Skip to main content
. Author manuscript; available in PMC: 2014 Jul 1.
Published in final edited form as: J Mech Behav Biomed Mater. 2013 Apr 17;23:117–132. doi: 10.1016/j.jmbbm.2013.04.007

Table B1.

Comparison of parameters μ̃, φ̃, ζ̃ in transversely isotropic material models in the limit of infinitesimal strain relative to the undeformed reference configuration.

Reference μ̃ φ̃ ζ̃ ψ
Spencer (1984)a,b μT
μLμT-1
β4μT+(μLμT-1)
μTtr(ε2)+2(μL+μT)A·ε2·A+β2(A·ε·A)2(inc.)
Qiu and Pence (1997) μ 0 γ
μ2(I¯1-3)+μγ2(I4-1)2(inc.)
Merodio and Ogden (2005) μ 0 4γ
μ2(I¯1-3)+μγ2(I5-1)2(inc.)
Velardi et al. (2006) μ 0
34k
2μ2(λ1α+λ2α+λ3α-3)+2kμα2(I4α/2+I4-α/4-3)(inc.)
Ning et al. (2006) 2C10 0
θ2C10
C10(I¯1-3)+θ2(I¯4-1)2+1D(J-1)2
Gasser et al. (2006)c μ 0
(1-3κ)2k1μ
μ2(I¯1-3)+k12k2[exp{k2[κI¯1+(1-3κ)I¯4-1]2}-1](inc.)
Chatelin et al. (2012)d 2(C10 + C01) 0
C3C46(C10+C01)
C10(I¯1-3)+C01(I¯2-3)+Wfibersd(I¯4)(inc.)
Current example μ φ ζ
μ2[(I¯1-3)+ζ(I¯4-1)2+ϕI¯5]+κ2(J-1)2
a

ε is the infinitesimal strain tensor; A is the fiber direction unit vector. This model is explicitly limited to small strains.

b

Spencer (1984) uses a stiffness matrix that relates the shear stress to the true strain vector, which introduces a factor of 2 in the elements of the stiffness matrix that govern shear in his Eq. (13).

c

For the case of a single fiber family with a mean orientation in the e1 direction, if the dispersion parameter κ equals zero, all fibers are aligned in the e1 direction. When κ = 1/3, the fibers are isotropically distributed. In the exponential term the quantity (1–3 κ)I4 is evaluated only if I4≥1.

d
The anisotropic strain energy term is defined by
λWfibersdλ={0,0<λ<1C3[exp{C4(λ-1)}-1],λ1

where λ̃ is the stretch ratio in the fiber direction.