temporally regular sounds (Griffiths
and Hall, 2012). Bendor and Wang (2005) have provided evi-
dence for pitch extraction by single neurons in the auditory cor-
tex of awake marmosets. “Pitch-selective neurons” described in
this study were defined as those whose CF for pure tones matched
their periodicity tuning for missing fundamental harmonic com-
plex sounds, where the spectral components of the latter all lay
outside of the neuron’s excitatory-frequency response area. The
region containing the pitch-selective neurons is confined to the
low-frequency border of Al, R, and lateral belt areas. Approxi-
mately 39% of neurons within this anterolateral pitch region
were classified as pitch-selective neurons based on multiple
criteria. Using temporally jittered click trains and iterated rip-
pled noises, Bendor and Wang (2010) further demonstrated
that these pitch-selective neurons were sensitive to the tempo-
ral regularity of sounds, unlike modulation-sensitive neurons
outside the pitch area, which are instead tuned to repetition
rate regardless of the waveform’s temporal regularity. A recent
study has reported evidence of pitch perception by marmosets
(Osmanski et al., 2011).

A cortical region analogous to the pitch region reported by
Bendor and Wang (2005) has been identified in several human
imaging studies, but has yet to be identified in other animal spe-
cies for which behavioral evidence of pitch perception is estab-
lished. But if it does exist, one shall expect to find it in similar
low-frequency borders of primary and non-primary cortical
fields. While such a region was not specifically investigated in
the study by Bizley et al. (2009), that study observed an over-
representation of neurons sensitive to the pitch of artificial
vowels in the low-frequency borders of Al and tonotopic sec-
ondary fields in the ferret. Ultimately, lesion or cortical inac-
tivation studies will be a necessary complement to these
single-neuron investigations to establish the behavioral rele-
vance of putative pitch codes.

Outstanding questions and directions for future work

There are several key questions that remain to be addressed in
future studies of pitch encoding in auditory cortex. First, is there
more than one “pitch center” in auditory cortex? If so, what are
specific roles played by these different pitch-processing centers?
To answer these questions, researchers need to pursue investiga-
tions to identify cortical regions, in particular in the secondary
auditory cortex, that extract pitch embedded in complex sounds
using a wide range of stimuli. Second, what are underlying mech-
anisms that allow any “pitch neuron” to perform pitch extraction
computations? To understand such questions, one has to employ
techniques beyond extracellular recordings, such as intracellular
and two-photon optical recordings. Third, is a putative pitch
region involved in pitch perception? While a demonstration of
parallel properties between an animal’s behavioral responses and
corresponding neural responses is a useful step toward answering
such a question, a more convincing demonstration would be to
show that the interruption of neural activity in a putative pitch
region will lead to alterations in an animal’s pitch perception
performance. Newly emerged optogenic techniques could be a
useful tool in this line of research in addition to other inactivation
methods.
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Computationally, it is important to differentiate between
neurons (or cortical regions) that extract pitch embedded in
complex sounds (such as harmonic complex) and those that
bear pitch information. This requires examining whether
pitch is specifically or uniquely represented by the neuron or
cortical region under study, as well as determining that the
physiological signal of the neurons corresponds with the ani-
mal’s perception of pitch. Neural responses bearing pitch in-
formation or encoding acoustic parameters associated with
pitch can be found throughout much of the ascending audi-
tory pathway (Cariani and Delgutte, 1996a,b), though their
specificity for pitch may increase at successive higher process-
ing stages. Neural representations earlier in the system could
serve as precursors to the neurons that ultimately compute
pitch, but they may not represent the final stages of pitch
processing. Technically, it is crucial to apply rigorous controls
to rule out influences by such factors as acoustic artifacts and
cochlear distortions before a neuron or cortical region is con-
sidered “pitch-selective.”
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