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A framework for low-order predictive statistical modeling and un-
certainty quantification in turbulent dynamical systems is devel-
oped here. These reduced-order, modified quasilinear Gaussian
(ROMQG) algorithms apply to turbulent dynamical systems in
which there is significant linear instability or linear nonnormal
dynamics in the unperturbed system and energy-conserving non-
linear interactions that transfer energy from the unstable modes
to the stable modes where dissipation occurs, resulting in a statis-
tical steady state; such turbulent dynamical systems are ubiquitous
in geophysical and engineering turbulence. The ROMQG method
involves constructing a low-order, nonlinear, dynamical system for
the mean and covariance statistics in the reduced subspace that
has the unperturbed statistics as a stable fixed point and optimally
incorporates the indirect effect of non-Gaussian third-order statis-
tics for the unperturbed system in a systematic calibration stage.
This calibration procedure is achieved through information involv-
ing only the mean and covariance statistics for the unperturbed
equilibrium. The performance of the ROMQG algorithm is assessed
on two stringent test cases: the 40-mode Lorenz 96 model mim-
ickingmidlatitude atmospheric turbulence and two-layer baroclinic
models for high-latitude ocean turbulence with over 125,000
degrees of freedom. In the Lorenz 96model, the ROMQG algorithm
with just a single mode captures the transient response to random
or deterministic forcing. For the baroclinic ocean turbulence mod-
els, the inexpensive ROMQG algorithm with 252 modes, less than
0.2% of the total, captures the nonlinear response of the energy,
the heat flux, and even the one-dimensional energy and heat
flux spectra.

dynamical systems with many instabilities | nonlinear response and
sensitivity | reduced-order modified quasilinear Gaussian closure

Turbulent dynamical systems are characterized by both a large
dimensional phase space and a large dimension of insta-

bilities (i.e., a large number of positive Lyapunov exponents on
the attractor). They are ubiquitous in many complex systems
with fluid flow such as, for example, the atmosphere, ocean, and
coupled climate system, confined plasmas, and engineering tur-
bulence at high Reynolds numbers. In these, linear instabilities
are mitigated by energy-conserving nonlinear interactions that
transfer energy to the linearly stable modes where it is dissipated,
resulting in a statistical steady state. Uncertainty quantification
(UQ) in turbulent dynamical systems is a grand challenge where
the goal is to obtain statistical estimates such as the change in
mean and variance for key physical quantities in the nonlinear
response to changes in external forcing parameters or uncertain
initial data. These key physical quantities are often characterized
by the degrees of freedom that carry the largest energy or vari-
ance, and an even more ambitious grand challenge is to develop
truncated low-order models for UQ for a reduced set of im-
portant variables with the largest variance. This is the topic of the
present paper.
Low-order truncation models for UQ include projection of the

dynamics on leading-order empirical orthogonal functions (EOFs)
(1), truncated polynomial chaos (PC) expansions (2–4), and dy-
namically orthogonal (DO) truncations (5, 6). Despite some success
for these methods in weakly chaotic dynamical regimes, concise

mathematical models and analysis reveal fundamental limitations
in truncated EOF expansions (7, 8), PC expansions (9, 10), and DO
truncations (11, 12), owing to different manifestations of the fact
that in many turbulent dynamical systems modes that carry small
variance on average can have important, highly intermittent dy-
namical effects on the large variancemodes. Furthermore, the large
dimension of the active variables in turbulent dynamical systems
makes direct UQ by large ensemble Monte-Carlo simulations im-
possible in the foreseeable future while, once again, concise mathe-
matical models (10) point to the limitations of using moderately
large yet statistically too-small ensemble sizes. Other important
methods for UQ involve the linear statistical response to change in
external forcing or initial data through the fluctuation-dissipation
theorem (FDT), which only requires the measurement of suitable
time correlations in the unperturbed system (13–18). Despite some
significant success with this approach for turbulent dynamical sys-
tems (13–18), the method is hampered by the need to measure
suitable approximations to the exact correlations for long time
series as well as the fundamental limitation to parameter regimes
with a linear statistical response.
Here a systematic strategy is developed for building statistically

