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Abstract
White matter in the brain is structurally anisotropic, consisting largely of bundles of aligned,
myelin-sheathed axonal fibers. White matter is believed to be mechanically anisotropic as well.
Specifically, transverse isotropy is expected locally, with the plane of isotropy normal to the local
mean fiber direction. Suitable material models involve strain energy density functions that depend
on the I4 and I5 pseudo-invariants of the Cauchy–Green strain tensor to account for the effects of
relatively stiff fibers. The pseudo-invariant I4 is the square of the stretch ratio in the fiber
direction; I5 contains contributions of shear strain in planes parallel to the fiber axis. Most, if not
all, published models of white matter depend on I4 but not on I5. Here, we explore the small strain
limits of these models in the context of experimental measurements that probe these dependencies.
Models in which strain energy depends on I4 but not I5 can capture differences in Young’s
(tensile) moduli, but will not exhibit differences in shear moduli for loading parallel and normal to
the mean direction of axons. We show experimentally, using a combination of shear and
asymmetric indentation tests, that white matter does exhibit such differences in both tensile and
shear moduli. Indentation tests were interpreted through inverse fitting of finite element models in
the limit of small strains. Results highlight that: (1) hyperelastic models of transversely isotropic
tissues such as white matter should include contributions of both the I4 and I5 strain pseudo-
invariants; and (2) behavior in the small strain regime can usefully guide the choice and initial
parameterization of more general material models of white matter.
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1. Introduction
1.1. Background and motivation

Traumatic brain injury (TBI) is a common cause of death and disability in the United States
(Coronado et al., 2011). In such injuries, linear and angular acceleration of the head leads to
shearing and stretching of brain parenchyma (Bayly et al., 2005; Clayton et al., 2012;
Gennarelli et al., 1982; Margulies and Thibault, 1992). Prediction of these injuries remains
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elusive, though it is a subject of intense research. Computer simulation methods,
predominantly finite element (FE) simulations, have been proposed for prediction of injuries
and development of preventive strategies (Ueno et al., 1995; Zhang et al., 2004). Predicted
strains from simulations can be correlated with injury markers (McAllister et al., 2012)
using strain-based thresholds for cellular and tissue injury determined in vitro (LaPlaca et
al., 2005; Morrison et al., 2003; Wright and Ramesh, 2012).

A number of challenges remain before predictions of FE simulations can be applied with
confidence. Brain–skull interactions play a central role in determining the brain’s response
to head acceleration (Abney et al., 2011; Bayly et al., 2006, 2005; Brody et al., 2007;
Clayton et al., 2012; Feng et al., 2010; Ji and Margulies, 2007; Ji et al., 2004; Sabet et al.,
2008), but these boundary conditions have only recently been incorporated into FE models
(Coats et al., 2007; Wright and Ramesh, 2012). The relationship between mechanical strain
and cell death appears to be more complicated than can be predicted by a simple strain or
strain rate criterion (Brody et al., 2007). Finally, a complete and accurate picture of the
mechanical properties of brain tissue is needed.

The effort to characterize brain material properties has been sustained for over 50 years
(Chatelin et al., 2010; Cheng et al., 2008; Elkin et al., 2011a; Fallenstein et al., 1969;
Galford and McElhaney, 1970; Kaster et al., 2011; Shuck and Advani, 1972; van Dommelen
et al., 2010). The current paper adds to this substantial body of literature by identifying
necessary features of transversely isotropic hyperelastic models for modeling of white
matter.

1.2. Characterization of mechanical properties of white matter
White matter tissue appears to be preferentially injured during brain trauma (Smith and
Meaney, 2000), and the mechanics of white matter are important for predicting its
deformation and associated injury. Since white matter consists predominantly of aligned
axonal fibers and their myelin sheaths, it is hypothesized to be mechanically anisotropic, in
contrast to gray matter, which is structurally isotropic (Prange et al., 2000). More
specifically, where fibers are well-aligned, white matter is expected to be transversely
isotropic with the fiber axis normal to the plane of isotropy.

The literature largely supports this hypothesis, though estimates of specific parameter vary.
Brain mechanical properties have been studied both in vivo and in vitro. In one study,
brainstem was found to demonstrate an anisotropic (transversely isotropic) response to
oscillatory shear deformation in vitro (Arbogast and Margulies, 1998). Subsequent studies in
vitro (Ning et al., 2006; Prange and Margulies, 2002) confirmed that gray matter appeared
isotropic and that white matter from corona radiata, corpus callosum and brainstem appeared
anisotropic when subjected to shear deformation at high strains and strain rates. Hrapko et
al. (2008a) suggested that the anisotropy of corona radiata increases with the magnitude of
shear deformation but decreases with increasing frequency during dynamic oscillatory shear
tests. In contrast, Nicolle et al. (2005) observed that white matter from the corona radiata
appeared isotropic in shear under small strain (0.0033%) and high strain rates (0.8 s−1).
When uniaxial tensile tests were performed on strips of porcine corona radiata (Velardi et
al., 2006), they appeared almost 3 times stiffer when the fiber axis was aligned with the
direction of stretch than when stretched perpendicular to the fiber axis. In vivo studies of
brain tissue using magnetic resonance elastography (MRE) are promising but still not
conclusive on this topic, although recent MRE studies (Qin et al., 2012; Romano et al.,
2012) have begun to address anisotropy. Most notably, Romano et al. (2012) estimated
parameters of a transversely isotropic linear viscoelastic model of brain tissue using MRE,
but the analysis has not been validated on materials with known properties.

Feng et al. Page 2

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Transversely isotropic materials may, in general, exhibit anisotropy in both shear and
tension with respect to the fiber axis (Spencer, 1984). To our knowledge, prior experimental
studies of white matter (Hrapko et al., 2008a; Prange and Margulies, 2002; Velardi et al.,
2006) have focused on either shear or tensile anisotropy, but not both. Measurement of
anisotropy in both shear and classical tensile tests requires separate samples, as gripping
brain tissue for tensile tests damages the tissue. To overcome this measurement problem,
dynamic shear tests can be combined with subsequent asymmetric indentation tests on the
same sample, to measure the anisotropy of brain tissue. This protocol involves both fiber–
matrix shear and fiber stretch (Namani et al., 2012). Each test requires only simple fixtures
to hold the sample, and is non-destructive at small strains. Subject to certain assumptions
described below, the combination can be used to estimate all the parameters of an
incompressible, transversely isotropic, linear elastic model of brain tissue.

