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To recognize objects quickly and accurately, mature visual systems
build invariant object representations that generalize across
a range of novel viewing conditions (e.g., changes in viewpoint).
To date, however, the origins of this core cognitive ability have
not yet been established. To examine how invariant object
recognition develops in a newborn visual system, I raised chickens
from birth for 2 weeks within controlled-rearing chambers. These
chambers provided complete control over all visual object experi-
ences. In the first week of life, subjects’ visual object experience
was limited to a single virtual object rotating through a 60° view-
point range. In the second week of life, I examined whether sub-
jects could recognize that virtual object from novel viewpoints.
Newborn chickens were able to generate viewpoint-invariant rep-
resentations that supported object recognition across large, novel,
and complex changes in the object’s appearance. Thus, newborn
visual systems can begin building invariant object representations
at the onset of visual object experience. These abstract represen-
tations can be generated from sparse data, in this case from a vi-
sual world containing a single virtual object seen from a limited
range of viewpoints. This study shows that powerful, robust, and
invariant object recognition machinery is an inherent feature of
the newborn brain.
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Human adults recognize objects quickly and accurately, de-
spite the tremendous variation in appearance that each

object can produce on the retina (i.e., a result of changes in
viewpoint, scale, lighting, and so forth) (1–4). To date, however,
little is known about the origins of this ability. Does invariant
object recognition have a protracted development, constructed
over time from extensive experiences with objects? Or can the
newborn brain begin building invariant representations at the
onset of visual object experience?
Because of challenges associated with testing newborns ex-

perimentally, previous studies of invariant object recognition
were forced to test individuals months or years after birth. Thus,
during testing, subjects were using visual systems that had al-
ready been shaped (perhaps heavily) by their prior experiences.
Natural scenes are richly structured and highly predictable across
space and time (5), and the visual system exploits these statistical
redundancies during development to fine-tune the response
properties of neurons (6–8). For example, studies of monkeys
and humans show that object recognition machinery changes rapidly
in response to statistical redundancies present in the organism’s
environment (9, 10), with significant neuronal rewiring occurring
in as little as 1 h (11, 12). Furthermore, there is extensive be-
havioral evidence that infants begin learning statistical redun-
dancies soon after birth (13–15). These findings allow for the
possibility that even early emerging object concepts (e.g., abilities
appearing days, weeks, or months after birth) are learned from
experience early in postnatal life (16).
Analyzing the development of object recognition therefore

requires an animal that can learn to recognize objects and whose
visual environment can be strictly controlled and manipulated
from birth. Domestic chickens (Gallus gallus) meet both of these

criteria. First, chickens can recognize objects, including 2D and
3D shapes (17–21). Second, chickens can be raised from birth in
environments devoid of objects (22, 23). Unlike newborn pri-
mates and rodents, newborn chickens do not require parental
care and, because of early motor development, are immediately
able to explore their environment. In addition, newborn chickens
imprint to conspicuous objects they see after hatching (24–26).
Chickens develop a strong social attachment to their imprinted
objects, and will attempt to spend the majority of their time with
the objects. This imprinting response can therefore be used to test
object recognition abilities without training (18, 19). Together,
these characteristics make chickens an ideal animal model for
studying the development of core cognitive abilities (for a general
review, see ref. 27).
To investigate the origins of invariant object recognition,

chickens were raised from birth for 2 wk within novel, specially
designed controlled-rearing chambers. These chambers provided
complete control over all visual object experiences from birth.
Specifically, the chambers contained extended surfaces only (Fig.
1A). Object stimuli were presented to the subjects by projecting
virtual objects onto two display walls situated on opposite sides
of the chamber (Fig. 1B). Food and water were available within
transparent holes in the ground. Grain was used as food because
it does not behave like an object (i.e., the grain was nonsolid and
did not maintain a rigid, bounded shape). All care of the chickens
(i.e., replenishment of food and water) was performed in darkness
with the aid of night vision goggles. Thus, subjects’ entire visual
object experience was limited to the virtual objects projected onto
the display walls.
The virtual objects were modeled after those used in previous

studies that tested for invariant object recognition in adult rats
(28, 29). These objects are ideal for studying invariant recogni-
tion because changing the viewpoint of an object can produce
a greater within-object image difference than changing the identity
of the object while maintaining its viewpoint (see SI Appendix,
Section 1 for details). Distinguishing between these objects from
novel viewpoints therefore requires an invariant representation
that can generalize across large, novel, and complex changes in
the object’s appearance on the retina.
In the first week of life (the input phase), subjects’ visual ob-