accurate low-order models for UQ in turbulent dynamical sys-
tems. First, exact dynamical equations for the mean and the co-
variance are developed; the possibly intermittent effects of the
third-order statistics on these low-order statistics are present in
the exact equations. Second, an approximate nonlinear dynamical
system for the evolution of the mean and covariance is formu-
lated; this system is subjected to the minimal additional damping
and additional random forcing so that it has the unperturbed
mean and covariance as a stable fixed point. Third, the effect of
the third moments on the mean and the covariance in the ap-
proximate dynamical system for the statistics are calibrated effi-
ciently at the unperturbed steady state using only the measured
first and second moments. The result at this stage is a very recent
algorithm for UQ called modified quasilinear Gaussian (MQG)
closure (19), which applies on the entire phase space of variables.
In the fourth step, the MQG algorithm is projected on suitable
leading EOF patterns with further efficient calibration of the
effect of the unresolved modes at the unperturbed statistical
steady state. This final step defines the reduced-order MQG
(ROMQG) method for UQ in turbulent dynamical systems and
is developed following the above outline in the next section.
The subsequent sections include two highly nontrivial appli-

cations of the ROMQG method in UQ. The first application
involves the Lorenz 96 (L-96) model (20, 21), which is a non-
trivial 40-dimensional turbulent dynamical system that mimics
midlatitude atmospheric turbulence and is a popular model for
testing methods for statistical prediction (20), data assimilation
or filtering (22), FDT (18), and UQ (11, 12, 19). The advantage
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of the 40-mode L-96 is that very large ensemble Monte-Carlo
simulations can be used for validation in transient regimes. Here
the ROMQG algorithm has remarkably robust skill for UQ in
the transient response to general random external forcing for
truncations as low as one, two, or three leading Fourier modes.
The second application involves a prototype example of two-
layer ocean baroclinic turbulence (23–25). Here the turbulent
system has over 125,000 degrees of freedom, so validation through
transient Monte-Carlo simulations is impossible and only the
nonlinear statistical steady-state response to the change in shear
can be tested for various perturbation levels. Here the ROMQG
algorithms for UQ using 252 EOF modes (less than 0.2% of the
total modes) are able to capture the nonlinear response of both
the one-dimensional energy spectrum and heat flux spectrum at
each wavenumber with remarkable skill for a wide range of shear
variations. The paper concludes with a brief summary discussion.

Abstract Formulation
We consider large dimensional turbulent dynamical systems with
conservative quadratic nonlinearities with the abstract structural
form typically satisfied in applications to geophysical (23–26) or
engineering turbulence given by

du
dt

= ½L+D�u+Bðu; uÞ+FðtÞ+ _Wkðt;ωÞσkðtÞ [1]

acting on u∈RN . In the above equation and for what follows
repeated indices will indicate summation. In some cases the lim-
its of summation will be given explicitly to emphasize the range
of the index. In the above equation L is a skew-symmetric linear
operator, which in geophysics represents rotation, the β-effect of
Earth’s curvature, topography, and so on and satisfies Lp = −L. D
is a negative definite symmetric operator ðDp =DÞ representing
dissipative processes such as surface drag, radiative damping,
viscosity, and so forth. The quadratic operator Bðu; uÞ conserves
the energy by itself so that it satisfies

Bðu; uÞ · u= 0 [2]

in a suitable inner product. Finally, FðtÞ+ _Wkðt;ωÞσkðtÞ repre-
sents the effect of external forcing, for instance solar forcing,
which we will assume can be split into a mean component FðtÞ
and a stochastic component with white-noise characteristics. In
the applications below, the stochastic component of the forcing is
zero, although there can be random initial data. We represent the
stochastic field through a fixed orthonormal basis vi, 1≤ i≤N,

uðtÞ= uðtÞ+
XN
i= 1

Ziðt;ωÞvi;