The current study focuses on clear characterization of the elastic component of the response
during small deformations, rather than attempting to develop a complete nonlinear visco-
hyperelastic model. Fully nonlinear, viscoelastic models require large amounts of data to
parameterize, yet the correct choice of the basic form is often not clear. Although linear
elasticity is not sufficient to describe the mechanical properties of soft tissue under large
deformations, any hyperelastic model of white matter must match the predictions of linear
elasticity in the limit of small strains. Linear elasticity is therefore valuable for guiding the
selection of the form of a more general hyperelastic model. Similarly, the behavior of a
viscoelastic solid is typically understood in terms of the underlying short-term and long-term
elastic behavior. Thus a well-parameterized linear elastic model is fundamental to the
development of hyper-viscoelastic material models.

The choice of the set of strain invariants upon which a hyperelastic model is based is critical.
In general, the strain energy function of a transversely isotropic hyperelastic material
depends on the invariants I1, I2, and I3 of the right Cauchy–Green strain tensor, and the
pseudo-invariants I5 and I4 (which are invariant under rotation about the normal to the plane
of isotropy). Structurally based models (Meaney, 2003), phenomenological, transversely
isotropic, hyperelastic models (Cloots et al., 2012; Ning et al., 2006; Velardi et al., 2006)
and a hyper-viscoelastic model (Chatelin et al., 2012) of white matter have been proposed
previously. In published hyper-elastic models, a standard fiber reinforcement formulation
(Merodio and Ogden, 2003; Qiu and Pence, 1997) has been used. In standard fiber
reinforcement models, tissue anisotropy observed during tensile or shear tests is related to an
additive term in the strain energy due to fiber reinforcement, captured by the pseudo-
invariant I4 r. Holzapfel and Ogden (2009) have discussed the general requirements for full
characterization of incompressible hyperelastic materials; they advocate use of a material
model in which strain energy depends only on I1 and I4, unless evidence supports a more
complicated constitutive law. Weiss et al. (1996) used a strain energy function dependent on
I1, I2, and I4 to model the transversely isotropic behavior of ligaments and tendons.
However, a material model that incorporates only I4 to model fiber reinforcement does not
predict anisotropy in shear in the small strain regime (Merodio and Ogden, 2005; Spencer,
1984). In fact, anisotropy has been observed in shear tests of white matter (Prange and
Margulies, 2002) and brain stem (Arbogast and Margulies, 1998). For a hyperelastic
material to exhibit anisotropy in shear under small deformations, the strain energy function
must depend on the pseudo-invariant I5 (Merodio and Ogden, 2005; Spencer, 1984). In this
study we show experimentally that including both I4 and I5 in he strain energy function is
essential to predicting the mechanics of white matter.

1.3. Study overview
The goal of our study is to clarify what features of constitutive models are needed to capture
the mechanical anisotropy (transverse isotropy) of white matter. The predicted response of
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transversely isotropic material in the infinitesimal strain limit is compared to relatively
simple experiments that identify the specific contributions of fiber stretch and fiber–matrix
interaction. We tested samples of white matter (corpus callosum) and gray matter (cortex)
from lamb brains, using a combination of dynamic shear testing (DST) (Okamoto et al.,
2011) and asymmetric indentation tests (Namani et al., 2012). White matter was found to be
anisotropic in both shear and indentation, while gray matter exhibited isotropic behavior.
These results, while obtained in the small-strain regime, imply that in an accurate
hyperelastic model of white matter, the strain energy function should depend on both I4 and
I5.

2. Review of constitutive models of transversely isotropic materials
2.1. Transversely isotropic hyperelastic models

White matter is fibrous tissue in which a clearly defined, dominant fiber direction is typical.
For example, fibers are predominantly oriented left-to-right in the corpus callosum, which
connects the brain’s hemispheres. We define the fiber direction to be the x1 direction in
Cartesian coordinates, so the plane of isotropy is perpendicular to x1 (Fig. 1). If F = ∂x/∂X is
the deformation gradient, where X is a material vector in the reference configuration and x is
the corresponding spatial vector in the deformed configuration, the right and left Cauchy–
Green tensors are C=FTF and b=F FT. The volume ratio between the deformed and
undeformed configurations is given by J=det F. The corresponding principal invariants of C
and b are (Holzapfel, 2000; Spencer, 1984);

(1)

(2)

and

(3)

In a transversely isotropic material, the strain energy may depend also on two additional
“pseudo-invariants” I4 and I5 (Spencer, 1984); these quantities are invariant under rotation
about the axis of symmetry. If A is the unit vector of the mean fiber direction in the
reference configuration at a material point X, then

(4)

(5)

Fiber deformation is described by the vector a=FA, the direction of which is the local fiber
axis in the deformed configuration and the magnitude of which represents the fiber stretch
λ. We note that I4 = λ2 = |a|2.

The strain energy function ψ can be written generally in terms of the invariants listed above:

(6)
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The general form of the Cauchy stress in terms of the invariants defined above, writing ψi =
∂ψ/∂Ii (i = 1,…, 5), is

(7)

Requiring both strain energy density and Cauchy stress to vanish in the undeformed
(reference) state, leads to the following constraints on the strain energy function:

(8)

(9)

and

(10)

2.2. Transversely isotropic linear elastic models
The incremental behavior of hyperelastic materials can be described by linear elastic models
(Holzapfel, 2000). In the limit of infinitesimal deformations, the Cauchy stress tensor is
related to the small strain tensor by a fourth-order elasticity tensor. The components of the
elasticity tensor can be derived in terms of the strain energy function (Merodio and Ogden,
2003, Eqs. (19)–(22)). These components may be arranged in a 6 × 06 matrix (Voigt
notation) taking advantage of inherent symmetries. We can write the elements cij of this 6 ×
6 elasticity matrix in terms of the partial derivatives of ψ with respect to the invariants (Eq.
(11)). The constraints on the strain energy function in the undeformed state (Eqs. (8)–(10))
are used to derive the expressions for cij (Appendix A, Eqs. (A.1)–(A.8)). The elasticity
matrix can thus be written:

(11)

where the 1-direction is aligned with A. The components cij are given in terms of ψ and its
derivatives in Eqs. (A.2)–(A.7). Both I4 and I5 terms contribute to the difference between the
elastic moduli in the principal directions:

(12)

where ψij = ∂2ψ/∂Ii∂Ij (i = 1, …, 5). We also observe that:

(13)

which shows that ψ must depend on I5 if the material exhibits different shear moduli in
different orthogonal planes parallel and normal to the fiber axis for small strain. Since ψ5 is
evaluated in the reference configuration, the form of ψ should be chosen so that
(ψ5)(3,3,1,1,1) is not zero. Eqs. (12) and (13) are general results that illustrate the implications
of small-strain behavior for general hyperelastic models.
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Appendix B describes the application of these relationships to describe the small-strain
response predicted by several hyperelastic material models of incompressible, or nearly
incompressible, transversely isotropic materials. In Appendix B we show a minimal model
that has a strain energy function of the necessary form required for consistency with our
experimental data, although it may not be sufficient to describe larger deformations. Three
general parameters describe the elastic response of each model during small deformations:

1. μ̃, the shear modulus in the plane of isotropy;

2. φ̃ = (μ1− μ2)/μ the (non-dimensional) difference in shear modulus μ1, relative to μ,
for shear in planes perpendicular to the plane of isotropy; and

3. ζ̃ = (E1−E2)/E2, the non-dimensional difference in Young’s modulus for stretch
along the fiber axis (E1) relative to Young’s modulus for stretch normal to the fiber
axis.