ject experience was limited to a single virtual object rotating
through a 60° viewpoint range. In the second week of life (the
test phase), I probed the nature of the object representation
generated from that limited input by using the two-alternative
forced-choice test. During each test trial, the imprinted object
was projected onto one display wall and an unfamiliar object was
projected onto the other display wall. If subjects recognize their
imprinted object, then they should spend a greater proportion of
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time in proximity to the imprinted object compared with the
unfamiliar object during the test trials (24–26).
All of the subjects’ behavior was tracked by microcameras

embedded in the ceilings of the chambers and analyzed with
automated animal tracking software. This made it possible to: (i)
eliminate the possibility of experimenter bias, (ii) sample be-
havior noninvasively (i.e., the subjects did not need to be moved
to a separate testing apparatus and there were no visual inter-
actions between the subjects and an experimenter), and (iii)
collect a large number of data points from each newborn subject
across multiple testing conditions. Specifically, I was able to
collect 168 test trials from each newborn subject across 12 dif-
ferent viewpoint ranges. This process allowed for a detailed
analysis of object recognition performance for both the in-
dividual subjects and the overall group.

Results
Exp. 1. Exp. 1 examined whether newborn chickens can generate
invariant object representations at the onset of visual object ex-
perience. In the first week of life (the input phase), subjects were
raised in an environment that contained a single virtual object
(Fig. 2A). This object moved continuously, rotating through a 60°
frontal viewpoint range about a vertical axis passing through its
centroid (see Movies S1 and S2 for animations). The object only
moved along this 60° trajectory; subjects never observed the ob-
ject from any other viewpoint in the input phase.
In the second week of life (the test phase), I examined whether

subjects could recognize their imprinted object across changes in
viewpoint. The test phase was identical to the input phase, except
every hour subjects received one 20-min test trial (Fig. 2B).
During the test trials, a different virtual object was projected
onto each display wall and I measured the amount of time
subjects spent in proximity to each object. One object was the
imprinted object from the input phase shown from a familiar or
novel viewpoint range, and the other object was an unfamiliar
object. The unfamiliar object had a similar size, color, motion
speed, and motion trajectory as the imprinted object from the
input phase. Specifically, on all of test trials, the unfamiliar object
was presented from the same frontal viewpoint range as the
imprinted object from the input phase (Fig. 3). Consequently, on
most of the test trials, the unfamiliar object was more similar to
the imprinting stimulus than the imprinted object was to the im-
printing stimulus (from a pixel-wise perspective). To recognize
their imprinted object, subjects therefore needed to generalize
across large, novel, and complex changes in the object’s appear-
ance. Object recognition was tested across 12 viewpoint ranges.
Each viewpoint range was tested twice per day.
Test trials were scored as “correct” when subjects spent a greater

proportion of time with their imprinted object and “incorrect” when
they spent a greater proportion of time with the unfamiliar object.
These responses were then analyzed with hierarchical Bayesian
methods (30) that provided detailed probabilistic estimates of rec-
ognition performance for both the individual subjects and the
overall group (see SI Appendix, Sections 3 and 4 for details).
Subjects successfully recognized their imprinted object on 71%

(SEM, 5%) of the test trials (Fig. 3). Overall, the probability that

performance was above chance was greater than 99.99% (SI
Appendix, Fig. S6). Across the 12 subjects, the probability that
performance was above chance was 99.99% or greater for nine of
the subjects, 97% for one of the subjects, and 89% for another
subject. The remaining subject scored below chance level. Across
the 24 viewpoint tests (i.e., 12 viewpoint tests for each of the two
imprinted objects), the probability that performance was above
chance was 99% or greater for 13 of the viewpoint ranges, 90%
or greater for 19 of the viewpoint ranges, and 75% or greater for
all 24 of the viewpoint ranges (SI Appendix, Figs. S9 and S10).
Thus, these newborn subjects were able to recognize their
imprinted object with high precision across the majority of the
viewpoint ranges, despite never having observed that object (or
any other object) move beyond the limited 60° viewpoint range
seen in the input phase.
To confirm that subjects generated invariant representations, I