where uðtÞ represent the ensemble average of the response (i.e.,
the mean field) and the Ziðt;ωÞ are random processes. The exact
mean field equation is given by

du
dt

= ½L+D�u+B
�
u; u
�
+RijB

�
vi; vj

�
+F; [3]

with the covariance matrix given by Rij = hZiZji and h · i denotes
averaging over the ensemble members ω. The random compo-
nent of the solution u′=Ziðt;ωÞvi satisfies

du′
dt

= ½L+D�u′+B
�
u; u′

�
+B
�
u′; u

�
+B
�
u′; u′

�
−RjkB

�
vj; vk

�
+ _Wkðt;ωÞσkðtÞ:

By projecting the above equation to each basis element vi we
obtain the exact evolution of the covariance matrix R= hZZpi:

dR
dt

=LvR+RL p
v +QF +Qσ ; [4]

where we have

i) the linear dynamics operator expressing energy transfers be-
tween the mean field and the stochastic modes (effect due
to B), as well as energy dissipation (effect due to D) and
nonnormal dynamics (effect due to L, D, u):

fLvgij =
�
½L+D�vj +B

�
u; vj

�
+B
�
vj; u

��
:vi; [5]

ii) the positive definite operator expressing energy transfer due
to external stochastic forcing:

fQσgij = ðvi:σkÞ
�
σk:vj

�
; [6]

iii) the energy flux between different modes due to non-Gaussian
statistics (or nonlinear terms) given exactly through third-
order moments:

QF =
�
ZmZnZj

�
Bðvm; vnÞ:vi + hZmZnZiiBðvm; vnÞ:vj: [7]

From the conservation of energy property in Eq. 2 it follows that
the symmetric matrix QF satisfies Tr½QF �= 0. These last equa-
tions with third-order moments are a potential source of inter-
mittency in the solution of the low-order statistics and need to be
modeled carefully in any UQ scheme. This is done next in a min-
imal, efficient fashion by the MQG method (19).

MQG Models
In typical applications, the unperturbed turbulent dynamical
system is defined by constant forcing and there is a statistical
steady-state solution with mean u∞ and covariance R∞ satisfying
the steady-state statistical equations in Eqs. 3 and 4 with van-
ishing time-derivatives. Furthermore, the linear operator in Eq. 5
typically has unstable directions as well as stable subspaces with
nonnormal dynamics (13–15, 18, 23–27). The statistical steady
state exists through a balance driven by the transfer of energy by
the nonlinear terms Bðu; uÞ in Eq. 3 and nonnormal linear dy-
namics from the unstable directions to the stable ones; the
nonlinear steady-state covariance R∞ exists because the term
QF∞ involving this nonlinearity and the third statistical moments
in the statistical steady state precisely balance the effect of the
unstable directions in Eq. 4. The MQG dynamical equation for
UQ calibrates this essential effect in an efficient, minimal fashion
(19). First note that at the statistical steady state of calibration,
QF∞, is known as a function of the mean u∞ and covariance R∞
through Eq. 4 at the statistical steady state. In the MQG dy-
namics we split the nonlinear fluxes into a positive semidefinite
part Q+

F and a negative semidefinite part Q−
F :

QF =Q−
F +Q+

F : [8]

The positive fluxes Q+
F indicate the energy being “fed” to the

stable modes in the form of external chaotic or stochastic noise.
On the other hand, the negative fluxes Q−

F should act directly on
the linearly unstable modes of the spectrum, effectively stabiliz-
ing the unstable modes. In particular in MQG we represent the
negative definite part of the fluxes as additional damping to
modify the eigenvalues associated with the Lyapunov Eq. 4 so
that these have nonpositive real part for the correct steady-state
statistics. To achieve this we represent the negative fluxes as

