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Optimizing paths on networks is crucial for many applications,
ranging from subway traffic to Internet communication. Because
global path optimization that takes account of all path choices
simultaneously is computationally hard, most existing routing algo-
rithms optimize paths individually, thus providing suboptimal sol-
utions. We use the physics of interacting polymers and disordered
systems to analyze macroscopic properties of generic path opti-
mization problems and derive a simple, principled, generic, and
distributed routing algorithm capable of considering all individual
path choices simultaneously. We demonstrate the efficacy of the
algorithm by applying it to: (i) random graphs resembling Internet
overlay networks, (ii) travel on the London Underground network
based on Oyster card data, and (iii ) the global airport network.
Analytically derived macroscopic properties give rise to insightful
new routing phenomena, including phase transitions and scaling
laws, that facilitate better understanding of the appropriate
operational regimes and their limitations, which are difficult
to obtain otherwise.

Path optimization affects many of our daily activities. Al-
though much attention has been dedicated to routing algo-

rithms for Internet applications, such as instant messengers and
peer-to-peer systems (1, 2), many other essential routing appli-
cations have attracted less attention, ranging from water distri-
bution networks (3) to sensor networks (4), military convoy
movements (5), and journey planners (6, 7). In many applications,
enormous costs are incurred due to traffic congestion or non-
essential and redundant capacity. Due to the computational costs
involved, most existing routing algorithms are static and based on
selfish decisions, with nonadaptive routing tables indicating the
shortest path to destinations regardless of local traffic (8, 9). Dy-
namic routing protocols do exist, but they are either heuristic,
probabilistic, or insensitive to other individual path decisions that
dynamically constitute the traffic (10, 11). A more global approach
that takes into account all individual path decisions is crucial for
efficient use of overstretched infrastructure. For instance, one may
suppress congestion by minimizing overlaps with other routes or
decrease the number of active nodes by consolidating paths to
reduce infrastructure demands or energy consumption. The latter
is particularly important in the context of the Internet because it
can consume up to 4% of the electricity generated (12). Future
applications include individualized routing and optimal resource
management of prebooked air and road traffic.
The difficulty in deriving a globally optimal algorithm, in con-

trast to greedy local ones, lies in the simultaneous assignment of
multiple interacting paths to minimize a global cost, because the
optimal path between any particular source–destination pair
depends on all other path choices. Such interaction is highly
nonlocal, because paths between different source–destination
pairs may partially overlap. Existing algorithms either ignore
these interactions (8, 9) or use heuristics to approximate them
(10, 11); both approaches result in suboptimal solutions. A
substantial effort has been devoted to the development of highly
efficient routing methods: for instance, multicommodity flow
algorithms (13–19). However, most methods are based on weighted
linear objective functions and real variables, and they aim spe-
cifically at satisfying capacity constraints; they have limited
flexibility in addressing the variety of nonlinear cost functions

one may want to optimize in different scenarios, especially con-
cave costs and integer variables. A more detailed discussion is
provided in SI Appendix, section S4.
Here, we utilize statistical physics-based methods used in the

study of interacting polymers (20) and spin glasses (21, 22) to ob-
tain both a macroscopic description of the routing problem and
microscopic solutions for given instances; the latter leads to
a simple, generic, and distributed routing optimization algorithm.
The algorithm resembles message-passing techniques that have
been developed independently in a number of disciplines (21, 23,
24) and have been successfully applied to a variety of problems,
ranging from prototyping (25) to solving hard computational
problems (26) and control of complex systems (27). Here, we
demonstrate the potential and efficacy of our routing algorithm by
applying it to random networks, individualized routing on the
London subway network, and the global airport network. Together
with other benchmark tests described in SI Appendix, we demon-
strate that our algorithm achieves better optimization compared
with existing heuristics and state-of-the-art approximation algo-
rithms in various routing scenarios; moreover, it is distributed and
principled and does not require fine-tuning of free parameters.
In addition to the significant algorithmic advances, several

macroscopic phenomena, including a phase transition, scaling rules
as a function of network size, and nonmonotonic growth in mean
path length as a function of traffic volume, are revealed; these
cannot be obtained by numerical studies and provide unique
insights and understanding of optimal routing on sparse networks.