computed the pixel-level similarity between the imprinted object
presented in the input phase and the test objects presented in the
test phase (see SI Appendix, Section 1 for details). Because a ret-
inal image consists of a collection of signals from photoreceptor
cells, and each photoreceptor cell registers the brightness value
from a particular region in the image, a pixel-level description of
a stimulus provides a reasonable first-order approximation of the
retinal input (31). The within-object image difference (i.e., the pixel-
level difference between the test animation of the imprinted object
and the input animation of the imprinted object) was greater than
the between-object image difference (i.e., the pixel-level difference
between the test animation of the unfamiliar object and the input
animation of the imprinted object) on 68% of the novel viewpoint
test trials (SI Appendix, Fig. S2). Furthermore, subjects’ object
recognition performance did not vary as a function of the pixel-
level similarity between the test animation of the imprinted object
and the input animation of the imprinted object (Pearson cor-
relation: r = −0.17, P = 0.44). Thus, for the majority of these
newborn subjects, the outputs of object recognition generalized
well beyond the input coming in through the senses.

Exp. 2. In Exp. 2 I attempted to replicate and extend the findings
from Exp. 1. The methods were identical to those used in Exp. 1,
except subjects were presented with a different viewpoint range
of the imprinted objects during the input phase. Specifically,
subjects viewed a side viewpoint range of the imprinted object
rather than a frontal viewpoint range (see Movies S3 and S4 for
animations). This side viewpoint range increased the pixel-level
similarity between the imprinted object presented during the
input phase and the unfamiliar object presented during the test

Display WallsA B

Fig. 1. (A) The interior of a controlled-rearing chamber. The front wall
(removed for this picture) was identical to the back wall. (B) A young chicken
with one of the virtual objects.

Test Phase: Days 8-14

Input Phase: Days 1-7

Display Wall 1

Rest Period Test Trial

2 hr 4 hrstart

A

B

Display Wall 2

1 hr 3 hr

Display Wall 1
2 hr 4 hrstart

Display Wall 2

1 hr 3 hr

Fig. 2. A schematic showing the presentation schedule of the virtual objects
on the two display walls. This schedule shows a 4-h period from (A) the input
phase and (B) the test phase during Exp. 1. These subjects were imprinted to
object A in the input phase, with object B serving as the unfamiliar object in
the test phase.
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phase. Consequently, the within-object image difference was
greater than the between-object image difference on 100% of the
novel viewpoint test trials (SI Appendix, Fig. S3). This experiment
thus provided a particularly strong test of newborns’ ability to
generate invariant object representations from sparse visual input.
Subjects successfully recognized their imprinted object on 76%

(SEM, 3%) of the test trials (Fig. 3). Overall, the probability that
performance was above chance was greater than 99.99% (SI
Appendix, Fig. S7). The probability that performance was above
chance was also 99.99% or greater for all of the 11 subjects.
Across the 24 viewpoint tests, the probability that performance
was above chance was 99% or greater for 21 of the viewpoint
ranges, 90% or greater for 23 of the viewpoint ranges, and 75% or
greater for all 24 of the viewpoint ranges (SI Appendix, Figs. S11
and S12). Furthermore, as in Exp. 1, subjects’ object recognition
performance did not vary as a function of the pixel-level similarity

between the test animation of the imprinted object and the input
animation of the imprinted object (Pearson correlation: r = −0.07,
P = 0.75). These results replicate and extend the findings from
Exp. 1. Newborns can generate viewpoint-invariant representations
that support object recognition across large, novel, and complex
changes in the object’s appearance.

Exp. 3. In Exps. 1 and 2, the unfamiliar object was always pre-
sented from the same viewpoint range in the test phase, whereas
the imprinted object was presented from 12 different viewpoint
ranges. Thus, subjects might simply have preferred the more
novel test animation, without necessarily having generated an
invariant representation of the imprinted object. This alternative
explanation is unlikely because many studies have shown that
chickens prefer to spend time with their imprinted objects rather
than novel objects (24–27). Nevertheless, it was important to

