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Systematic studies of phenotypic diversity—required for under-
standing evolution—lag behind investigations of genetic diversity.
Here we develop a quantitative approach to studying behavioral
diversity, which we apply to swimming of the ciliate Tetrahymena.
We measure the full-lifetime behavior of hundreds of individual
organisms at high temporal resolution, over several generations
and in diverse nutrient conditions. To characterize population di-
versity and temporal variability we introduce a unique statistical
framework grounded in the notion of a phenotypic space of be-
haviors. We show that this space is effectively low dimensional
with dimensions that correlate with a two-state “roaming and
dwelling” model of swimming behavior. Temporal variability over
the lifetime of an individual is correlated with the fraction of time
spent roaming whereas diversity between individuals is correlated
with the speed of roaming. Quantifying the dynamics of behav-
ioral variation shows that behavior over the lifetime of an individ-
ual is strongly nonstationary. Analysis of behavioral dynamics
between generations reveals complex patterns of behavioral her-
itability that point to the importance of considering correlations
beyond mothers and daughters. Our description of a low-dimen-
sional behavioral space should enable the systematic study of the
evolutionary and ecological bases of phenotypic constraints. Fu-
ture experimental and theoretical studies of behavioral diversity
will have to account for the possibility of nonstationary and envi-
ronmentally dependent behavioral dynamics that we observe.
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Phenotypic diversity is the substrate on which natural selection
acts and therefore plays a defining role in evolution. Recent

technological innovations have dramatically improved measure-
ments of genetic diversity; however, our understanding of phe-
notypic heterogeneity lags far behind, mainly because defining
and measuring phenotypes pose a significant challenge.
A quantitative study of phenotypic diversity rests on the con-

struction of phenotypic spaces. To construct a space of pheno-
types requires defining phenotypic states and a measure of
similarity or distance between those states. Phenotypic spaces
have been constructed for morphological phenotypes, where
states are quantified as shapes and distances between shapes are
measured via spatial transformations (1). Examples of pheno-
typic spaces for morphologies include bird beaks and feet (2, 3),
seashells (4), plants (5), and bat wings (3).
Remarkably, for the small number of morphological pheno-

types where phenotypic spaces have been constructed, it has
been found that these spaces are frequently low dimensional. For
example, within the space of all possible shapes of seashells only
a small number actually arise in nature (4). Therefore, low-
dimensional phenotypic spaces capture constraints on the diversity
of possible phenotypes.
Given the role of phenotypic diversity in evolution, such

constraints may reflect the natural history of organisms adapting
to their environment (5) such as a Pareto optimal set of solutions
corresponding to phenotypic trade-offs between tasks (3). In
addition, low-dimensional phenotypic spaces can simplify our
understanding of the genetic or epigenetic basis of variation by

guiding a systematic search for the genomic basis of variation
along specific phenotypic dimensions (5).
Despite the potential for phenotypic spaces to provide general

insights into evolution and genetics, few phenotypic spaces, other
than those for morphologies, have been constructed (6). This
limitation is particularly true for behavioral phenotypes where
defining states and measuring variation are difficult.
Behavioral states are often defined by stereotyping, where an

organism is observed for a small fraction of its lifetime and be-
haviors are defined manually. This approach has proved powerful
for understanding the mechanistic basis of specific behaviors, for
example, runs and tumbles in motile bacteria (7) or omega turns
in worms (8). However, full-lifetime measurements of swimming
behavior in bacteria have shown that stereotyping often fails to
capture the diversity of behaviors exhibited over the lifetime of
an individual or between individuals in a population (9, 10).
Therefore, to construct a phenotypic space of behaviors requires
(i) full-lifetime measurements of behavior for many individuals
and (ii) a flexible definition of behavioral states and a measure of
similarity between those states.
Here we measure the full-lifetime swimming behavior for

hundreds of single Tetrahymena cells. We establish a flexible
definition of behavioral states and explicitly construct a pheno-
typic space of behaviors. Our central findings are, first, that the
behavioral space for this organism is effectively low dimensional
and that constraints on behavioral diversity emerge within this
low-dimensional behavioral space; and, second, the dynamics of
behavioral variation within this space are complex, exhibiting
nonstationarity over the lifetime of an individual as well as in-
tricate patterns of behavioral heritability between individuals.