Q−
FðRÞ=N   R+RN p [9]

with N∞ defined by the equation

13706 | www.pnas.org/cgi/doi/10.1073/pnas.1313065110 Sapsis and Majda

www.pnas.org/cgi/doi/10.1073/pnas.1313065110


Q−
F∞ =Q−

F ðR∞Þ= N∞R∞ +R∞N p
∞; [10]

where Q−
F ðR∞Þ is the negative semidefinite part of the steady-

state fluxes obtained by the equilibrium equation QF∞ =
−Lvðu∞ÞR∞ −R∞Lp

vðu∞Þ. Eq. 10 essentially connects the nega-
tive-definite part of the nonlinear energy fluxes (which is a func-
tional of the third-order statistical moments) with the second-
order statistical properties that express energy properties of the
system. One can easily verify that N∞ in Eq. 10 is given explicitly by

N∞ =
1
2
Q−

F ðR∞ÞR−1
∞ : [11]

In the MQG dynamics (19), the evolving damping N is given by
N = f ðRÞ

f ðR∞ÞN∞ with f an appropriate nonlinear function. On the
other hand, the positive fluxes Q+

F are computed according to
steady-state information, that is, based on the positive semide-
finite fluxes Q+

F∞=Q+
F ðR∞Þ: The form of this matrix defines the

amount of energy that the linearly stable modes should receive in
the form of additive noise. The conservative property of the
nonlinear energy transfer operator B requires that for all times
the zero-trace conservation property is satisfied. This is achieved
by choosing the positive fluxes as

Q+
F = −

Tr
�
Q−

F

	
Tr
�
Q+

F∞
	Q+

F∞: [12]

These nonlinear fluxes are time-dependent (because Tr½Q−
F �

depends on time through R); the last formulation guarantees
the zero-trace conservation property at every instant of time.
These relations substituted into the equations for the mean
and covariance in Eqs. 3 and 4 define the minimal MQG dynam-
ics; by construction ðu∞;R∞Þ is a fixed point of this dynamics but
is only neutrally stable owing to the minimal character of the
decomposition of QF∞ in Eq. 8. We introduce the small factor
qs > 0 with the flux decomposition QF = ½Q−

F − qsI�+ ½Q+
F + qsI� to

render ðu∞;R∞Þ a stable fixed point of the MQG dynamical
system (19). In this fashion we obtain the MQG dynamics for
the mean and covariance,

du
dt

= ½L+D�u+B
�
u; u
�
+RijB

�
vi; vj

�
+F [13]

dR
dt

=LvR+RL p
v +NR+RN p +Q+

F +Qσ ; [14]

where

N =
f ðRÞ
f ðR∞ÞN∞ with N∞ =

1
2
�
Q−

F∞ − qsI
�
R−1
∞ ; [15]

Q+
F = −

Tr
�
Q−

F

	
Tr
�
Q+

F∞
	 �Q+

F∞ + qsI
�
;Q−

F =NR+RN p; [16]

with qs and f ðRÞ parameters in the MQG dynamics. These MQG
dynamics define the first three steps from the introduction of the
UQ strategy developed in this paper. As shown in refs. 12 and 19,
the MQG algorithm, with a specific, well-motivated choice of qs
and f ðRÞ yields excellent performance as a UQ algorithm when
tested comprehensively on the 40-mode L-96 model. However,
the MQG algorithm is impractical for large dimensional turbulent
dynamical systems with N >Oð103Þ because the covariance matri-
ces of order N2 are too expensive to evolve directly. This leads to
the need for truncated, low-order MQG algorithms, which are
developed next.

ROMQG
For the truncation of the dynamics we use s orthogonal eigen-
vectors of the covariance matrix R∞ given by fvigsi=1. These can
be chosen as EOF modes. We denote these modes with the
matrix P= ½v1; v2; . . . :; vs�∈RN × s: In this case the reduced co-
variance that we resolve is connected with the full N-dimensional
covariance by the relation

Rs =P pRP∈Rs× s:

Because the reduced-order covariance Rs contains only a part of
the total stochastic energy the influence of the quadratic terms
in the mean field equations will be only partially modeled. To
represent this effect in the calibration stage, we include addi-
tional forcing G∞ that will balance this contribution, which is
otherwise ignored owing to the truncation. Thus, we have the
mean field equation

du
dt

= ½L+D�u+B
�
u; u
�
+
Xs
i;j= 1

Rs;ijB
�
vi; vj

�
+F+G∞: [17]