3. Experimental materials and methods
We show in Appendix B that because white matter displays anisotropic behavior in both
tension and shear, the simplest adequate transversely isotropic, incompressible material
model of white matter involves three independent parameters (μ, ζand φ in our example
model, Eq. (B.8)). These three parameters can be estimated from a combination of (1)
simple shear with displacement either parallel or perpendicular to the fiber axis and (2)
indentation with a tip of rectangular cross-section, in which the long axis of the tip is aligned
either parallel or perpendicular to the fiber axis, with both tests performed on the same
sample (Namani et al., 2012).

3.1. Sample preparation
Lamb heads (8–10 months of age) were obtained from a local slaughterhouse one to 2 h
post-mortem. The top of the skull was resected by cutting the bone on four sides. The dura
mater, arachnoid and pia matter were resected with fine scissors, and the two hemispheres
were separated. Gray matter tissue samples were harvested from the temporal lobe (Fig.
2(a,c)) close to the cerebellum. The cerebellum was separated from the two lobes by cutting
the tentorium, and white matter tissue samples were harvested from the corpus callosum
(Fig. 2(b,c)), where axonal fibers can be seen running across and connecting the left and the
right brain hemispheres. Tissue samples were sliced using a vibrating microtome
(Vibratome®, series 1000, St. Louis, MO), and test samples were punched from the cross-
section to obtain predominantly gray matter (Fig. 2(d)) or white matter (Fig. 2(e)). Circular
punched samples were ~2.8 mm thick and ~15.6 mm in diameter. All samples were
submerged in ice-cold artificial cerebrospinal fluid (CSF) (Alexander and Godwin, 2005)
before testing, which was conducted within 5 h post-mortem as recommended by Garo et al.
(2007). Testing was performed at room temperature (21–23 °C).

3.2. Dynamic shear testing (DST)
The complex shear modulus was measured using a dynamic shear testing (DST) device
(Namani et al., 2012; Okamoto et al., 2011). Samples were held between two parallel plates
with rough (sandpaper) surfaces and compressed 5% to ensure consistent contact and normal
force. Vibratory shear displacement ux of the lower plate was produced by a voice coil,
while shear force, Fs, was measured on the stationary upper plate. Data were acquired with a
SigLab 20–22 data acquisition system (Spectral Dynamics, Inc., San Jose, CA) and stored
on a PC. White matter samples were tested with the fiber direction either parallel (test 1, Fig.
3(a)) or perpendicular (test 2, Fig. 3(b)) to the direction of oscillation. Gray matter samples
were also tested in two orientations, rotating the sample by 90° after the first test, with the
first test marked as test A and second test as test B. The average shear stress on the sample’s
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stationary surface is given by τ = Fs/As, where As is the area of the sample’s circular face.
The nominal shear strain was estimated as γ = ux/h = (Ux cos(ωt))/h, where Ux (~0.03 mm)
is the amplitude of the horizontal shear oscillation, h is the sample thickness, and ω = 2πf,
where f is the frequency (20–30 Hz, a frequency range in which inertial effects are minimal
and signal-to-noise is high). Displacement amplitudes were limited to stay within the small
strain regime, in which our analysis and models are approximately correct. The complex
shear modulus, μ*, was calculated from τ and γ:

(14)

where μ′ is the storage modulus and μ″ is the loss modulus.

3.3. Asymmetric indentation
The indentation stiffness of each tissue sample was measured after the DST test. We used a
custom-built asymmetric indentation device and adopted a 3-step indentation protocol used
previously (Namani et al., 2012). The rectangular stainless steel indenter head was 19.1 mm
long × 1.6 mm wide. As with DST, we tested each sample in two configurations, rotated by
90°. White matter samples were tested with axonal fiber tracts parallel (||, Fig. 3(c)) or
perpendicular (⊥, Fig. 3(d)) to the longer side of the rectangular indenter head. Gray matter
samples were placed on the device in an arbitrary orientation and then rotated by 90° after
the first test, with the first and second test results noted as A and B respectively. Each
sample was indented to a depth of 5% of its thickness and then held in that position for 1
min for tissue relaxation, which is sufficient for brain tissue to fully relax to a steady state
isometric force (Elkin et al., 2011a; Gefen and Margulies, 2004; Prevost et al., 2011; van
Dommelen et al., 2010). This process was repeated for a total of three indentation steps,
reaching approximately 5%, 10%, and 15% of the sample thickness respectively. Each
indentation step was completed within 0.5 s with an average strain rate during indentation of
0.1 s−1. The indenter was actuated by a piezo-electric actuator (Model M-227.5, Physik
Instrumente, Auburn, MA) and the indentation force, Fi, was measured by a load cell
(Honeywell Sensotec, Model 31, 150 g), where indices i=1, 2, 3 represent the three
indentation steps. The vertical displacement of the indenter, di, was measured by a non-
contact proximity probe (Model 10001-5MM, Metrix Instrument, Houston, TX). Custom
written Matlab programs (The Mathworks, Natick, MA) were used for data acquisition and
system control. The force–displacement curve during indentation was analyzed and the
portion with approximately constant indentation velocity was fit to a line with a slope
corresponding to the indentation stiffness k = Fi/di.

3.4. Interpretation of indentation results by finite element analysis
We interpreted indentation test results using 3-D finite element (FE) simulations in the
Abaqus environment (Abaqus 6.10.1, Dassault Systems, Providence, RI), as described
previously (Namani et al., 2012). Briefly, the tissue sample, modeled as a transversely
isotropic, linear elastic disk, 3.0 mm in thickness and 15.0 mm in diameter was indented in
the z-direction with a rigid, rectangular indenter of cross-sectional area 1.6 mm × 19.0 mm.
The corners of the rectangular indenter were rounded so that the initial contact width was
1.0 mm and the initial contact area between indenter and gel was 15.0 mm2. To reduce the
number of elements required, only one quarter of the sample was modeled and symmetry
boundary conditions were applied to the straight edges of the model. The quarter model
contained 103,925 eight node brick elements (C3D8) and the rigid rectangular indenter was
discretized into 1686 rigid elements (R3D4). The displacements uz of all nodes on the lower
surface of the sample were set to zero to approximate frictionless contact between the
sample and rigid substrate. The remaining surfaces had traction-free boundary conditions.
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The nonlinear geometry option was used to account for large displacements. To explore the
possible role of frictional forces on our results, we included friction in the indenter-sample
and sample-substrate contact conditions. The contact friction was modeled as static
Coulomb friction with a friction coefficient, cf, equal to 0, 0.1, 0.25, 0.5, 0.75, or 1 on both
contacting surfaces.