Results
Swimming Behavior of Tetrahymena. In an experiment, a single
Tetrahymena cell is placed in a microfluidic chamber (11) filled
with growth medium (Fig. 1A), and its movements are recorded
using a custom video microscope (Movies S1 and S2). Our
measurements capture swimming behavior through two rounds
of division, yielding full-lifetime trajectories for six individuals.
We refer to the six individuals arising from a single progenitor as
a “family”. The depth of microfluidic chambers is chosen so that
the motion of Tetrahymena cells is essentially 2D without im-
pairing motility (Fig. S1). For Tetrahymena the Reynolds number
is ∼10−3 so viscous effects dominate inertia and all cellular
motion is active. An automatic tracking algorithm retains the
identity of each cell and the resulting data are 2D trajectories
(Fig. 1B). We present behavioral measurements for wild-type
(WT) Tetrahymena thermophila in a variety of environmental
conditions and Tetrahymena borealis in a single condition.
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Defining Behaviors and a Similarity Measure. We developed a sta-
tistical description of behavior based on minimal assumptions
about the structure of behavioral variability. Our method,
explained in Fig. 1, is based on distributions of speed ðjvjÞ and
angular velocities (ω) rather than absolute locations because the
environment is homogenous and isotropic, excluding the bound-
aries. We divide full-lifetime trajectories into nonoverlapping
windows of length tw (2–4 min, Fig. S2), and within each window
we measure the probability distribution of ðjvj;ωÞ pairs. The
resulting histograms PNðtÞ (Fig. 1F) represent the behavior of
individual N at time t. Constructing histograms is an approxima-
tion that allows us to quantify behavior without stereotyping while
retaining information about temporal changes of jvjand ω on
timescales longer than tw. We define the similarity of two behav-
iors as the distance between two histograms measured by the
Jensen–Shannon divergence DJSðPjQÞ (12). The Jensen–Shannon
divergence evaluates the overlap between two probability dis-
tributions (P and Q) and yields 0 for identical distributions and 1
for distributions that do not overlap.

Measuring Temporal and Population Behavioral Diversity. Using our
flexible definitions of behaviors tw and distance ðDJSÞ, we char-
acterize the diversity of swimming behaviors through time and

between individuals. To study behavioral variation in time for
one individual we compare all behaviors pairwise throughout the
lifetime of an individual (Fig. 2 A and B). Pairwise comparisons
between histograms result in a matrix like the one shown in
Fig. 2B, which we call a changeability matrix and denote by
CNðt; t′Þ=DJSðPNðtÞjPNðt′ÞÞ. The structure apparent in the change-
ability matrix in Fig. 2B reflects the variation in behavior over
the lifetime of this individual. For example, it is clear that the
swimming behaviors just before and after cell division are very
different from the behavior during the rest of the lifetime. In-
deed, near the beginning and end of its life Tetrahymena swims
more slowly than during the rest of its lifetime (Fig. 1D, Upper).
Although changes in behavior near division events are the most
obvious variation during a lifetime of each individual, a range of
variations can be uncovered by analysis of the changeability
matrix as we discuss below.
By measuring DJS for behaviors exhibited by different indi-

viduals we capture individuality. To simplify the presentation
of individuality we divide each lifetime into a fixed number of

Fig. 1. Full-lifetime tracking of swimming behavior in T. thermophila and
defining behavioral states. (A) An example of a microfluidic device used
in this study. Tetrahymena are loaded into the circular central chamber
(Experimental Procedures). (B) The 4-h full-lifetime swimming trajectory of
an individual confined to a chamber like the one shown in A is shown in
gray, and a 6-min portion is divided into three segments of equal duration
(blue, red, green). Full trajectories of (x, y) coordinates (B) are transformed
into a time series of speeds and angular velocity ðjvj;ωÞ. (C) A short segment
of trajectory illustrates the calculation of jvj and ω. (D) The result of such
a transformation for an entire time series. (E) An expanded view of the jvj and
ω time series for the colored segments of the trajectory in B and D. (F) His-
tograms of jvj and ω for each of the three segments of swimming trajectory in
E. The faster, straighter swimming in the blue segment is apparent as the
narrow peak of density centered around ω∼ 0 (rad/s) and jvj∼ 375ðμm=sÞ.
Although the slower, higher tortuosity swimming behavior in the red and
green segments is evident as the density below 200μm=s with a greater range
of ω. For a segment centered at time t of individual N, its histogram is denoted
PNðtÞ. We refer to each histogram as a “behavioral state”. Color bars reflect
the density in each histogram. Differences between behavioral states are
measured by the Jensen–Shannon divergence, denoted DJSðPNðtÞjPNðt’ÞÞ. For
the dissimilar blue and red segments DJS =0:44 whereas for the more similar
red and green segments DJS = 0:08.