The value of the additional forcing G∞ is determined using sta-
tistical steady-state information for the covariance and the mean.
In particular we have the equilibrium equation

G∞ = − ½L+D�u∞ −B
�
u∞; u∞

�
−
Xs
i; j= 1

Rs∞;ijB
�
vi; vj

�
−F;

where Rs∞ =PpR∞P; this guarantees that u∞ is a steady state of
the truncated equation in Eq. 17. For the covariance equation
governing Rs we use the exact (but reduced-order) equation for
the covariance given by

dRs

dt
=Lv;sRs +RsL p

v;s +QF;s; [18]

where Lv;s = fLvgij for i; j= 1; . . . ; s and QF;s contain both the
nonlinear dynamics owing to triad interactions between all modes
but also the ignored linear dynamics owing to the truncation.
Because QF;s contains truncated nonlinear interactions but also
nonnormal linear effects we do not expect to satisfy the conser-
vation property because Tr½QF;s�≠ 0: Nevertheless, we can still
use steady-state information to model QF;s: We have

QF;s∞ = −Lv;sRs∞ −Rs∞L*
v;s:

Now we repeat the ideas used in the MQG algorithm described
above. By splittingQF;s∞ into a positive definite partQ+

F;s∞ and into
a negative definite part Q−

F;s∞ we have the noise, damping pair

Q+
F;s∞ and Ns∞ =

1
2

�
Q−

F;s∞

�
R−1
s∞:

The next step is to scale the above energy fluxes. For the addi-
tional damping we use the standard scaling from MQG together
with small additional damping for stability,

Ns =
1
2
f ðRsÞ
f ðRs∞Þ

�
Q−

F;s∞ − qsI
�
R−1
s∞: [19]

For the positive fluxes, in MQG described earlier we were scaling
with the total nonlinear flux of energy. Here we do not have such
information because we are modeling the energy (covariance)
partially due to the truncation. To this end we will scale with the
nonlinear energy fluxes based on the information provided by the
reduced-order covariance. The total positive nonlinear energy flux
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in the statistical steady state is given by q+∞ = 2Tr½N∞R∞� and with
the standard MQG approximation in general, the energy flux is

q+ = 2
f ðRÞ
f ðR∞ÞTr½N∞R�:

Because we do not have information for the full covariance R we
will scale with f ðRsÞ. Moreover, we modify Tr½N∞R∞� only along
the elements of the full covariance that evolve, that is, according
to Rs. These approximations give

Q+
F;s =

�
Q+

F;s∞ + qsI
� f ðRsÞ
f ðRs∞Þ

×  



1+

Tr½P pN∞PRs −P pN∞PP pR∞P�
TrðN∞R∞Þ

�
:

[20]

Note that for the full space with P= I the above expressions
reduce exactly to the standard MQG formula. In summary, the
ROMQG dynamics are the modified mean equation in Eq. 17
coupled to the reduced covariance equation

dRs

dt
=Lv;sRs +RsL p

v;s +NsRs +RsN p
s +Q+

F;s +Qσ;s

with Ns, Q+
F;s defined in Eqs. 19 and 20, respectively.

Application of ROMQG to UQ for the L-96 Model
The L-96 model is a discrete periodic model given by

dui
dt

= ui−1ðui+1 − ui−2Þ− ui +F;  i= 0; . . . ; J − 1 [21]