Model
Consider a system of M polymers interacting on a network of
N nodes. Each node i= 1; . . . ;N is connected to ki neighbors
denoted by the set Li and the connectivity matrix Aij =Aji = 1
when i and j are connected and is zero otherwise. Each polymer
ν= 1; . . . ;M has two fixed ends and occupies a path described by
a self-avoiding walk on the network (i.e., consecutive segments
occupy topological neighbors and each polymer ν goes through a
node at most once). We denote the variable σνi = 1 when polymer
ν occupies node i and σνi = 0 otherwise, and the number of poly-
mers occupying i as Ii =

P
νσ

ν
i . To penalize or encourage polymer

overlap, we define the Hamiltonian H to be a nonlinear function
of the normalized flow λi = Ii=M, namely,

H=M
X
i

ϕðλiÞ: [1]

The analytical solution and derived algorithm are generic for any
ϕ. Although the current framework focuses on undirected poly-
mers and costs that incur at vertices, it is clear that costs may
incur at the edges and edges may be directed and weighted in
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some applications. Our framework, derivation, and algorithms
accommodate costs on edges (using a factor graph representa-
tion), as well as directed and weighted polymers, making them
suitable for most routing scenarios. The derivation and corre-
sponding algorithms are given in SI Appendix, section S3. We
would like to point out that the algorithm presented below al-
ready accommodates directed traffic.
This model is equivalent to a setting of M source–destination

pairs, which we term “communications,” each of which occupies
a path on a network with N nodes. The variable λi is thus the
normalized traffic on node i, and H is the corresponding cost
function. In the physical framework and the zero-temperature
limit, we minimize H to obtain the ground state of the system
or the optimal path configuration of the corresponding routing
system. Some simple forms of H are already meaningful; for
instance, ϕðxÞ= xγ , where the cases with γ > 1 penalize overlaps
to suppress congestion, whereas γ < 1 encourages overlaps to
aggregate traffic (28–30). The case of γ = 1 reduces to
H∝

P
νð
P

iσ
ν
i Þ, whose ground state corresponds to shortest

path routing.

Methods
Theoretical Approach. The main obstacle in accounting for the interaction be-
tween paths is in keeping track of the cost at local nodes or edges while
maintainingpath integritybetweenthe twoendpointsandavoiding redundant
loops. Therefore, in addition to the cost at the various nodes, given by Eq. 1, we
have introduced a technique used in polymer physics (20) in the study of self-
avoiding walks (31, 32) to enforce the appropriate path constraints.

Themethod is based on representing each node as an n-component vector
~S of length

ffiffiffi
n

p
. Denoting the angular integration over~S as

R
⊙d

~S, it has been
shown (20) that all positive moments of Sa vanish in the limit n→ 0, except
the second moment 1

Cn

R
⊙d

~SS2a = 1, for any component a in~S, where Cn =
R
⊙d

~S
is a normalization constant. It is then implied that when n→ 0, all non-
vanishing terms that contribute in

∏
N

i =1

�
1
Cn

Z
⊙

d~Si

�
Sx;aSy;a ∏

ðklÞ

�
1+Akl

~Sk ·~Sl

�
[2]

are of the form Axk1Ak1k2⋯AklyS
2
x;aS

2
k1 ;a

S2k2 ;a⋯S2kl ;aS
2
y;a, where ki represents

the ith node index of the corresponding path/polymer segment; these
sequences represent self-avoiding paths over nodes ðx; k1; k2; . . . ; kl ; yÞ,
joining the end nodes x and y (20). Each node that is part of these paths
incurs a cost as in Eq. 1; a sum over all possible paths of all communications
provides the partition function Z, as detailed in SI Appendix, section S1.1. To
obtain typical macroscopic properties, one needs to average Z over topol-
ogies (given a degree distribution) and node pair choices, termed “quenched
disorders” in statistical physics. This requires the use of the replica or cavity
method of spin glass theory (21, 22), as presented in SI Appendix, section S1.