Fig. 2. Measuring temporal and population-level behavioral diversity. (A)
To illustrate the construction of matrices measuring behavioral diversity the
three behavioral states from Fig. 1F are reproduced. A 3 × 3 matrix is con-
structed where each entry of the matrix represents a DJS measurement be-
tween two behavioral states. The corresponding DJS values are shown in
white and reflected by the color (color bar below B applies to all panels). (B)
Constructing PNðtÞ histograms from nonoverlapping segments of a full-
lifetime trajectory and calculating DJS between each pair of behavioral states
yields a changeability ðCNðt; t′ÞÞmatrix that describes temporal diversity over
the lifetime of an individual. Note that the 3 × 3 matrix in A is contained
within this matrix (gray lines). The redundant entries in the lower triangle of
this matrix are opaque. In C we extend the calculation to capture behavioral
diversity between two individuals. Each lifetime is divided into a fixed
number of behavioral states (n = 100 in this case) by varying tw for each
individual. These states are indexed by s rather than t. With this construction
we compute DJS between behavioral states arising from the same individual,
as in A and B, and from different individuals. The resulting individuality
matrix, IN;Mðs; s′Þ for a pair of individuals, is shown in C. Note that the
changeability matrix from C resides on the block diagonal of this in-
dividuality matrix, highlighted in gray. The upper right block of this matrix is
composed of DJS values computed between behaviors exhibited by different
individuals. (D) The calculation is extended to measure individuality for 30
individuals in the same chemical environment (1xR). The box in the upper
left indicates the individuality matrix in C.
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behaviors (n) by varying tw between individuals. For the data
presented here n = 100 but our results are unchanged for 25 < n <
100 (Fig. S3). We indicate this difference by indexing behaviors by
s rather than t with s= t=TLT , where TLT is the lifetime. We can
thus compare behaviors between individuals N and M by com-
puting an individuality matrix: IN;Mðs; s′Þ= DJSðPNðsÞjPMðs′ÞÞ.
An example of an individuality matrix for two individuals is given
in Fig. 2C. Note that for N = M we recapitulate the changeability
matrix for individual N (Fig. 2C, gray box). We extend this cal-
culation to construct a large individuality matrix for 30 WT
T. thermophila individuals in a rich growth medium environment
[1× Rich (1xR), Fig. 2D)]. The matrix in Fig. 2D captures all
behavioral diversity present in a population of 30 individuals.

Dimensionality Reduction of Behavioral Space. The individuality
matrix in Fig. 2D describes the space of possible behaviors for
members of a population. Here we ask: how many dimensions
are needed to adequately capture the behavioral variation in
Fig. 2D? We might expect behavioral diversity to be high di-
mensional, described by many parameters. However, it may be
that diverse behaviors are generated in a small number of ways
and that the behavioral space is low dimensional.
We ask whether behaviors lie in a low-dimensional space by

using metric multidimensional scaling (MDS) (13, 14) to repre-
sent behaviors as points in a few dimensions where the Euclidean
distances between those points correspond as closely as possible
to behavioral distances ðDJSÞ. Metric MDS numerically finds
a low-dimensional “embedding” of an individuality matrix. The
success of an MDS embedding is measured by computing the
error incurred by representing behaviors in a few dimensions or
the “stress”. Evaluating the dimensionality of an individuality
matrix using MDS is accomplished by iteratively embedding the
data in an increasing number of dimensions and asking how many
dimensions are necessary to obtain a low-stress embedding. Al-
though rigorously determining the intrinsic dimensionality of the

data is challenging, a low-stress embedding indicates that the data
can reliably be represented in a low-dimensional Euclidean space.
Applying MDS to the individuality matrix shown in Fig. 2D