The seven engineering constants required by the Abaqus FE software (two Young’s moduli,
two shear moduli, and three Poisson’s ratios, of which only three are independent in the
incompressible limit) were calculated from specified values of the nearly incompressible
model parameters (κ, μ, ζ and φ). To generate the values for different combinations of the
strain energy function parameters, the parameters φ and ζ were varied while the ratio κ/μ
was fixed at 200. Indentation simulations were performed with the axis of transverse
isotropy oriented perpendicular to the long axis of the indentation head (e1 = eX). To model
indentation with the fibers aligned with the long axis of the indentation head, the local
coordinate system of the material section was rotated by 90° without changing the
orientation of the indenter (e1= eY). A quasi-static displacement boundary condition for uz
was prescribed for the indentation head in increments of −0.01 mm and equations were
solved with the Abaqus/Standard implicit solver. The maximum prescribed displacement of
the indenter was uz= −0.15 mm, 5% of the simulated sample thickness, which corresponded
to the displacement at the end of the first experimental indentation step.

Because the indentation caused primarily local deformation in the region of the indenter, we
also developed a simplified model geometry consisting of a square sample (15 mm × 15 mm
× 3 mm) with the same symmetry boundary conditions as the round sample geometry and a
somewhat coarser mesh away from the indenter. This square model had fewer elements but
yielded force–displacement estimates within 2% of the round model with a 10-fold
reduction in solution time. The simplified model was used for all parametric studies.

4. Results
4.1. Experimental results

A total of 12 white matter samples and 9 gray matter samples were tested. For 6 of 12 white
matter samples k⊥ was measured before k||, and for the remaining 6, k|| was measured before
k⊥. Typical DST measurements for both white and gray matter samples are shown in Fig.
4(a,b). The peak horizontal displacement of the flexure, Ux, was 0.03 mm, corresponding to
a nominal shear strain of ~1%. Typical indentation measurements for both white and gray
matter samples are shown in Fig. 4(c,d). Consistent mechanical anisotropy was observed in
both DST and indentation tests in corpus callosum white matter tissue.

4.1.1. Results of shear tests—White matter samples were stiffer when tested with the
fibers parallel to the direction of shear (Fig. 3(a)), while no orientation dependence was
detected for the shear moduli of gray matter samples. To compare shear moduli between
samples, we averaged the storage and loss moduli of each sample at frequencies between 20
and 30 Hz. We calculated the estimated shear wavelengths based on the average shear
moduli values and found that the wavelengths were at least 6 times longer than the thickness
of the sample, meaning that inertial effects could be neglected relative to elastic and
viscoelastic effects.

The average storage and loss moduli for white and gray matter samples from the DST tests
are shown in Fig. 5(a). The storage and loss moduli for white matter were significantly
larger when the samples were tested with the primary axonal fiber direction parallel to the
direction of shear regardless of the order in which the two orientations were tested.
However, no significant differences were observed for gray matter between the two
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orientations tested (Fig. 5(b)). The storage and loss moduli ratios (  and ) of
white matter samples were 1.41±0.26 and 1.43±0.29 respectively; for gray matter samples,

the storage and loss modulus ratio ( and ) were 0.96±0.11 and 0.96±0.15 respectively.

4.1.2. Results of indentation tests—White matter samples appeared stiffer when
indented with fibers perpendicular to the long side of the indenter head (Fig. 3(d)) compared
to indentation when fibers were parallel to the long axis. In contrast, gray matter samples
exhibited similar indentation stiffness in both the first and second tests. The indentation
stiffness values for all samples are summarized in Fig. 6(a); indentation stiffness ratios (k⊥/
k|| or kA/kB) are compared for gray and white matter in Fig. 6(b). Average values are also
given in Table 1. For white matter samples, k⊥ was significantly greater than k||, regardless
of the order in which the two tests were performed. This was true for each indentation step,
although the stiffness ratio k⊥/k|| decreased for the second and third indentation step
(2.3±0.7 and 2.1±0.6 respectively). For gray matter samples, there was no significant
difference between kA and kB and the stiffness ratio kA/kB was not significantly different
than one for any of the three steps. The relatively large standard deviations in the stiffness
ratios was likely due to the uncertainty in establishing contact and local variations in
thickness of individual samples. In addition, k|| of white matter samples for each indentation
step was not significantly greater than kA or kB of gray matter samples for the corresponding
step (Fig. 6).

4.2. Finite element model results
To demonstrate the implications of our experiments for modeling of white matter, we used
FE simulations of the indentation experiments to relate indentation stiffness to the values of
the three free parameters (μ; ζ; and φ) of the example constitutive model in Appendix B.
Predicted force–displacement curves were obtained in both material orientations from FE
simulations by setting the parameter φ equal to 0, 0.4 or 0.8 and ζ equal to 0, 2.5, 12.5, or 25
while μ was fixed at 500 Pa. The range for the parameter φ was chosen to span the ranges
observed in DST experiments and the range of ζ was chosen to obtain maximum values of
similar to our indentation experiments. This resulted in 12 combinations of φ and ζ.
Representative FE force–displacement curves are shown in Fig. 7. The maximum
magnitudes of shear strains (~0.2) and fiber strains (~0.1) occurred along the rounded edge
of the indentation head; strains are typically much smaller (<0.05) in the rest of the domain.

When the sample was indented with the fiber direction perpendicular to the long side of the
indentation head, the resistance of the sample to indentation increased with ζ (Fig. 7(a)),
indicating a stronger reinforcing effect by the fibers. The resistance to indentation was
relatively insensitive to the parameter ζ when the sample was indented with the fiber
direction parallel to the long side of the indentation head (Fig. 7(b)). These trends were
observed in additional studies with cf = 0.5 (Fig. 7(c, d)) and with φ = 0.1, 0.25, 0.5 or 1.0
(results not shown). Additional FE simulations with isotropic model parameters (μ=500 Pa,
φ =ζ=0 and cf = 0.1, 0.25, 0.5, or 1.0) were used to estimate the effect of friction on gray
matter indentation stiffness (results not shown).