The aim of the analysis is twofold.

i) At the macroscopic level, we derive the stable traffic distribution PðIÞ in the
limit of very large systems to obtain theaverage cost (energy) hEi= hϕðI=MÞi;
the average path length, given by the total occupancy divided by M (i.e.,
hLi= N

M hIi); and the average fraction of idle nodes, given by fidle = hδðIÞi, as

detailed in SI Appendix, section S1.4. Angled brackets denote an average
over PðIÞ, which includes averages over all variable states for a given net-
work and over choices of network and end-point instances.

ii) At the microscopic level, the cavity-based analysis (33) translates to an
algorithm that optimizes path configuration in a principled, distributed,
and computationally efficient manner.

Optimization Algorithm. The analytical solutions for infinite systems translate
into an optimization algorithm valid for finite systems, as detailed in SI
Appendix, section S2. The derived algorithm is based on sending a couple of
messages aνj→i and bν

j→i at the zero temperature limit, from node j to node i
for each index ν; these characterize the energy contributions of communi-
cation ν at edge j→ i, originated from the source and destination directions,
respectively. The messages take the form:

aνj→i =

8>>>>>>>>>><
>>>>>>>>>>:

min
l∈Ljnfig

h
aνl→j

i
−min

2
66664−ϕ′

�
λν pj

�
; min
l;r∈Ljnfig

l≠r

h
aνl→j +bν

r→j

i
3
77775; Λν

j = 0

− min
l∈Ljnfig

h
bν
l→j

i
; Λν

j = 1

∞; Λν
j = − 1

[3]

bν
j→i =

8>>>>>>>>><
>>>>>>>>>:

min
l∈Ljnfig

h
bν
l→j

i
−min

2
66664−ϕ′

�
λν pj

�
; min
l;r∈Ljnfig

l≠r

h
aνl→j +bν

r→j

i
3
77775; Λν

j = 0

∞; Λν
j = 1

0; Λν
j = − 1

[4]

where Λν
j = + 1; − 1 for source and destination, respectively, and is zero oth-

erwise; the general cost function ϕ and the set of nodes in the neighborhood of
node j are denoted as Lj . The value of λνpj is given by the solution of λνj in

λνj =
1
M

+
1
M

X
μ≠ν

8>>><
>>>:
��Λμ

��+ �
1−

��Λμ

��	Θ
0
BBB@−ϕ′

�
λνj

�
− min

l;r∈Lj

l≠r

h
aμl→j +bμ

r→j

i
1
CCCA

9>>>=
>>>;
: [5]

The step function ΘðxÞ takes values ΘðxÞ= 0; 0:5; 1 for x < 0; x = 0, and x > 0,
respectively. Solutions of Eq. 5 are obtained by setting λνi = I=M and a test
integer I starting from I=0 until a self-consistent λνj is found. Finally, after
the set of messages in Eqs. 3 and 4 converges to nonfluctuating values, the
optimal configuration of path ν on each node j is given by

σνj = jΛνj+ ð1− jΛνjÞΘ

0
BBB@−ϕ′

�
λν pj

�
− min

l;r∈Lj

l≠r

h
aνl→j +bν

r→j

i
1
CCCA; [6]

where λνpj is the solution of Eq. 5 after convergence and σνj = 1 if the com-
munication ν passes through node j and zero otherwise. The generalized
algorithms that accommodate weighted and directed communications, ge-
neric costs on nodes and edges, and separate costs defined on directed
edges are given in SI Appendix, section S3. The computational complexities
of these algorithms are discussed in SI Appendix, section S2.2.

In some instances, the iterative equations fail to converge; this suggests
that solution space in the infinite system case is fragmented and nonergodic;
this corresponds to “replica symmetry breaking” (21, 22), a complicated
energy landscape with numerous local minima that typically hinder algo-
rithmic convergence (details are provided in SI Appendix, section S5). This is
typical in the case of hard computational problems. Convergence is im-
proved by assigning a random bias ei to each node (34), akin to an external
field, guiding the system to one of the local minima. These biases can be
easily incorporated in the present formulism by replacing ϕðxÞ with ϕiðxÞ for
each node i, such that ϕiðxÞ=ϕðxÞ+ xei . In cases where a large number of
source–destination pairs are identical, we further replace ei by eνi for each
communication ν to break the degeneracy brought about by Eq. 5. Details
can be found in SI Appendix, section S2.1.