reveals, remarkably, that two dimensions describe the diversity
captured by this matrix (Fig. 3 A and F). We conclude the di-
versity of swimming behavior of WT T. thermophila in rich me-
dium (1xR) as measured by PNðsÞ is low dimensional. We have
shown that the low-dimensional representation of behavioral
diversity that we find is not a trivial consequence of our analytical
method. For example, we are able to construct artificial trajec-
tories that require many more embedding dimensions (Fig. S4).
Similarly, the low dimensionality of the observed diversity of
behaviors does not seem to depend on the particular choice of
the similarity metric or the MDS embedding method. (Fig. S5
and Table S1).
The basic features of behavior are clear from the embedding

shown in Fig. 3A. First, we find two distinct behavioral regions:
one corresponding to the slow swimming behavior just before
and after cell divisions (upper left) and another corresponding to
the rest of the cells’ lifetime (large cloud, center).

Dimensionality Reduction and a Two-State Model of Behavior. In
general there is no systematic way to relate the MDS dimensions
to the behavior of Tetrahymena. However, we can look for cor-
relations between the location of a behavior in a given dimension
and a parameter of interest. To do this we have examined the
properties of behaviors ðPNðsÞÞ as a function of where they lie in
the embedding (Fig. 3 B–E). Fig. 3B shows an example of a near
division behavior characterized by very slow swimming, whereas
Fig. 3 C–E shows examples of nondivision behaviors that occur
during the bulk of the lifetime. We find that behaviors charac-
terized by ballistic swimming and rapid explorations of the
chamber (“roaming”) have large positive values along MDS
dimension 1 (Fig. 3 D and E). Conversely, behaviors that are
characterized by slow swimming, sharp turning, and restricted

Fig. 3. Behavioral diversity is low dimensional with dimensions that correspond to a two-state model of behavior and describe temporal and population
diversity, respectively. (A) A multidimensional scaling (MDS) embedding in two dimensions of the individuality matrix for 30 individuals in 1xR (Fig. 2D). Each
point in A represents a behavioral state and the Euclidean distances between points approximate the DJS values between each state (Fig. 2D). (F) two
dimensions are sufficient to make the correspondence between Euclidean distances and DJS a good one. We conclude that behavioral diversity is low di-
mensional (SI Experimental Procedures). (B–D) Examples of two behavioral states and corresponding trajectories (Insets). B is characteristic of behavior near
divisions and the cloud of points in the upper left of A corresponds to division behaviors. (C and D) Behavioral states at low and high values of MDS dimension
1, respectively. C is representative of localized “dwelling” behavior and D shows ballistic “roaming” behavior. MDS dimension 1 therefore corresponds to the
fraction of time a given behavioral state spends roaming (SI Experimental Procedures). E shows a behavioral state at high MDS dimension 1 and MDS di-
mension 2 and corresponds to roaming behavior as well, but with a higher speed than in D (arrows), and thus MDS dimension 2 corresponds to the speed of
roaming. G plots 100 behavioral states for two individuals with their marginal distributions above and to the right. The variance along MDS dimension 1 is
larger than along MDS dimension 2 for both individuals, indicating that temporal diversity (over a lifetime) occurs primarily in MDS dimension 1. Differences
between individuals occur primarily along MDS dimension 2 (compare overlap of marginal distributions). H shows an MDS embedding like the one in A except
for 171 individuals, 30 WT T. thermophila (TtWT) individuals in each of five environmental conditions and 21 T. borealis (Tb) individuals in 1xR. TtWT:1xR and
Tb:1xR populations are represented by contours; other TtWT populations are included but not shown for clarity. The 95% contour for all 171 individuals is
shown in gray. I shows the stress as a function of the number of embedding dimensions.
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exploration (“dwelling”) reside at large negative values along
MDS dimension 1 (Fig. 3C). Variations between behaviors in the
speed of roaming are reflected along MDS dimension 2, with
faster roaming having larger values (Fig. 3E).
Therefore, with the exception of behaviors associated with

division events, MDS dimension 1 correlates with the fraction of
time a behavior spends roaming, and MDS dimension 2 corre-
lates with the roaming speed. This suggests that a two-state
roaming–dwelling behavioral model applied to other organisms
(15) is appropriate for T. thermophila. We classified behaviors,
using a mixture model clustering procedure (16) to determine
the fraction of each behavior spent roaming and the speed of
roaming. With this model we are able to quantitatively demon-
strate the correspondence between the two MDS dimensions in
Fig. 3A and a dwelling–roaming model of behavior (Table S2 and
Fig. S6).