The model-predicted force–displacement curves for indentation depths of 0–0.15 mm were
fit to a straight line and the slope was used to estimate the indentation stiffness. The stiffness
values obtained with the long side of the indentation head perpendicular to and parallel to
the fiber direction are denoted as k⊥ and k|| respectively. The predicted indentation stiffness
ratio k⊥/k|| increased with ζ (Fig. 8(a)). The ratio k⊥/k|| also increased with φ, but the effect
was minor over the range studied. Friction was important in determining, as shown in Fig.
8(b). When the long side of the indenter head was parallel to the fiber direction, contact
friction with cf = 0.5 increased the predicted k|| by a factor of 1.2. However, when the long
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side of the indentation head was perpendicular to the fiber direction, this level of friction
increased by up to a factor of 2.3. The net result was that friction increases the ratio k⊥/k||.

Since we do not know precise values of the friction coefficient cf for either contact surface,
we estimated a range of possible ζ values for white matter by matching experimental values

of  and (Table 1) assuming that cf = 0.5 or 0.1. First, we identified the value of ζ that
matched the experimental value of for φ =0.4 and cf = 0.5, resulting in a predicted value of ζ
=5.5. We then estimated the value of μ by comparing the predicted value of |k| for the FE
model (where μ=500 Pa with the experimentally measured value for white matter, shown in
Table 1 and scaling, which yielded an estimated μ=0.51±0.27 kPa, slightly larger than the
value of μ2 obtained from DST. For gray matter samples, we matched the experimental
values of kA to the predicted value from FE simulations with ζ =φ=0 and cf = 0.5 to obtain
an estimate for μ=0.58±0.17 kPa, which is larger than the value of μA obtained from DST
(0.29±0.06 kPa). This process was repeated for cf = 0.1, resulting in estimates of ζ =13, and
μ=0.58 kPa for white matter, and μ=0.70 kPa for gray matter (Table 1).

5. Discussion
In this study, we investigated the requirements for general hyperelastic, transversely
isotropic models of white matter in the brain. Clear mechanical anisotropy of white matter
was observed in both shear and indentation tests, while the properties of gray matter did not
appear to depend on direction of loading (testing in arbitrary directions is not conclusive
regarding isotropy in gray matter). We observe that, because white matter exhibits
anisotropy in small deformations involving shear without fiber stretch, as well as during
deformations involving fiber stretch, any strain energy function describing it must depend on
both of the two pseudo-invariants I4 and I5.

5.1. Comparison of estimated tissue parameters to values from prior studies
The shear storage moduli measured in our study at 20–30 Hz ranged approximately from
0.40–0.62 kPa for white matter and 0.30 kPa for gray matter. These values are within the
broad range of values reported in prior research on mammalian brain tissue (Chatelin et al.,
2010) and consistent with previous tests of white matter tissue (corona radiata) under
oscillatory shear tests at 23 °C (Hrapko et al., 2008a).

Our findings that white matter from the corpus callosum is mechanically anisotropic and
gray matter is mechanically isotropic are consistent with the most prior studies. Our
observation that the sample is stiffer when shear is applied in the plane parallel to the fibers,
compared to shear in the plane perpendicular to the fibers, is consistent with the
observations of Prange and Margulies (2002) for the corona radiata, though it differs from
their findings in the corpus callosum. Hrapko et al. (2008a) also found that white matter
tissue from the corona radiata region was mechanically anisotropic, with a stiffness ratio
between maximum and minimum directions of about 1.3. We note also some conflicting
evidence; early studies using human brain tissue (Shuck and Advani, 1972) suggest that
white matter tissue from the corona radiata is isotropic in shear. A more recent study using
DST and rotational rheometry (Nicolle et al., 2005) also concluded that porcine white matter
tissue from the corona radiata does not exhibit significant anisotropy in shear.

Our measurements of shear modulus magnitude are generally consistent with those of other
recent indentation studies. Indentation tests of porcine brain tissue (van Dommelen et al.,
2010) using a spherical indenter (indentation depth 0.1–0.3 mm, indenter diameter 2 mm,
sample thickness ranging from 1 to 2 mm) showed that gray matter has lower indentation
stiffness and lower estimated average shear modulus (μ′=0.75 kPa) than white matter (μ
′=1.0 kPa). Microindentation (indentation depth 40 μm) was recently used to investigate the
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regional mechanical properties of porcine brain tissue (Elkin et al., 2011a). These results
suggest that the equilibrium (steady state) shear modulus is larger in the cortical gray matter
than in white matter from the corpus callosum, but that at short time scales, corpus callosum
white matter is stiffer than cortical gray matter, consistent with our results. However, in
rodents (Christ et al., 2010; Elkin et al., 2011b), white matter was observed to be softer than
gray matter tissue when indented. Using shear tests, Prange and co-authors (Prange and
Margulies, 2002; Prange et al., 2000) investigated regional differences in porcine brain
tissue, and concluded that the average equilibrium modulus of gray matter tissue was about
1.3 times stiffer than the modulus of white matter tissue from the corpus callosum. However,
their shear strain amplitudes (2.5–50%) were much larger than in our tests (1%), and the
equilibrium shear modulus was reported rather than the short-time shear moduli.

5.2. Relationship of model parameters to physical measurements and simulation
In the majority of hyperelastic, transversely isotropic models of fibrous tissue in the
literature, the strain energy function is assumed to depend on the pseudo-invariant I4 but not
on I5 (Ning et al., 2006; Qiu and Pence, 1997; Velardi et al., 2006). Such material models
will predict the same shear modulus for simple shear in planes parallel to the fiber axis as for
shear in planes perpendicular to the fiber axis (Qiu and Pence, 1997). This is inconsistent
with the anisotropy that we observed in our experimental shear tests: the shear modulus is
larger when displacement is applied along the fiber axis. We show that a simple hyperelastic
model can explain the observed mechanical response of white matter, as long as it includes
contributions from both I4 and I5 in the strain energy density function.

The example hyperelastic model we use to illustrate these points (Eq. (B.8), Appendix B) is
based on a strain energy density function that depends in general on four parameters. The
bulk modulus, κ was allowed to become arbitrarily large, to model the assumed near-
incompressibility of white matter. Estimates of three remaining parameters could be
extracted from the small strain data that we acquired. The three parameters were the shear
modulus, μ, the non-dimensional relative shear anisotropy, φ, and the non-dimensional
stretch anisotropy, ζ. Their appearances in the stress–strain relations (Eq. (B.9)) and the
small strain limit of these constitutive laws (Eq. (B.10)) offer insight into their physical
interpretations. Since a Neo-Hookean form was taken for the isotropic foundation of these
models, the constants μ and κ could be fit to small strain data and retain their usual
meanings in the limit of small strain. The shear anisotropy parameter φ appears in the small
strain limit only to describe an additional shear resistance relative to the isotropic shear
modulus μ. However, at larger strains, Eq. (B.9) reveals a potential coupling between this
added shear resistance and the stress in the fiber direction. The tensile anisotropy parameter,
ζ, appears only in terms associated with axial stretching for both small and large strains.
This effect was measurable in indentation experiments, but only for tests in which
specimens were indented with the long axis of the indenter perpendicular to the fibers.