Fig. 1. Optimized path configurations on a regular random network. The
network comprises 50 nodes (each with k= 3) and 10 source–destination
pairs. The corresponding costs are H∝

P
i I
2
i (A) and H∝

P
i I
0:5
i (B). The path

of each communication is illustrated by nodes and edges of a specific color,
whereas black nodes are shared by more than one path. The size of a node is
proportional to the amount of traffic through it, and square nodes represent
the source or destination of each communication. Networks are visualized by
the NetDraw software (40).
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Results
Microscopic Solution: Finding Best Paths. Using the suggested al-
gorithm, we can optimize path choices using the cost H∝

P
iI
γ
i .

We illustrate the characteristic results obtained by applying the
algorithm using two costs, with γ = 2 (convex, γ > 1) and γ = 0:5
(concave, γ < 1), to a system of 10 source–destination pairs com-
municating on a random regular graph with N = 50 and k= 3, as
shown in Fig. 1.
Fig. 1A demonstrates how a cost with γ > 1 penalizes conges-

tion: The blue, orange, and violet communications are routed via
nonshortest paths to avoid overlap, especially in the central
congested part of the network. This holds when traffic is heavy
and one aims to distribute it uniformly. In contrast to the re-
duced-congestion solutions, Fig. 1B shows solutions obtained for
H∝

P
iI
0:5
i , aimed at concentrating traffic. More specifically, the

blue, orange, and violet communications in Fig. 1B are all routed
via the central congested part of the network that mainly consists
of source and destination nodes, making best use of these nodes
as relays and leaving many of the other nodes idle. In the case of
the Internet or transportation networks, idle nodes can be
switched off to save resources.
To demonstrate the efficacy of the algorithm for more realistic

systems, we examine the performance of the algorithm on the
London subway network based on real passenger source–desti-
nation data obtained by the Oyster card system (35). We report
results for vertex costs only, but similar pictures have been
obtained for edge costs and directed traffic. Fig. 2A shows how
congestion is reduced by the algorithm when γ = 2; traffic is fairly
uniform, even in the central region (Fig. 2A, Inset), at the cost of
longer individual routes for global optimization. Table 1 shows
that the cost E=

P
iI
2
i obtained by our algorithm is 20.5%

smaller than that of the shortest path configuration obtained by
the commonly used Dijkstra algorithm (9), with only a slight

increase in average path length by 5.8%. Practically, traffic opti-
mization of this type may be achieved through differential pricing
or by auxiliary information provided either individually or glob-
ally. On the other hand, when γ = 0:5 is used, paths for the same
passenger set are consolidated at major routes and stations, as
shown in Fig. 2B. Although the size of some of the nodes
increases, other branches, such as the ones passing through
“Holborn” and “Great Portland Street” (Fig. 2B, Inset), are
almost idle. This scenario may be relevant at times when the
service is reduced for some reason (e.g., a strike or at late
evening); service on the shared branches can remain active,
whereas the frequency of other less heavily loaded services
decreases.
To compare the solutions obtained in the two scenarios better,

we plotted the corresponding traffic at individual stations for the
London Underground dataset in descending order (for γ = 0:5),
as shown in Fig. 3, Inset. The optimized states of γ = 2 show less
traffic for overloaded stations and higher traffic for less heavily
loaded ones (e.g., “Green Park”).
Similar experiments were carried out on the global airport

network (36). Applying the optimization algorithm (3, 4) to the
data, one obtains the results presented in Figs. 3 and 4. Similar
trends to those of the subway network are observed: Air traffic
consolidates at airports that are on main routes in the case of
γ = 0:5, such as Frankfurt, Toronto, and Beijing, whereas several
popular airports, such as Tokyo, Newark, and Hong Kong, show
reduced air traffic in the case of γ = 0:5, as represented by the red
line in Fig. 3. Table 1 shows the cost obtained by our algorithm
when γ = 2 is 56% lower than the cost obtained by the Dijkstra
algorithm’s shortest paths, with a slight increase in path length of
6.2%. This may be due to the availability of a large number of
alternative paths in the airport network. We note that a lower cost
is also achieved in the case of γ = 0:5. These results show that our

Table 1. A comparison between average cost as well as path length obtained by our
algorithm (P) and the Dijkstra algorithm (D)