Temporal Diversity and Population Diversity Are Largely in Separate
Dimensions. Fig. 3G shows the 100 points associated with each of
two individuals from the population in Fig. 3A. This represen-
tation of the data reveals that within each individual variation
occurs primarily along MDS dimension 1 and between individ-
uals diversity occurs primarily along MDS dimension 2. We find
that this trend is consistent across the whole population of WT
T. thermophila individuals in 1xR medium. Thus, the two MDS
dimensions are associated with changeability and individuality,
respectively, and this correlation is strong (correlation coefficient
>0.7) and holds statistically for all individuals in the embedding
(Table S2). We conclude that individuals vary over their lifetime
primarily in the fraction of time spent roaming and less in the
speed with which they roam, whereas variation between indi-
viduals arises mainly in the speed of roaming.

Generality of Low-Dimensional Behavioral Diversity. The low-
dimensional representation of behavioral diversity in T. thermo-
phila shown in Fig. 3A motivated us to ask whether behavioral
diversity in this organism, and even its close relatives, can be
captured in a small number of dimensions. Specifically, does the
dimensionality of behavioral diversity increase when cells are
subject to different environments? Or is the diversity we observed
for WT T. thermophila in the 1xR environment representative of
the behavioral repertoire for this organism? To address this we
asked whether the low-dimensional representation of behavioral
diversity that we found for 30 individuals in a single environment
was robust to changes in the environmental conditions and how
the dimensionality of behavioral diversity was altered if we in-
cluded measurements of a closely related species.
We measured the full-lifetime behavior for an additional 120

single cells: 30 WT T. thermophila individuals, five families of six
individuals, in each of an additional four conditions. We chose
conditions that represent diverse chemical and physical pertur-
bations. First, we doubled the nutrient levels in the rich medium
(2xR). Second, for T. thermophila, particulates are important for
food vacuole formation and necessary for fast growth (17), so we
filtered the 1xR medium of particles larger than 0.2 μm and
supplemented it with polymer beads (1xB). Third, because cil-
iates feed on bacteria, we grew Escherichia coli to high density in
1xR and then sterilized the medium and used this “bacterized”
medium (Bac). Finally, we measured 30 individuals in a synthetic
medium that supports fast growth [chemically defined medium
(CDM)] (18). To assay behavioral diversity more broadly within
the genus, we measured 21 T. borealis individuals in the 1xR
medium. We chose T. borealis as a representative species of the
Tetrahymena genus that was still readily cultured in the labora-
tory (T. borealis can be grown in 1xR).
From these data we constructed an individuality matrix com-

posed of 171 full lifetimes. This matrix contains all ∼1.4 × 107
DJS measurements between 17,100 behavioral states. We per-
formed dimensionality reduction by MDS on this matrix and
found, remarkably, that although new regions of behavioral
space are explored, the diversity exhibited by all 171 individuals
is also approximately two dimensional (Fig. 3 H and I). Further,

the correlation between our low-dimensional representation of
diversity and a two-state model of behavior is maintained for
individuals in variable environments and T. borealis. We also find
that the correspondence between MDS dimension 1 and change-
ability and MDS dimension 2 and individuality is maintained. We
conclude that the low-dimensional behavioral space discovered
here applies to diverse environmental conditions and both WT
T. thermophila and T. borealis.

Dynamics in Behavioral Space. Here we explore the dynamics of
behavioral variation within the behavioral space in Fig. 3. We
study behavioral dynamics within the lifetime of an individual
and between individuals in a population.