The minimal constitutive law shown in Appendix B is a specialized example model that
could be uniquely fit to data from the small-strain regime, and thus might not be accurate for
injury-level deformation of white matter. However, the current observations should guide
the development of more general, nonlinear hyperelastic models for larger deformations.
Any such hyperelastic model should be consistent with the linear elastic model in the
limiting case of small strain. Specifically, the compliance matrix in the small strain limit of
all such models must reduce to the form of Eq. (B.10) with φ′ >0 μ1> μ2), which requires
that the model must depend on both I4 and I5. Table B1 (Appendix B) lists the values for φ
and ζ predicted by several well-known or recently published material models.

For the combination of shear and asymmetric indentation, experimental estimates of the
values of parameters that govern shear (μ and φ in our example material model) could be
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determined with greater precision than the parameter (ζ in our example) that describes
anisotropy due to fiber stretch. This is largely due to the effects of friction on indentation
force. FE model results demonstrate that the indentation stiffness ratio k⊥/k|| depends on
friction as well as on the parameter ζ, with both friction and anisotropy affecting the amount
of energy stored in material directly beneath the indentor. Prior FE simulation studies of
indentation on soft biological tissues treat the contact between sample and indenter head as
frictionless (Bischoff, 2004; Cox et al., 2006). The current study shows that the effect of
friction can be substantial in the indentation of anisotropic materials, because it affects the
stiffness ratio for parallel and perpendicular indentations. Indentation stiffness perpendicular
to fibers increased with friction, while stiffness during parallel indentation was relatively
insensitive to friction.

In asymmetric indentation experiments the ratio k⊥/k|| may also be influenced by local
variations in sample thickness, local fiber alignment, and initial contact force, making the
standard deviation of the measured stiffness ratio relatively large. When combined with the
uncertainty due to frictional effects, we conclude that precise determination of the parameter
ζ is difficult if not impossible; however, the combination of the FE studies and our
measurements show clearly that white matter has a substantial fiber reinforcement effect.
Using Eq. (B.14) and assuming cf = 0.5, we can estimate the ratio E1/E2 = 6:5 for white
matter from the lamb corpus callosum. This value is somewhat larger than corresponding
estimates for white matter from porcine corona radiata found from uniaxial tests by Velardi
et al. (2006); they obtained a fiber reinforcement parameter ζ =1.7, corresponding to E1/E2
= 2.7. It is possible that corona radiata white matter is in fact less anisotropic than corpus
callosum, which is one of the most highly aligned white matter tracts.

6. Limitations and future work
In this study experimental data obtained at small strains were used to identify infinitesimal
limits for suitable general functional forms of hyperelastic material models of white matter.
Parameter values were estimated for a simple example material model. Identifying the
functional forms of models that capture the large deformation constitutive response of white
matter will require further experimentation. Any such model must meet the requirements
described here, in the limit of small strains.

Nonlinear material properties may contribute to the observed increase of indentation
stiffness with indentation depth (Fig. 6(a)). Also, although an elastic model was used to
describe the mechanical response of brain tissue (focusing on the short-time response), brain
tissue exhibits viscoelastic behavior. After rapid indentation the indentation force relaxed to
about 40% of its peak value, similar to results reported by van Dommelen et al. (2010).
However, the primary goal of this study was to describe the elastic component of the short-
term response of white matter, which should guide the selection and parameterization of
more general hyperelastic and viscoelastic models.

Our models of white matter assume a single, dominant fiber direction, and corresponding
transversely isotropic behavior. Samples were taken from the corpus callosum, one of the
most highly aligned white matter tracts, and our results are generally consistent with the
transversely isotropic model. In white matter in general, and even in the corpus callosum,
fiber crossing may invalidate the assumption of transverse isotropy, and a more general
(orthotropic or other) model may be appropriate. Even if our model is accurate, mis-
alignment between loading direction and fiber direction is possible, and would affect the
accuracy of parameter estimates. Sensitivity analysis performed as part of a prior study
(Namani et al., 2012) showed that mis-alignment of 15° between indenter and fiber axes led
to approximately 10% reduction in the ratio k⊥/k||.
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Experimental measurements were performed ex vivo in this study. Although all tests were
conducted within 5 h of death, material properties may differ from those in the living, intact
brain. Tissue was tested at room temperature (21–23°C), rather than body temperature (37°
C), which likely affects its response, as do perfusion, residual stress, and metabolic state
(Chatelin et al., 2010; Hrapko et al., 2008b). Magnetic resonance elastography (MRE) has
been used to estimate the mechanical properties of soft tissues including brain, in vivo (Atay
et al., 2008; Clayton et al., 2011; Green et al., 2008; Riek et al., 2011; Sack et al., 2008;
Zhang et al., 2011). In MRE, shear waves are imaged by magnetic resonance techniques and
the local wavelength is used to infer viscoelastic parameters. Recent studies of human brain
tissue in vivo have suggested that the short-time shear modulus of white matter tissue is
greater than gray matter (Kruse et al., 2008). In a study involving MRE of the feline brain,
white matter also appeared stiffer than gray matter at 85 Hz (Pattison et al., 2010). MRE
studies of anisotropic wave propagation are possible in the human brain (Romano et al.,
2012), but the inversion problem is complicated by a number of factors and have not been
completely validated. Importantly, for transversely isotropic materials that exhibit
anisotropy in both shear and tension such as we observe, wave speed will depend strongly
on the propagation and polarization directions of shear waves relative to fiber direction
(Parker, 1984). Direct comparison between estimates of anisotropic parameters of white
matter obtained in vivo by MRE and in vitro by mechanical testing is a future goal.

In this study we also demonstrate the utility and limitations of combining two types of tests
to probe mechanical anisotropy of brain tissue. These tests were selected because they are
both sensitive to the degree of mechanical anisotropy under distinct types of mechanical
loading. A more direct measurement of the contribution of I4 might be obtained with tensile
tests of brain tissue samples (Velardi et al., 2006); however, these tests are challenging, due
to difficulty in gripping the samples and minimizing edge (or end) effects in small samples.