γ =2 γ= 0:5

EP − ED
ED

LP − LD
LD

EP − ED
ED

LP − LD
LD

London subway network −20:5± 0:5% +5:8±0:1% −4:0±0:1% +5:8±0:3%
Global airport network −56:0± 2:0% +6:2±0:2% −9:5±0:2% +8:6±1:2%

The average cost is given by E=
P

iI
γ
i and path length by L= 1

M

P
iIi. Results are averaged over sets of source–

destination pairs recorded in each 1-min interval between 8:30 AM and 9:00 AM on one Wednesday in November
2009 for the London subway network and five sets of 300 randomly drawn source–destination pairs for the global
airport network. The values after the ± signs indicate the corresponding SE.

Fig. 2. Optimized traffic on the London subway network. A total of 218 real passenger source–destination pairs are optimized, corresponding to 5% of the
data recorded by the Oyster card system between 8:30 AM and 8:31 AM on one Wednesday in November 2009 (35). The network consists of 275 stations. The
corresponding costs areH∝

P
i I
2
i (A) andH∝

P
i I
0:5
i (B). Red nodes correspond to stations with nonzero traffic. The size of each node and the thickness of each

edge are proportional to traffic through them. (Insets) Zoomed-in views of the central region. Nodes are drawn according to their geographic position.
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algorithm optimizes a given generic cost at a price of modest in-
crease in the average path length.
To evaluate the performance of the suggested algorithm (with

γ = 2 only), we compared our results against those obtained using

a representative state-of-the-art congestion-aware routing algo-
rithm, which we call the “min-cap” (MC) algorithm (13), based
on multicommodity flow. Because the latter aims to optimize
a linear cost, we have introduced a tunable parameter α such that
the quadratic cost is optimized by an extensive search for an
optimal α* (SI Appendix, Fig. S8). Details are provided in SI
Appendix, section S4. We emphasize that this comparison is
limited to congestion-aware algorithms (γ ≥ 1) because we have
not identified existing efficient optimization algorithms for con-
cave costs that facilitate route consolidation (e.g., the results
shown in Figs. 1B, 2B, and 4B).
Table 2 shows a modest gain in cost over the optimized MC

results at individual α* for each run, which is far less than the
gain obtained with respect to the Dijkstra algorithm. Neverthe-
less, our algorithm provides a lower energy for all α values, which
is unachievable by the MC algorithm even after fine-tuning (SI
Appendix, Fig. S8). Our algorithm also results in a shorter av-
erage path length L in addition to a lower cost E in random
regular graphs (SI Appendix, Table S1) used as a controlled
benchmark problem. Moreover, it is distributed and principled;
does not require fine-tuning of free parameters; and, most im-
portantly, has the flexibility to accommodate any (nonpatho-
logical) cost function designed to address specific needs.

Path Adaptivity. Fig. 5 illustrates the adaptivity of our algorithm
after removing the London subway station “Bank” (black node).
Nodes and edges in Fig. 5 that show an increase (decrease) in
optimized traffic are colored red (blue), respectively, with their
size and thickness proportional to the magnitude of increase
(decrease). Nodes and edges in Fig. 5 with no traffic changes are
shown in white and black, respectively. In the case of optimiza-
tion using γ = 2, the original traffic through Bank is rerouted
either via “Embankment” or via “Old Street.” This redistribution

0 500 1000 1500 2000
Airports in order of descending I (with  = 0.5)

0

0.02

0.04

0.06

0.08

0.1
I/

M

 = 2
 = 0.5

0 50 100 150 200 250
Subway stations in descending I

0

0.1

0.2

Holborn Great Portland Street

Green Park

Rio De Janeiro

Frankfurt

Honolulu

Newark
Tokyo

Hong Kong

Sydney

Frankfurt (  = 0.5) 
I/M  0.5

Green Park (  = 0.5) 
I/M  0.41

Fig. 3. Optimized traffic at individual airports and London subway stations
(Inset). The airports and stations are plotted in descending order of traffic in
the optimized state of H∝

P
i I
0:5
i (red lines). Symbols (× ) in blue correspond

to the optimized traffic with H∝
P

i I
2
i . Squared symbols refer to airports and

stations mentioned in the main text that have much higher traffic than that
indicated by the red lines. The optimized airport traffic is obtained from the
single instance shown in Fig. 5, and the optimized subway traffic is obtained
by averaging over the 30 passenger sets as in Table 1.