Nonstationary Behavioral Dynamics. The changeability matrix
defines behavioral variation over the lifetime of an individual.
In Fig. 4 A–D we show changeability matrices for four WT
T. thermophila individuals, two in CDM (Fig. 4 A and B) and two
in 1xR (Fig. 4 C and D). The dynamics are strongly heteroge-
neous and nonstationary, with qualitative changes in behavioral
dynamics even for two isogenic individuals in the same chemical
environment. The WT T. thermophila:CDM individual in Fig. 4A
exhibits slow variation in its behavior over a period of 6 h
whereas the individual in Fig. 4B exhibits multiple abrupt be-
havioral transitions. The examples in Fig. 4 A and B contrast with
those in Fig. 4 C and D, where behavioral variation is stochas-
tically variable on a shorter timescale. These examples show that
behavioral dynamics over the lifetime of an individual are non-
stationary and that this nonstationarity varies with the chemical
environment of the cell and the individual observed.
Despite the nonstationarity of behavior we can measure a

timescale of behavioral variation by computing a quantity analo-
gous to an autocorrelation function, which we term the behavioral
memory:

MNðτÞ= 1−
DjsðPNðtÞjPNðt+ τÞÞ

C
N :

Memory measures the timescale over which behaviors become
dissimilar. Behavioral memory is plotted in Fig. 4 E and F for all
WT T. thermophila:CDM individuals and WT T. thermophila:1xR
individuals, respectively. As is evident in Fig. 4 E and F, the
timescale of behavioral nonstationarity strongly depends on the
environmental condition, and memory quantifies this difference.
Indeed, we found that the memory of behavior can vary between
9% and 28% of the lifespan (Table S2). However, despite the
dynamic heterogeneity observed between individuals, we find
that the memory is consistent within individuals in a given envi-
ronmental condition—that is, on average WT T. thermophila:
CDM individuals exhibit longer memory than WT T. thermophi-
la:1xR individuals (Fig. 4 E and F). Thus, memory quantifies the
difference in timescale that is apparent in Fig. 4 A–D.

Heritability. By comparing dissimilarities between individuals of
known relatedness we quantify behavioral variation between
generations. Each group of 30 individuals in a given environ-
mental condition is composed of five families of six “related”
individuals. All progenitors from the same condition come from
the one batch culture, so their relatedness is not known, but with
very high probability (>0.999), they are separated by ≳ 10 gen-
erations—we refer to them as “unrelated” individuals. We define
heritability as H = hDjsðPNðsÞjPMðs′ÞÞiunrel − hDjsðPIðsÞjP Jðs′ÞÞirel,
where the 〈▪〉 denotes the median behavior for unrelated (N, M)
or related (I, J) individuals. Smaller distances between related
individuals than between unrelated individuals indicate heritable
behavior, and we observe conditions in which swimming behavior
is heritable (CDM) and conditions where behavior is not heri-
table (Bac, “Rel” row in Fig. 4H). Control experiments indicate
that swimming in the same chamber does not cause the herita-
bility we observe (Fig. S7).
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Heritability is similar to behavioral memory, but it extends the
idea to include changes over multiple generations; thus strong
heritability indicates that behavioral similarity is slowly lost with
successive generations. Conversely, in conditions where herita-
bility is weak (Bac) behaviors can decorrelate, on average, within
a single generation.
Closer examination reveals that the structure of behavioral

heritability in Tetrahymena is remarkably complex. Within
a family of six individuals we distinguish different types of re-
latedness—“mother”/“daughters” (M/D), “sisters” (S), “cousins”
(C), and “aunts”/“nieces” (A/N) (Fig. 4H) (we use anthropo-
morphic terms for convenience, not to connote their meaning for
sexually reproducing organisms). A surprising pattern of herita-
bility emerges if we compare the behavior of different types of
related individuals with the behavior of unrelated individuals
(Fig. 4H). For instance, in addition to CDM, mother-to-daughter
heritability is noticeable in 1xR, but is absent in Bac. In Bac,
sisters behave more similarly to each other than to their mothers
or unrelated cells (third S row in Fig. 4H). Variation in the
structure of the rows of Fig. 4H shows that the transmission of
behavior between generations depends on the environment and

that heritability can be present in a population as correlations
between mothers and daughters as well as cousins or sisters.