7. Conclusions
The combination of shear and indentation tests shows that white matter appears to be
mechanically anisotropic (transversely isotropic) in both extension and shear with respect to
the dominant axonal fiber direction. This anisotropy is likely due to both fiber stretch and
fiber–matrix interactions. To account for this behavior, any hyperelastic material model of
white matter should include contributions of both I4 and I5 in its strain energy density
function.
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Appendix A. Incremental behavior of hyperelastic materials
The incremental behavior of a hyperelastic material can be described using the equations of
linear elasticity (Holzapfel, 2000). The elasticity matrix of a linearly elastic transversely
isotropic material with X1 as its axis of symmetry has five independent parameters and can
be written as (Bower, 2010)

(A.1)

The components of the elasticity matrix can be written in terms of the derivatives of the
strain energy function with respect to the invariants, written as ψi = ∂ψ/∂Ii and ψij = ∂2ψ/
∂Ii∂Ij (i,j = 1, …,5), are given by (Merodio and Ogden, 2003)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

After applying the requirements for zero stress and zero strain energy in the reference
configuration (Eqs. (8)–(10)), we obtain an alternative form for c23:

(A.7)

And substituting into the expression for c44, we obtain

(A.8)

Appendix B. Form of a candidate constitutive model
Prior studies, as well as our own experiments, suggest that white matter is nearly
incompressible and anisotropic in both uniaxial stretch and simple shear deformations; i.e. in
both cases the stress–strain relationships depend on whether displacements are imposed
parallel or perpendicular to the fiber axis. To analyze this behavior, we find that models
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written in terms of an isochoric pseudo-invariant  that contains no contribution from fiber
stretch adopt particularly convenient forms. The deformation gradient may be decomposed
into dilatational and distortional parts (Holzapfel, 2000): F = J1/3 F̄. The modified right and
left Cauchy–Green strain tensors and fiber direction vector are

(B.1)

where C and b are the right and left Cauchy–Green tensors defined earlier. The
corresponding modified principal invariants are

(B.2)

The strain energy Ψ can now be expressed in the form of the modified invariants. A
convenient form of the strain energy function, which can be used successfully to model a
variety of materials, is one written in the decoupled form (Holzapfel, 2000):

(B.3)

where Ψvolumetric and Ψisochoric are volumetric and isochoric components respectively.

We further separate the isotropic and anisotropic contributions to the isochoric component
of strain energy (Merodio and Ogden, 2003; Ning et al., 2006):

(B.4)

In the example that follows, a neo-Hookean strain energy function is chosen for the isotropic
part. Considering the anisotropic part, we note first that Ī5 contains contributions from Ī4

(Merodio and Ogden, 2003). We propose to use an alternative isochoric pseudo-invariant 
that contains no contribution from fiber stretch:

(B.5)

 is a quadratic function of the shear strain in planes parallel to the fiber axis.

To describe the anisotropic component of the strain energy function in a simple material
model, we combine a quadratic term of Ī4 that describes the additional strain energy due to

fiber stretch, and a term proportional to  that describes the effect of fiber–matrix
interactions. The isochoric component of strain energy for this model is

(B.6)

Here μ is the isotropic shear modulus, and ζ and φ are parameters of the anisotropic model.
Finally, we express the volumetric component of strain energy in terms of a bulk modulus κ
and the change in volume (Bower, 2010; Ning et al., 2006):
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(B.7)

To describe nearly incompressible materials like brain tissue, κ will have a large value
relative to the quantities μ, μζμ and φμ. The complete candidate strain energy function is
thus

(B.8)

and the corresponding Cauchy stress tensor is

(B.

9)

As required, the values of Ψ and of all components of σ equal zero in the reference
configuration (Eqs.(9)–(11)).

We now consider small deformations of an incompressible material of this type. The
compliance tensor can be obtained, even for an incompressible material, since strains are
unique for a given stress state. Accordingly, we use Eqs. ((11)–(13)) and ((A.2)–(A.7)) to
obtain the elasticity matrix in terms of the parameters of the compressible strain energy
function of Eq. (B.8): κ, μ, ζ and φ. We then invert the elasticity matrix to obtain the
compliance matrix, and then take the limit as the bulk modulus κ→∞ and the dilatation
J→1. Under these conditions the Voigt matrix form of the compliance tensor in the
reference configuration is

(B.10)

In the left hand side of Eq. (B.10), the compliance matrix is expressed in terms of the three
parameters of the isochoric part of the strain energy function: μ, ζ and φ. In the right hand
side it is expressed in terms of classic engineering constants: two Young’s moduli (E1 and
E2), two shear moduli (μ1 and μ2) and three Poisson’s ratios (ν12, ν21 and ν2). The two
Young’s moduli describe the stresses that arise in uniaxial stretch parallel (E1) and
perpendicular (E2) to the fiber axis. The shear moduli govern the shear stresses during shear
in planes parallel to (μ1) or normal to (μ2) the fiber axis. The Poisson’s ratios νij describe
the strain in the j-direction that arises as a result of stretch in the i-direction. Note that in
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general only five of the seven physical parameters are independent since the moduli and
Poisson’s ratios are related by two additional equations; in the incompressible case the
number of independent parameters is further reduced to three (Spencer, 1984). We see that
for a transversely isotropic material, the shear moduli μ1 and μ2 differ by the value of the

parameter φ, which is the parameter multiplying the  term in the strain energy function. In
the reference configuration:

(B.11)

(B.12)

(B.13)

Table B1

Comparison of parameters μ̃, φ̃, ζ̃ in transversely isotropic material models in the limit of
infinitesimal strain relative to the undeformed reference configuration.

Reference μ̃ φ̃ ζ̃ ψ

Spencer (1984)a,b μT

Qiu and Pence
(1997)

μ 0 γ

Merodio and
Ogden (2005)

μ 0 4γ

Velardi et al.
(2006)

μ 0

Ning et al. (2006) 2C10 0

Gasser et al.
(2006)c

μ 0

Chatelin et al.
(2012)d

2(C10 + C01) 0

Current example μ φ ζ

aε is the infinitesimal strain tensor; A is the fiber direction unit vector. This model is explicitly limited to small strains.
b
Spencer (1984) uses a stiffness matrix that relates the shear stress to the true strain vector, which introduces a factor of 2

in the elements of the stiffness matrix that govern shear in his Eq. (13).
c
For the case of a single fiber family with a mean orientation in the e1 direction, if the dispersion parameter κ equals zero,

all fibers are aligned in the e1 direction. When κ = 1/3, the fibers are isotropically distributed. In the exponential term the

quantity (1–3 κ)I4 is evaluated only if I4≥1.
d
The anisotropic strain energy term is defined by
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where λ̃ is the stretch ratio in the fiber direction.