Fig. 3. Results from Exps. 1–3. The Upper part of each panel shows the viewpoint range of the imprinted object presented during the input phase. The Lower
part of the panel shows the viewpoint ranges of the imprinted object presented during the test phase, along with the percentage of test trials in which the
subjects successfully distinguished their imprinted object from the unfamiliar object. Chance performance was 50%. To maximize the pixel-level similarity
between the unfamiliar object and the imprinted object, the unfamiliar object (Inset) was always presented from the same viewpoint range as the imprinted
object from the input phase in Exps. 1 and 2. In Exp. 3, the unfamiliar object and the imprinted object were presented from the same viewpoint range on each
test trial to minimize the pixel-wise image differences between the two test objects and to equate the familiarity of the test animations.
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control for this possibility within the context of the present
testing methodology. To do so, I conducted an additional ex-
periment (Exp. 3) in which the unfamiliar object was presented
from the same viewpoint range as the imprinted object on each
of the test trials (see Movies S5 and S6 for animations). This
aspect made the two test animations equally novel to the subjects
on each test trial, while also minimizing the pixel-level image
difference between the two test animations. The experiment was
identical to Exp. 1 in all other respects.
Subjects successfully recognized their imprinted object on 61%

(SEM = 4%) of the test trials (Fig. 3). Overall, the probability
that performance was above chance was greater than 99% (SI
Appendix, Fig. S8). Across the 12 subjects, the probability that
performance was above chance was 99% or greater for eight of
the subjects and 92% for another subject. The remaining three
subjects scored at or below chance level. Across the 24 viewpoint
tests, the probability that performance was above chance was
99% or greater for 7 of the viewpoint ranges, 90% or greater for
13 of the viewpoint ranges, and 75% or greater for 16 of the
viewpoint ranges (SI Appendix, Figs. S13 and S14). Performance
was at or below chance for the remaining eight viewpoint ranges.
In general, subjects were able to recognize their imprinted object
across novel viewpoint ranges, even when the test animations
were equally novel to the subjects. Furthermore, because pre-
senting the two test objects from the same viewpoint range
minimized the pixel-level image difference between the two test
animations, these results also show that newborn chickens can
distinguish between test objects that produce similar retinal
projections over time.

Change Over Time Analysis. Imprinting in chickens is subject to
a critical period, which ends approximately 3 d after birth. Thus,
subjects’ representation of their imprinted object was not ex-
pected to change over the course of the test phase (which began
7 d after birth). To test this assumption, I analyzed the propor-
tion of time subjects spent in proximity to their imprinted object
as a function of trial number (e.g., first presentation, second,
third, etc.). For all experiments, performance was high and sig-
nificantly above chance even for the first presentation of the
novel stimuli (one-tailed t tests, all P < 0.002), and remained
stable over the course of the test phase (SI Appendix, Fig. S4)
with little variation as a function of presentation number (one-
way ANOVAs, all P > 0.57). The test-retest reliability was also
high in all experiments (Cronbach’s α = all 0.89 or greater). These
analyses show that subjects’ recognition behavior was spontaneous
and robust, and cannot be explained by learning taking place
across the test phase. Newborn chickens immediately achieved
their maximal performance and did not significantly improve
thereafter.

Analysis of Individual Subject Performance. With this controlled-
rearing method it was possible to collect a large number of data
points from each newborn subject across multiple testing con-
ditions. This process allowed for a detailed analysis of the per-
formance of each individual subject. I first examined whether all
of the subjects were able to build an invariant representation
from the sparse visual input provided in the input phase. To do
so, I computed whether each subject’s performance across the
test trials exceeded chance level. Twenty-nine of the 35 subjects
successfully generated an invariant object representation (Fig. 4).
The six subjects who did not generate an invariant represen-

tation could have failed in this task for two reasons. First, the
subjects may have failed to imprint to the virtual object pre-
sented in the input phase, and thus lacked motivation to ap-
proach either of the virtual objects presented in the test phase.
Second, the subjects may have successfully imprinted to the
virtual object, but nevertheless failed to generate a viewpoint-
invariant representation of that object. To distinguish between
these possibilities, I examined whether subjects showed a pref-
erence for the imprinted object during the rest periods in the
test phase. During the rest periods, the input animation was

projected onto one display wall and a white screen was projected
onto the other display wall (Fig. 2B). All 35 subjects spent the
majority of the rest periods in proximity to the imprinting stim-
ulus (mean = 92% of trials; SEM = 1%; one-tailed Binomial
tests, all P < 10−7), including the six subjects who failed to
generate an invariant representation of the imprinted object.
Thus, it is possible to imprint to an object but fail to generate
a viewpoint-invariant representation of that object. More gen-
erally, these results suggest that there can be significant variation
in newborns’ object recognition abilities, even when raised from
birth in identical visual environments.
To test for the presence of individual differences more di-