with J = 40 and with F the deterministic forcing parameter. With
the standard discrete Euclidian inner product, one can easily verify
that the energy conservation property for the quadratic part is
satisfied [i.e., Bðu; uÞ · u= 0] and the negative definite part has
the diagonal form D= − I: The model is designed to mimic bar-
oclinic turbulence in the midlatitude atmosphere with the effects
of energy conserving nonlinear advection and dissipation repre-
sented by the first two terms in Eq. 21. For sufficiently strong
constant forcing values such as F = 6, 8, or 16, L-96 is a prototy-
pe turbulent dynamical system that exhibits features of weakly
chaotic turbulence ðF = 6Þ, strong chaotic turbulence ðF = 8Þ,
and strong turbulence ðF = 16Þ (21, 22, 26). Because the L-96
system is invariant under translations we will use the Fourier
modes as a fixed basis to describe its dynamics. Because of the
translation invariance property the statistics in the steady state will
be spatially homogeneous, that is, the mean field will be spatially
constant, the covariance operator will have a Fourier diagonal
form, and the Fourier modes are an EOF basis. In addition, if
the initial conditions are spatially homogeneous the above prop-
erties will hold over the whole duration of the response and we
assume this here. In the L-96 system the external noise is zero, and
therefore we have no contribution from external noise in Eq. 4,
that is, Qσ = 0. Thus, uncertainty can only build up from the un-
stable modes of the linearized dynamics. The time-averaged tur-
bulent spectrum of energy that occurs for the constant value,
F = 8, is given in Fig. 1. Here we demonstrate the capability of
the ROMQG algorithm to quantify uncertainty with only a few
modes. We calibrate ROMQG at the standard forcing value F = 8
and perturb this constant forcing, resulting in the forcing FðtÞ
shown in Fig. 1 with random fluctations of order 15%.We consider
highly truncated ROMQGwith f ðRsÞ= ðTr½Rs�Þ

1
2, qs = 0:1 and with

a single complex Fourier mode out of the total 20 active Fourier
modes. In Fig. 1 we use the most energetic Fourier (EOF) mode in
the ROMQG algorithm and compare the mean and variance in

this low-dimensional subspace with those from a large ensemble
Monte-Carlo simulation of the full L-96 model with 104 members.
As seen in Fig. 1, the ROMQG algorithm for only a single (the
most energetic) Fourier (EOF) mode tracks the low-order statis-
tics of the expensive full Monte-Carlo simulation with high fidelity.
The ROMQG algorithm with three Fourier modes track the full
Monte-Carlo simulation in all of the reduced modes with compa-
rable, very high skill. More tests of the ROMQG algorithm with
comparable high fidelity for UQ with deterministic periodic or
stochastic forcing for F = 6, 8, 16 are presented in SI Appendix.
In Fig. 2 we show the performance of the ROMQG algorithm for
similar low-order truncations using the much less energetic 10th
to13th Fourier modes ranked by energy. It is no surprise that the
ROMQG algorithm performs poorly here with this truncation.
However, MQG on the whole 40-mode phase space can capture
the UQ properties on these modes (19).

Application of ROMQG to Quasigeostrophic Turbulence
Here we study a huge dimensional turbulent dynamical system
(n > 125,000) with a wide range of instabilities on small and large
scales involving baroclinic turbulence in regimes appropriate for the
high-latitude ocean. We consider the Phillips model in a barotropic–
baroclinic mode formulation (23–25) with periodic boundary con-
ditions given by

∂q
∂t

=LðqÞ+Bðq; qÞ

with linear operator L= ðLψ ;LτÞT

Lψ ðqÞ= − ð1− δÞr∇2�ψ − a−1τ
�
−U

∂
∂x
∇2τ− β

∂ψ
∂x

;

LτðqÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δð1− δÞp

r∇2
�
ψ − a−1τ

�
− β

∂τ
∂x

−U
∂
∂x
�
∇2ψ + λ2ψ + ξ∇2τ

�
  ;

and quadratic operator
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Fig. 1. Time-dependent force and time-averaged energy spectrum (first
row); comparison of the single-mode reduction with the most energetic
mode using ROMQG algorithm with direct Monte-Carlo simulation in the
L-96 system (second row); comparison of the three-mode reduction (with the
three most energetic modes) ROMQG with direct Monte Carlo (lower rows).
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Bðq1; q2Þ= −