By comparing components of the compliance matrix and solving for the elastic modulus in
the fiber direction (E1) and perpendicular to fiber direction (E2), we obtain

(B.14)

This equation shows that Young’s modulus is larger for stretch in the fiber direction due to
the parameter ζ. Other engineering constants for the perfectly incompressible case can be
found from μ, φ, and ζ using E2 = μ(4 ζ + 3)/ζ + 1, ν12 = 1/2, ν21 = ν12E2/E1, ν2 = 1− ν21
(Namani et al., 2012).

In the transversely isotropic linear elastic formulation of Spencer (Spencer, 1984), the fiber
reinforcement effect is captured by the analogous parameter β (Namani et al., 2012;
Spencer, 1984). It can be shown that for an incompressible material in the reference
configuration:

(B.15)

Eqs. (B.9)–(B.14) indicate that to fully characterize anisotropy in white matter tissue, even
for infinitesimal deformations, information is needed from tests that involve stretch and
shear in planes both parallel and perpendicular to the fiber axis. We suggest that for
transversely isotropic materials in general, and for white matter in particular,
characterization in the small strain regime is a valuable step.

Motivated by these two example material models, we propose to characterize the elastic
response of general, transversely isotropic, incompressible or nearly incompressible material
models in the small-strain regime by these three parameters defined generally as

i. μ̃, the shear modulus in the plane of isotropy;

ii. φ̃ = (μ1− μ)/μ, the (non-dimensional) difference in shear modulus μ1, relative to μ,
for shear in planes perpendicular to the plane of isotropy; and

iii. ζ̃ = (E1−E2)/E2, the non-dimensional difference in Young’s (tensile) modulus for
stretch along the fiber axis (E1) relative to Young’s modulus for stretch normal to
the fiber axis.

These three parameters can be estimated for any transversely isotropic, hyperelastic material
model in the infinite-simal limit. Table B1 shows the values for several recent models.
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Fig. 1.
Basic model of a transversely isotropic (fibrous) material. Vector A indicates the fiber
direction in the reference configuration. The plane of isotropy is perpendicular to x1.
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Fig. 2.
(a) Lateral sagittal view of lamb brain. The red box indicates the temporal lobe region from
which gray matter samples were harvested. (b) Medial sagittal view of the lamb brain; the
red box indicates the corpus callosum region from which white matter samples were
harvested. (c) Portion of lamb brain showing the corresponding region where (d) gray matter
sample and (e) white matter sample were dissected and punched for experiment. The ruler
below the sample has 1 mm scale increments. Vector A indicates the axonal fiber direction
in the white matter sample. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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Fig. 3.
Sample configurations for mechanical testing of white matter (top view). In shear tests, each
white matter sample was tested with axonal fibers (a) parallel and (b) perpendicular to the
direction of imposed displacement. In indentation tests, each white matter sample was tested
with axonal fibers (a) parallel and (b) perpendicular to the long side of the indenter head.
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Fig. 4.
Representative DST and indentation data from one sample. (a) DST of a white matter
sample tested with the shear loading applied in a plane parallel to the axonal fiber direction
(μ1), or in a plane perpendicular to the axonal fiber direction (μ2). (b) Gray matter sample
tested in one orientation (μA) and then rotated by 90° (μB). Storage and loss modulus
components of the complex modulus, μ′ + iμ″, were measured using DST over the
frequency range 20–200 Hz (only 20–30 Hz is shown). Force–displacement curves in 3-step
indentation were recorded for (c) white matter samples tested with the fiber direction either
parallel (||) or perpendicular (⊥) to the long side of the indenter head, and (d) gray matter
samples tested in one orientation (test A) and rotated by 90° (test B). The solid lines are
linear fits to data obtained when the indentation head is at a constant velocity.
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Fig. 5.
(a) Comparison of storage and loss components of the complex shear modulus of white
matter (n=12 samples) and gray matter (n=9 samples). (b) Ratios of complex modulus
components of white matter and gray matter, estimated by DST over frequency range of 20–

30 Hz. Differences between storage moduli (  and ) and between loss moduli (  and

) for white matter samples were statistically significant (student’s t-test, p<0.01).

Differences between storage moduli ratios (  and ) and between loss moduli

ratios (  and ) for white and gray matter samples were statistically significant
(student’s t-test, p<0.01).
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Fig. 6.
(a) Comparison of indentation stiffness of (a) white matter (n=12 samples) and (b) gray
matter (n=9 samples) for each indentation step. Indentation stiffness measured for white
matter is denoted (for axonal fiber direction parallel to the long axis of the rectangular
indenter head) and k⊥ (fiber axis perpendicular to the long axis of indenter). Indentation
stiffness measured for gray matter is denoted as kA and kB for two orientations of the sample
90° apart. At each indentation step, the difference between k|| and k⊥ was significant
(student’s t-test, p<0.01), but the difference between kA and kB was not significant. (c)
Indentation stiffness ratio of gray and white matter. Differences in the indentation ratio (k⊥/
k|| or kA/kB) for each indentation step between white matter (WM) and gray matter (GM)
samples were significantly different (student’s t-test p<0.01).
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Fig. 7.
Predicted force–displacement curves from finite element simulations of samples indented
with fiber direction (a) perpendicular or (b) parallel to the long side of the indenter head
(frictionless). (c) and (d) Force–displacement curves as in (a) and (b) but with coefficient of
friction, cf, of contacting surfaces equal to 0.5. In all panels κ/μ = 200, μ = 500 Pa, and φ =
0.4, with ζ = 0, 2.5, or 12.5.
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Fig. 8.
Predicted stiffness ratios (k⊥/k||) from the parametric finite element model study of
asymmetric indentation.
(a) The increase in k⊥/k|| with ζ is shown for φ = 0, 0.4 or 0.8 with κ/μ = 200, μ = 500 Pa
and frictionless contact (cf = 0). The dashed horizontal lines indicate the mean experimental
value of k⊥/k|| for white matter samples, plus or minus one standard deviation. (b) The
increase in k⊥/k|| with ζ is shown for cf = 0, 0.1, 0.25 and 0.5 with φ = 0.4 and μ = 500 Pa.
The dashed horizontal line indicates the mean value of k⊥/k|| for white matter samples.
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Table 1

Summary of experimental DST and indentation test results and the associated material parameters of the strain
energy function Ψ; (Eq. (B.8)) estimated from finite element (FE) models of indentation.

Gray Matter White Matter

Measured Elastic (Storage) Components of Shear Modulus

0.29 ± 0.06 0.41 ± 0.42 1.41 ± 0.26

Measured Indentation Stiffness

kA (mN/mm) k|| (mN/mm) k⊥/k||

31 ± 10 28 ± 15 2.7 ± 1.0

Strain Energy Function Parameters Estimated from FE model of Indentation

cf μ(kPa) φ ζ

0.1 0.58 0.4 13

0.5 0.51 0.4 5.5
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