rectly, I examined whether the identity of the subject was a pre-
dictor of object recognition performance. In all experiments,
one-way ANOVAs showed that the identity of the subject was
a strong predictor of performance: Exp. 1, F(11, 167) = 29.54,
P < 0.001; Exp. 2, F(10, 153) = 8.65, P < 0.001; and Exp. 3, F
(11,167) = 29.54, P < 0.001. Despite being raised in identical
visual environments, there were significant individual differences
in the object recognition abilities of these newborn subjects.
All 17 of the subjects who were imprinted to object A success-

fully generated a viewpoint-invariant representation, whereas
only 12 of the 18 subjects imprinted to object B successfully
did so (Fig. 4). Furthermore, all six of the unsuccessful subjects
were imprinted to the frontal viewpoint range of object B (as
opposed to the side viewpoint range). Why did subjects have
greater difficulty generating a viewpoint-invariant representation
from this particular set of visual input? Although this experiment
was not designed to address this question, a study with adult rats
who were trained to distinguish between these same two objects
indicates that object B contains greater structural complexity
than object A (29). Specifically, the frontal viewpoint range of
object B presents three fully visible, spatially separated, and
approximately equally sized lobes, whereas object A has one large
lobe and two smaller, less salient lobes. These feature differences
strongly influenced rats’ performance, causing high intersubject
variability in recognition strategies for object B and low inter-
subject variability for object A (for details, see ref. 29). It would
be interesting for future research to examine systematically which
objects and viewpoint ranges are better and which are worse for
generating viewpoint-invariant representations in a newborn vi-
sual system, because these input-output patterns could then be
used as benchmarks for assessing the accuracy of computational
models of invariant object recognition.

Discussion
This study examined whether newborns can generate invariant
object representations at the onset of visual object experience.
To do so, newborn chickens were raised in environments that
contained a single virtual object. The majority of subjects were
able to generate a viewpoint-invariant representation of this
object. This result shows that newborns can build an invariant
representation of the first object they see.
This finding does not necessarily imply that newborns build 3D

geometric representations of whole objects (28). Chickens could
generate invariant object representations by building invariant
representations of subfeatures that are smaller than the entire
object. These feature detectors might respond to only a portion
of the object, or be sensitive to key 2D, rather than 3D, features.
Indeed, many leading computational models of invariant object
recognition in humans and monkeys explicitly rely on such sub-
features (32, 33). Remarkably, at least some of these invariant
feature detectors appear to be present at the onset of visual
object experience. It will be interesting for future studies to ex-
amine the specific characteristics of these feature detectors.
This study extends the existing literature concerning chickens’

visual abilities (17–21, 34–36). Although previous studies show
that chickens are proficient at using vision to solve a variety of
tasks, they did not look at invariant object recognition specifi-
cally. Previous studies primarily used 2D shapes or simple 3D
objects as stimuli, so there was little variation in the individual
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appearances of the objects. This aspect makes it difficult to char-
acterize the representations that supported recognition, because
subjects could have used either “lower-level” or “higher-level”
strategies (28). For example, in many previous studies, chickens
could have recognized their imprinted object by encoding and
matching patterns of retinal activity. In contrast, in the present
study chickens needed to recognize their imprinted object across
large, novel, and complex changes in the retinal activity produced
by the object.
To what extent do these results illuminate the development of

invariant object recognition in humans? The answer to this ques-
tion depends on whether humans and chickens use similar neural
machinery to recognize objects. If humans and chickens use sim-
ilar machinery, then invariant recognition should have a similar
developmental trajectory in both species. Conversely, if humans
and chickens use different machinery, then invariant recognition
might have distinct developmental trajectories across species.
Although additional research is needed to distinguish between
these possibilities, there is growing evidence that humans and
chickens use similar machinery for processing sensory information.
On the behavioral level, many studies have shown that humans
and chickens have similar core cognitive abilities (reviewed by
ref. 27), such as recognizing partly occluded objects (19), track-
ing and remembering the locations of objects (34), and reasoning
about the physical interactions between objects (37). Similarly,
on the neurophysiological level, researchers have identified
common ‘cortical’ cells and circuits in mammals and birds (38–
40). Specifically, although mammalian brains and avian brains
differ in their macroarchitecture, (i.e., layered versus nuclear
organization, respectively), their basic cell types and connections