Discussion
Measuring and Quantifying Behavioral Diversity.We have measured
swimming behavior for hundreds of individual Tetrahymena and
defined behavior using a flexible statistical framework. The un-
derpinnings of our method are (i) a microfluidic-based method for
rapidly measuring the full-lifetime behavior of many single cells
and (ii) a flexible definition of behavior that allows us to measure
similarities (distances) between behaviors.
Our analytical approach allows us to quantitatively charac-

terize the behavioral diversity captured by our measurement. Most
previous methods for quantifying behavior are inappropriate for
this task because they model motion as a stationary stochastic
process (19, 20). Although such models can describe behavior over
short timescales or under specific conditions, they cannot capture
nonstationary behavior that occurs over longer timescales and for
individuals in diverse conditions. However, Gallagher et al. recently
studied Caenorhabditis elegans behavior, using hidden Markov
models (HMMs), and revealed behavioral variation in worms sim-
ilar to that described here (21). Our method provides comple-
mentary insights while requiring significantly less parameterization.
Due to the large number of parameters required for modeling com-
plex behavioral dynamics using HMMs, we found this approach to
be unsatisfactory for our data (SI Experimental Procedures).
With our approach, we have revealed two important aspects of

behavioral diversity. First, the behavioral diversity in Tetrahymena
can be described in a low-dimensional behavioral space. Second,
within this space, behavioral dynamics are strongly heterogeneous
on timescales from minutes to multiple generations.

The Dimensionality of Behavioral Diversity. Using dimensionality
reduction we found that there are a few biologically relevant
dimensions that govern behavioral diversity in a variety of envi-
ronments and for two species of Tetrahymena. Our statistical
framework has permitted us to infer behavioral constraints
without a priori choosing the set of behaviors that are observ-
able. Our results provide a striking example of constraints
emerging from a statistical description of phenotypic data.
The low-dimensional phenotypic description discovered here

might shed light on the origins of phenotypic diversity. Dwelling
and roaming behaviors are often associated with “exploration”
and “exploitation” of environmental resources, respectively. Our
discovery that the speed of roaming varies between individuals
but not over the lifetime of one individual might reflect a dis-
persal strategy in this organism. Although testing such a hy-
pothesis directly is challenging, this aspect of behavior might
reflect the natural history of Tetrahymena, a possibility that could
be explored by asking whether such constraints apply to similar
organisms. Indeed, our data indicate that this constraint is po-
tentially present more broadly in the Tetrahymena genus. Fur-
ther, similar behavioral states in C. elegans suggest that roaming,
dwelling, and slow motility may reflect broadly applicable be-
havioral constraints (21). Finally, for Tetrahymena, variation in
the speed of roaming between individuals might reflect variation
in the number of ciliary rows, providing a link between mor-
phological variation and behavioral adaptation.
The microbial context of our study means that the adaptive

value of behavioral variation can be studied using experimental
evolution. In this context, our approach is equipped to address
how behaviors evolve at the individual and population levels. For
example, is population-level diversity in the speed of roaming
maintained under selection for faster swimming or not? An-
swering such questions could shed light on the role of constrained
behavioral diversity in adaptation.
In addition, it will be intriguing to study the mechanistic impli-

cations of these behavioral constraints. With the characterization
of phenotypic space provided here, we can now systematically ex-
plore how physical, genetic, or epigenetic variation drives behav-
ioral diversity in different directions in behavioral space.

Fig. 4. Behaviors are dynamically heterogeneous over a lifetime and be-
tween generations. (A–D) Examples of changeability matrices from four WT
T. thermophila (TtWT) individuals in two conditions—two from CDM and
two from 1xR. Color scale for all matrices is shown to the right of A and the
dimensions of each matrix are time. Because these matrices are symmetric,
redundant data are gray. E and F show the memory MNðτÞ, defined in the
main text, for populations (30 individuals) in CDM and 1xR, respectively.
Black lines indicate the median (across the population) and dashed lines the
0.1 and 0.9 quantiles. Data for a short time before and after divisions are
discarded for this calculation. G shows a schematic individuality matrix for
a family of six (“related”) individuals arising from a single progenitor. Her-
itability (H) is defined in the main text as the difference in median in-
dividuality between related and unrelated individuals (from different
families). The difference between these two quantities is shown in the row
labeled “Rel” in H for the five conditions where the TtWT strain was mea-
sured. The calculation is repeated, subdividing related individuals into
mother–daughter pairs (M/D), sisters (S), aunt–niece (A/N) pairs, and cousins
(C). This subdivision is shown schematically in G for a family of six individuals;
the phylogeny of a family is shown to the left and above the individuality
matrix. Each row of the heritability matrix shown in H corresponds to one
such subdivision labeled at the lower right. All measurements of heritability
are significant at the 5% level, using a Wilcoxon rank sum test.
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Finally, we note that by representing the phenotypic space of
behaviors in a Euclidean space we have assumed that behavioral
space is a metric space. However, phenotypic spaces need not be
metric (22). Although we cannot explicitly test this assumption,
we find that our conclusions are robust to using nonmetric MDS
where only rank orders of behavioral similarities are preserved
(Table S1 and Fig. S3). Whether the behavioral space is metric
remains an interesting avenue for future work.