 
J
�
ψ1; q2;ψ

�
+ J
�
τ1; q2;τ

�
J
�
ψ1; q2;τ

�
+ J
�
τ1; q2;ψ + ξq2;τ

�
!
;

where q= ðqψ ; qτÞT and qψ =∇2ψ and qτ =∇2τ− λ2τ are the bar-
otropic and baroclinic potential vorticity anomalies, respectively,
and ψ ; τ the corresponding streamfunctions. Moreover, δ is the
fractional thickness of the upper layer, U =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δð1− δÞp ðU1 −U2Þ

expresses the difference of velocities between the two layers, λ is

the baroclinic deformation wavenumber, a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− δÞδ−1

q
and

ξ= ð1− 2δÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δð1− δÞp

express the thickness ratio between the
two layers and the triple interaction coefficient, respectively, and
r is the bottom drag in the vorticity in the lower layer. Here we set
δ= 0:2, r= 9, β= 10, and λ= 10; this set of parameters corresponds
to the high-latitude ocean case (25). The critical parameters here
are the large baroclinic deformation wavenumber, λ, typical of the
high-latitude ocean, the strength of the shear U, and the bottom
drag coefficient, r. The natural inner product that guarantees the
energy conservation property, Bðq; qÞ:q= 0, is defined through the
sum of the barotropic and baroclinic energies and is given by

½q1; q2�E =
Z

∇ψ1:∇ψ p
2 +∇τ1:∇τ p2 + λ2τ1τ

p
2 : [22]

There is linear baroclinic instability (23–25) at a wide range of
wavenumbers smaller than the deformation wavenumber, so
this is a challenging problem for UQ owing to both the large
phase space and large number of instabilities. A numerical
resolution of 2562 Fourier modes in a standard pseudospectral
code (25) is used to study the statistical dynamics of this tur-
bulent dynamical system so the dimension of the subspace N
exceeds 125,000 and large ensemble member Monte-Carlo sim-
ulations of the perfect model are impossible in the foreseeable
future; instead, for a given shear strength, U, statistics are cal-
culated from a long time average (24–26). The standard value
of U0 ≡ 1 in nondimensional units yields the unperturbed sys-
tem where we calibrate ROMQG in a fashion described earlier.
In the experiments reported below, we study the nonlinear re-
sponse to changes in the jet strength Uδ =U0 + δU where δU can
have both negative and positive values with jδUj≤ 0:05U0 so these
are 5% perturbations on the shear strength; as shown below, these
are powerful enough to cause 50% changes in the energy or heat
flux spectrum. To compute the perfect nonlinear response, we run
the numerical code for the perfect model with perturbed shear,Uδ,
and gather the perturbed statistics from a long time average. The
UQ challenge for the ROMQG methods here is to predict the
nonlinear response to these changes in shear through a low-order
statistical model. Although the above problem is a difficult chal-
lenge for ROMQG, it has a simplified structure that can be
exploited. For a given jet strength U, the statistics on the attractor
are homogeneous, so Fourier series can be used to simplify the
ROMQG algorithm with the result the linear operator, L, decou-
ples into a block diagonal 2 × 2 system for each Fourier mode and
all EOFs are Fourier modes with two complex EOFs per Fourier
mode. Furthermore, for two-layer baroclinic turbulence, no mean
field is generated and ∂qψ

∂t =
∂qτ
∂t = 0 for all of the above homoge-

neous perturbations, unlike the L-96 model studied earlier (ref.
24 and SI Appendix). Thus, we can study the statistics of two-layer
baroclinic turbulence through the Fourier series representation
q=
P

k;lq̂kle
iðkx+lyÞ and develop ROMQG algorithms merely by

applying ROMQG to the truncated band of wavenumbers, 1≤
ðk2+l2Þ1=2 ≤ jk0j. With these comments the ROMQG algorithm
for this model is straightforward to generate and is presented in
detail in SI Appendix; crucial to the discussion here is the choice
of the structure function f ðRsÞ= ðTr½Rs�Þ2 with qs = 0:055 for
1≤ jkj< 9 so that ROMQG has only 252 modes, 0.2% of the
total number of modes in the original system. The key statistical
quantities of practical interest for UQ that we attempt to predict
by the above ROMQG algorithm are the radially averaged one-
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Fig. 2. Comparison of the four-mode reduction ROMQG using the much
less energetic 10th–13th modes (ranked by energy) with direct Monte Carlo.
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dimensional energy spectrum EðjkjÞ and heat flux spectrum,
Hf ðjkjÞ defined for the energy by