of sensory input and output neurons are nearly identical (for
a side by side comparison of avian and mammalian cortical cir-
cuitry, see figure 2 in ref. 38). For example, in avian circuitry,
sensory inputs are organized in a radial columnar manner, with
lamina-specific cell morphologies, recurrent axonal loops, and
re-entrant pathways, typical of layers 2–5a of the mammalian
neocortex. Similarly, long descending telencephalic efferents in
birds contribute to the recurrent axonal connections within the
column, akin to layers 5b and 6 of the mammalian neocortex.
Studies using molecular techniques to examine gene expression
show that these neural circuits are generated by homologous
genes in mammals and birds (40). This discovery that mammals
and birds share homologous cells and circuits suggests that their
brains perform similar, or even identical, computational oper-
ations (41).
In sum, this study shows that (i) the first object representation

built by a newborn visual system can be invariant to large, novel,
and complex changes in an object’s appearance on the retina;
and (ii) this invariant representation can be generated from ex-
tremely sparse data, in this case from a visual world containing
a single virtual object seen from a limited 60° viewpoint range.
From a computer vision perspective, this is an extraordinary
computational feat. Viewpoint-invariant object recognition is
widely recognized to be a difficult computational problem (42,
43), and it remains a major stumbling block in the development of
artificial visual systems. While many previous studies have em-
phasized the importance of visual experience in the development
of this ability (44–47), the present experiments indicate that the
underlying machinery can be present and functional at birth, in the
absence of any prior experience with objects.

Materials and Methods
Subjects. Thirty-five domestic chickens of unknown sex were tested. The
chicken eggs were obtained from a local distributor and incubated in
darkness in an OVA-Easy (Brinsea) incubator. For the first 19 d of incubation,
the temperature and humidity were maintained at 99.6 °F and 45%, re-
spectively. On day 19, the humidity was increased to 60%. The incubation
room was kept in complete darkness. After hatching, the chickens were
moved from the incubation room to the controlled-rearing chambers in
darkness with the aid of night vision goggles. Each chicken was raised singly
within its own chamber.

Controlled-Rearing Chambers and Task. The controlled-rearing chambers
measured 66 cm (length) × 42 cm (width) × 69 cm (height) and were con-
structed from white, high-density plastic. The display walls were 19′′ liquid
crystal display monitors (1,440 × 900 pixel resolution). Food and water were
provided within transparent holes in the ground that measured 66 cm
(length) × 2.5 cm (width) × 2.7 cm (height). The floors were wire mesh and
supported 2.7 cm off the ground by thin, transparent beams; this allowed
excrement to drop away from the subject. Subjects’ behavior was tracked by
microcameras and Ethovision XT 7.0 software (Noldus Information Tech-
nology) that calculated the amount of time chickens spent within zones
(22 cm × 42 cm) next to the left and right display walls.

On average, the virtual objects measured 8 cm (length) × 7 cm (height) and
were suspended 3 cm off the floor. Each object rotated through a 60°
viewpoint range about an axis passing through its centroid, completing the
full back and forth rotation every 6 s. The objects were displayed on a uni-
form white background at the middle of the display walls. All of the virtual
object stimuli presented in this study can be viewed in Movies S1–S6.

In the input phase, the imprinted object was displayed from a single 60°
viewpoint range and appeared for an equal amount of time on the left and
right display wall. The object switched walls every 2 h, following a 1-min
period of darkness. One-half of the subjects were imprinted to object A
(with object B serving as the unfamiliar object), and the other one-half of
the subjects were imprinted to object B (with object A serving as the un-
familiar object) (Fig. 3). In the test phase, subjects received one 20-min test
trial every hour, followed by one 40-min rest period. During each rest pe-
riod, the input animation from the input phase appeared on one display
wall and a white screen appeared on the other display wall. The 12 view-
point ranges were tested 14 times each within randomized blocks over the
course of the test phase.

These experiments were approved by The University of Southern
California Institutional Animal Care and Use Committee.
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Fig. 4. Performance of each individual subject (ordered by performance).
The graphs show the total number of correct and incorrect test trials for
each subject across the test phase. P values denote the statistical difference
between the number of correct and incorrect test trials as computed
through one-tailed binomial tests.
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