Behavioral Dynamics. Within the low-dimensional space of be-
haviors we have shown that behavioral dynamics over the life-
time of an individual and between individuals are nonstationary.
Further, the structure of behavioral nonstationarity is a strong
function of the environment (Fig. 4 A–F). This result has im-
portant consequences for behavioral measurements and for un-
derstanding behavioral adaptation.
Our measurement of behavioral memory provides a first step

to quantifying behavioral nonstationarity and sets a lower bound
on the duration of measurements required to capture dynamics.
More importantly, given the variation in behavioral dynamics we
observe with changes in the environment (Fig. 4 A–D), it is clear
that an understanding of how organisms alter their behavior
in time to respond to the environment requires methods for
studying nonstationary dynamics.
Our measurements of heritability extend the notion of com-

plex behavioral dynamics from individuals to populations. As
a consequence of our observation that behavioral heritability is
complex and strongly environmentally dependent, it is clear that
considering correlations between cells of different relatedness,
beyond just mothers and daughters, is important for under-
standing how information transmitted between generations can
structure diversity in a population. Previous studies showed that
generation times and gene expression levels could be passed
between generations in bacterial and mammalian cell lineages
(23–25). Our measurement extends these results to behavior in
a microbe and demonstrates the environmental contingency of this
process. Note that our definition of heritability measures behav-
ioral similarity between individuals in contrast to the common
notion of heritability in genetics that captures how much pheno-
typic variation is explained by genetic variation.
It will be interesting to determine whether the nonstationarity

in behavioral dynamics and the complex heritability we observe

are selected properties of behavior in Tetrahymena. We expect
that a systematic study of behavioral variation with changing
environmental parameters will shed light on the role of selection
in shaping the dynamics of behavioral variation.
Taken together, our results show that behavioral space can be

low dimensional and within that space behavioral dynamics are
complex, especially when comparing dynamics in different
environments. Our work should enable systematic experimental
and theoretical studies of how behavioral diversity permits
microbes to adapt their behavior over evolutionary timescales.

Experimental Procedures
Measurement and Tracking. For 48 h before an experiment Tetrahymena are
grown at room temperature in the medium in which their behavior is mea-
sured. Cultures were inoculated from long-term soybean stocks. Microfluidic
polydimethylsiloxane (PDMS) chambers were constructed using standard soft
lithography techniques (Fig. 1A). At the beginning of an experiment a single
cell is loaded into a circular chamber that is 240 μm deep and 4.9 mm in di-
ameter. The chamber is illuminated by a light-emitting diode and imaged at
15 frames per second through a relay lens, using a commercial webcam image
sensor (Logitech). Five microscopes are operated in parallel, and in each
chamber the cells are allowed to complete three rounds of division. The
temperature during the experiment was held constant at 23 °C ± 0.02 °C.
Because the volume of a cell is ∼ 106 times smaller than the volume of the
chamber, nutrients are not depleted during the experiment. Tracking is per-
formed after recording using a custom Matlab code, which follows closely
previous work (26) (SI Experimental Procedures).

Data Analysis. All analysis was performed with Matlab. Pðjvj;ωÞ histograms
were constructed using an optimal binning method (27) and DJS estimates
were corrected for bias analytically (SI Experimental Procedures). Metric mul-
tidimensional scaling results for the embedding studied in Fig. 3 were robust
to repeated runs of the gradient descent algorithm with random initial
conditions and simulations demonstrating the nontriviality of the low-
dimensional embedding (discussed in SI Experimental Procedures). The classi-
fication of behavioral states into a two-state model was accomplished by
a Gaussian mixture model clustering procedure (SI Experimental Procedures).
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