2E=
X
k

jkj
ψ̂2 + �jkj+ λ2

�τ̂2 = 2π
Z∞
0

jkjEðjkjÞdjkj [23]

and for the heat flux, Hf = λ
U2 ψ xτ, by

Hf =
λ

U2

X
k

ikq̂kl;ψ q̂
p
kl;τ�jkj+ λ2
�jkj2 =

2πλ
U2

Z∞
0

jkjHf ðjkjÞdjkj: [24]

In both Eqs. 23 and 24 the continuous integrals have only sym-
bolic meaning and actually represent a discrete radial average. In
Fig. 3 we compute the nonlinear response of the perfect system
and the ROMQG prediction for E, Hf and EðjkjÞ, Hf ðjkjÞ for
a family of perturbations up to 5% of the mean shear U0. The
first thing to note from the upper panels of Fig. 3 is that the
perfect response of E and Hf is nonlinear over the range of
perturbations and the ROMQG algorithm with less than 0.2% of
the modes and calibrated only at U0 closely tracks the nonlinear
changes in bulk statistics. The most nonlinear departures occur
at shear perturbations Uδ = ð1± 0:05ÞU0, and the second panels
show the high skill of the ROMQG algorithm in capturing
the nonlinear sensitivity of the energy density EðjkjÞ, whereas the
lower panels show similar high skill for the ROMQG for the heat
flux spectrum Hf ðjkjÞ. Incidentally, these panels also show clear
nonlinear response for both EðjkjÞ and Hf ðjkjÞ, because the left
panel deviations from the unperturbed state are very far from
equal and opposite compared with the right panel perturbations;
this means that in the present context, systematically calibrated
ROMQG algorithms are both vastly cheaper and outperform
FDT algorithms (13–18), which can only estimate linear statisti-
cal response and often lose some skill (14–18) in estimating
quadratic functionals such as EðjkjÞ, Hf ðjkjÞ.

Discussion and Conclusions
We have developed an ROMQG algorithm for low-order pre-
dictive statistical modeling of UQ in turbulent dynamical sys-
tems. The low-order algorithms apply to turbulent dynamical
systems where there is significant linear instability or linear
nonnormal dynamics in the unperturbed system and energy-
conserving nonlinear interactions that transfer energy from the
unstable modes to the stable modes where dissipation occurs,
resulting in statistical steady state; such turbulent systems are
ubiquitous in geophysical and engineering turbulence. The
ROMQG methods involve constructing a low-order, nonlinear,
dynamical system for the mean and the covariance statistics in
the reduced subspace that has the unperturbed steady-state
statistics as a stable fixed point and optimally incorporates the
indirect effect of non-Gaussian third-order statistics for the
unperturbed system in a systematic calibration stage. As shown
here, this calibration procedure is achieved through information
involving only the mean and covariance statistics for the unper-
turbed equilibrium. The performance of the ROMQG algorithm
is assessed here on two stringent test cases: the 40-mode L-96
model mimicking midlatitude atmospheric turbulence and two-
layer baroclinic models for high-latitude ocean turbulence with
over 125,000 degrees of freedom. In the L-96 models, ROMQG
algorithms with just a single mode (the most energetic) capture
the transient UQ response to random or deterministic forcing.
For the baroclinic turbulence models, the inexpensive ROMQG
algorithms with 252 modes (0.2% of the total modes) are able to
capture the nonlinear response of the energy, the heat flux, and
even the one-dimensional, energy and heat flux spectrum at each
wavenumber. The results reported here point to the potential
use of the ROMQG algorithm for UQ in realistic turbulent dy-
namical systems with additional anisotropy due to topography,
land–sea contrast, and so on.
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