Fig. 4. Optimized traffic at individual
airports of the global air network. A
total of 2,480 airports constitute nodes,
whereas the edges represent the exis-
tence of direct flights between airport
pairs (36). Because the real demand in
terms of source–destination pairs is un-
available, it was artificially generated by
selecting a set of 300 randomly drawn
source–destination pairs. Red nodes
correspond to airports with nonzero
traffic; the size of nodes indicates the
air traffic through particular airports,
and edges are omitted for clarity. (A)
For H∝

P
i I
2
i , traffic is routed to be al-

most uniformly distributed to reduce
congestion. (B) For H∝

P
i I
0:5
i , air traffic

consolidates at the main hubs.

13720 | www.pnas.org/cgi/doi/10.1073/pnas.1301111110 Yeung et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1301111110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1301111110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1301111110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1301111110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1301111110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1301111110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1301111110


of traffic cannot be achieved by ordinary algorithms, such as
routing tables, the shortest path, or minimal weight routing,
without taking into account the interaction between paths.
On the other hand, in the case of γ = 0:5, almost all the original

traffic through Bank is diverted to Old Street. Because the original
traffic via Bank is substantial (Fig. 2B, Inset), significant changes at
some stations have to be made, although only a small number of
stations are subject to rerouting compared with the case of γ = 2.

Macroscopic Behavior in Routing. In addition to the microscopic
solutions obtained, we would like to explore the macroscopic
behavior of the system. We first examine the dependence of
average path length hLi on the number of interacting communica-
tions M. Random regular networks and Erdös–Rényi (ER) and
scale-free (SF) graphs are studied because they serve as standard
benchmark problems and resemble overlay networks on the
Internet. Theoretical results are obtained by solving numerically
a set of recursive equations described in SI Appendix, section
S1.4; simulation results are obtained using Eqs. 3 and 4. Fig. 6A
(Inset) shows results obtained for random regular graphs. Two
remarkable phenomena are observed for both γ = 2 and γ = 0:5: (i)
average path length hLi peaks at intermediate M instead of in-
creasing monotonously, and (ii) it approaches asymptotically the
shortest path L1 as M→∞ (formally, the value of hLi when
M = 1). Small deviations between theory and simulations are due
to finite size effects.
The observed nonmonotonic trends imply the existence of

interesting routing phenomena. In the case of γ = 2, non-
monotonic trends imply that the system is very sensitive to
congestion in the intermediate range of M. Particularly when M
is small, many communications are routed through longer routes
because they face stiff competition for shorter ones. However, as
M increases further, traffic become more homogeneous and hLi
decreases because communications are routed via shorter routes
because longer ones are equally congested, matching the expe-
rience of frustrated drivers on congested roads. This is reflected
in the lower cost obtained by our algorithm in comparison to the
Dijkstra algorithm, which peaks at 20% for intermediate M as

shown in Fig. 6B. A similar trend is observed for γ = 0:5 as dif-
ferent communications cooperate to share routes in the in-
termediate range of M. As M increases further, traffic becomes
more homogeneous and there is less advantage to prefer a busy
but longer route, making shorter routes more cost-effective. We
note that the peak in hLi for the case of γ = 2 occurs at a smaller

Table 2. A comparison between average cost as well as path length obtained by our algorithm
(P) and the modified min-cap (MC) algorithm

EP − EMCðα*Þ
EMCðα*Þ

LP − LMCðα*Þ
LMCðα*Þ

EP − EMCðα*Þ
EMCðα*Þ

LP − LMCðα*Þ
LMCðα*Þ

London subway network −0:70±0:04% +0:72± 0:10% No existing algorithm for comparison
Global airport network −3:09±0:59% +0:90± 0:64% No existing algorithm for comparison

Average cost is given by E=
P

iI
γ
i and path length by L= 1

M

P
iIi. Results for the modified min-cap congestion

aware algorithm (MC) (13) are obtained at individual optimal α* for each instance and are averaged over the
same set of instances as in Table 1. The values after the ± signs indicate the corresponding SE.

Fig. 5. Changes in optimized traffic in the central London subway network
after the removal of the station “Bank” (black node). The corresponding
costs are γ = 2 (A) and γ =0:5 (B). Nodes and edges that show an increase
(decrease) in traffic appear in red (blue), where their size and thickness
correspond to the magnitude of increase (decrease). Nodes and edges with
no traffic changes appear in white and black, respectively. Passenger source–
destination pairs are identical to those of Fig. 3, except for the removal of
pairs starting or ending destinations in Bank.

Fig. 6. Dependence of the optimized state on the number of communi-
cations. Rescaled path length ðhLi− L1ÞðN=log  NÞ (A) and the cost differ-
ence ðhEiD − hEiPÞ=hEiD (B) (D and P stand for the Dijkstra algorithm and
our algorithm, respectively) as a function of the rescaled number of
communications, M=ðN=log NÞ, for random regular graphs with n = 100,
200, 500, and 1,000 and k= 3; results were obtained forH∝

P
i I
2
i . The value of

L1 in A corresponds to the value of the shortest path hLi. (Insets) hLi (A) and
ðhEiD − hEiPÞ=hEiD (B) are shown as a function of M for N= 100 on random
regular graphs of degree k= 3, with cost exponents γ = 2 and γ =0:5. The error
bars for simulation results are of the order of the symbol size. All simulation
results are averaged over 2,000 realizations. Sim, simulation; Theo, theory.
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M value compared with γ = 0:5, implying that traffic homogeneity
is achieved at smaller M in the case of γ = 2.
Although similar behaviors are observed for ER graphs (SI

Appendix, section S6), SF networks show a much slower decrease
of hLi after attaining its maximum, possibly due to the intrinsic
node degree inhomogeneity that leads to traffic inhomogeneity
even at large M. This suggests that shortest path routing is ef-
fective when M is large and topology is homogeneous but not in
networks with a high degree of variability.
The scaling property of path lengths is shown in Fig. 6A.

Rescaled path lengths ðhLi−L1ÞðN=logNÞ with γ = 2 at system
sizes n = 100, 200, 500, and 1,000, plotted as a function of the
rescaled number of communications, M=ðN=log NÞ, fall on top
of each other almost identically. A similar data collapse is also
observed in ER graphs shown in SI Appendix, section S4. This
finding implies that the nonmonotonic behavior observed for
path lengths, and thus the network sensitivity to congestion,
depends on M and N only through M=ðN=log NÞ. The latter is
roughly proportional to the average traffic on a node because
log N is proportional to the average shortest distance between
any two nodes in random regular networks (37, 38) and ER
graphs (39). In other words, the optimal behavior of routing on
these graphs depends only on the average node traffic, regardless
of system size and number of communications. The rescaling
also appears in the reduced cost obtained by our algorithm, as
shown in Fig. 6B. Note that theoretical results have been
obtained in the infinite system limit; finite N values for theo-
retical results have been introduced merely to determine the
scaling properties of M.
We have also examined the fraction of idle nodes as a function

of γ. This revealed a phase transition, an abrupt change in the

fraction of idle nodes around the γ = 1 value (SI Appendix, sec-
tion S7 and Fig. S11). The implication is that even a small change
in the power γ is sufficient to power down unnecessary routers or
close redundant subway stations effectively, with little impact on
the cost or average route length.

Discussion
Optimal routing is one ofmany hard problems on networks that one
should tackle to use limited and usually overstretched resources
efficiently. The common characteristic of these problems is their
global nature, and thus the difficulty in solving them at both mac-
roscopic and microscopic levels with limited computational
resources. By applying methods from the physics of interacting
polymers and disordered systems, we obtained typical proper-
ties of routing problems and derive a readily applicable, prin-
cipled, generic, distributed, and adaptive routing algorithm.
Improvements over state-of-the-art algorithms in the interme-
diate traffic regime whereM ∼N   log N are considerable but are
modest in the very sparse and dense traffic regimes. These findings
will have a direct impact on a number of different research areas of
practical and societal relevance, ranging from traffic to commu-
nication and logistics; however, more importantly, they may open
the way for solving many other crucial and nonlocalized problems
on networks.
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