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Abstract
The tight junction is a multi-protein complex and is the apical most junctional complex in certain
epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of
these proteins in contributing to the barrier function - that is, regulating the paracellular flux or
permeability between adjacent cells. However, tight junction proteins are now recognized as
having functions beyond the barrier. The focus of this review is to discuss the barrier function of
the tight junction and to summarize the literature with a focus on the role of tight junction proteins
in proliferation, transformation, and metastasis.
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1. Introduction
The tight junction (TJ) complex is the apical most junctional complex in many types of
epithelial and endothelial cells. The TJ can be sub-divided into the integral membrane and
cytoplasmic proteins. Occludin, tricellulin, marvelD3, and the claudins (of which there are
27 members [1]) are tetra-spanning membrane proteins whose N- and C-termini reside in the
cytosol and each possesses two extracellular loop regions. Occludin, tricellulin, and
marvelD3 each contain a MARVEL (MAL-related proteins for vesicle trafficking and
membrane link) domain, whereas the claudins do not. The junctional adhesion molecules
(JAMs) are single pass membrane proteins with two IgG-like motifs. The cytoplasmic
adaptor proteins are the zonula occludens or ZO proteins, and are designated ZO-1, -2, and
-3. These proteins link the membrane proteins to the actin cytoskeleton. Collectively, the TJ
imparts two functions in the cell: a barrier function, namely regulating the permeability of
solutes between adjacent cells, and a fence function, controlling the lateral diffusion of
proteins within the lipid bilayer [2, 3]. Traditionally, research efforts focused on the barrier
and fence functions; however, there is a new movement in the field, which is to understand
how TJ proteins participate in cell proliferation, transformation, and metastasis suppression.
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The focus of this review shall be to briefly orient the reader with TJ proteins by describing
their traditional roles followed by a summary of the aforementioned novel functions of this
class of proteins. In addition to the aspects of TJ proteins to be discussed in this review,
these proteins are also key components to cell signaling events; for a review of the role of TJ
proteins with regards to signaling and gene expression, please see Balda and Matter [4].

2. Traditional functions of tight junction proteins
2.1. ZO proteins

ZO-1 was the first TJ protein described and ZO-2 and -3 were subsequently identified by co-
immunoprecipitation studies [5–9]. ZO proteins are classified as members of the membrane
associated guanylate kinase (MAGuK) family and are composed of three postsynaptic
density 95/disc-large/zona occludens (PDZ) domains and one Src homology (SH3) and GuK
domain [10]. Via fusion of biotin ligate to either the N- or C-terminus of ZO-1, it was found
that the ends of the ZO-1 protein are embedded in different functional sub-compartments of
the TJ [11]. The manner in which the ZO proteins interact with the membrane proteins
appears to be specific to each type of membrane protein. The unique-5 (U5) region of ZO-1,
located between the SH3 and GuK domains, is responsible for ZO-1 localization to the TJ
and for the interaction with the distal C-terminus of occludin [12–14]. With the exception of
claudin-12, the conserved C-terminal YV motif of claudins interact with the PDZ domains
of ZO proteins through a conserved C-terminal YV motif [15]. Moreover, the C-terminus of
JAMs contains a PDZ domain-binding motif, which interacts with ZO-1 [16]. ZO-1 and
ZO-2 are critical to junction assembly [17, 18] and permeability [19], respectively, and in
the absence of ZO-1 and -2, cells fail to form TJs [20]. Both ZO-1 and -2 knockouts are
embryonic lethal in mice due to apoptosis and reduced yolk sac angiogenesis and
proliferation [21, 22].

2.2. Occludin
Occludin was the first transmembrane TJ protein discovered [23] and its function in the TJ
remains to be completely understood. Occludin overexpression increases electrical
resistance, implying a pro-barrier phenotype; yet, occludin overexpression increases
permeability to small molecule tracers [24]. While the occludin-null mouse forms intact TJs,
the mice exhibited a variety of abnormal phenotypes including postnatal growth retardation,
thinning of compact bone, calcification in the brain, testicular atrophy, male infertility, loss
of cytoplasmic granuoles in salivary epithelial cells, females not suckling their young, and
gastric inflammation and hyperplasia [25]. Silencing of occludin in vitro increases
permeability to divalent organic cations and also to small molecules under hydrostatic
pressure [26, 27]. Furthermore, in the microvascular endothelial cells of the retina, occludin
regulates vascular endothelial growth factor (VEGF)-induced permeability through its
phosphorylation and subsequent ubiquitination in vitro and in vivo [28, 29]. Shen and
Turner demonstrated a clear network between the actin cytoskeleton and the TJ as actin
depolymerization results in a loss of barrier function mediated through caveolae-dependent
occludin internalization [30]. Furthermore, caveolin-1-dependent occludin endocytosis is
necessary for the tumor necrosis factor-1 mediated loss of barrier function [31]. Clearly,
occludin is a dynamic protein at the TJ.

2.3. Claudins
The claudin family is regarded as the backbone of the TJ [32]. Interestingly, multiple
claudin family members are able to co-exist in the same tight junction strand while other
combinations of claudins fail to do so [33]. Claudins interact with other claudins in the same
cell through their N-terminal extracellular loops (cis-interactions) while claudins interact
with claudins in adjacent cells through their C-terminal extracellular loops (trans-
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interactions) [34]. This cis- and trans-interaction leads to the formation of a “zipper”-like
structure, thus describing the claudin-driven barrier.

Support for claudins as the major drivers of TJ formation is derived largely in part from the
fact that the occludin null mouse is viable and genetic ablation of claudin proteins results in
deleterious barrier-specific phenotypes. Deletion of claudin-1 compromises the epidermal
barrier and is lethal within one day due to excessive water loss [35]. The claudin-5 knockout
mouse has severe brain hemorrhaging and dies within 10 hours after birth [36]. The
claudin-11 knockout is viable; however, the mouse has hind limb weakness, slowed
conductive velocities of the central nervous system, and male sterility [37]. In humans,
mutations in claudins-16 and 19 are associated with hypomagnesemia [38] and renal
magnesium wasting [39], respectively. Analysis of claudin-11 [40] and -14 [41] knockout
mice revealed that these proteins are indispensable for maintenance of endocochlear
potential and cochlear hair cells, respectively, and loss of either leads to deafness. The
claudin-15 knockout will be discussed in the following section. Undeniably, claudins are
essential to the formation of the TJ and proper TJ function is of the upmost importance.

2.4. Junctional adhesion molecules (JAMs)
The JAMs (~40kDa) are a group of proteins that are subdivided as JAM-1 (or A), -2 (or B),
and -3 (or C). JAM-A is a mediator of barrier formation [42, 43] and function [44, 45].
JAM-A is also crucial to polarity [46], potentially through interactions with the polarity
protein PAR-3 [47, 48]. Further, Laukoetter et al. found that JAM-A knockout mice exhibit
increased polymorphonuclear leukocyte infiltration and, consistent with the in vitro study,
increased mucosal permeability [49].

2.5. Tricellulin
Tricellulin is concentrated at regions where three cells form a contact or at the tricellular TJ
(tTJ), thus the name tricellulin. Silencing tricellulin disrupts the tTJ and reduces barrier
integrity to small molecule tracers [50]. In humans with nonsyndromic deafness, there is an
association between hearing loss and four recessive mutations at splice sites of the tricellulin
gene [51, 52]. Furthermore, loss of occludin shifts tricellulin from the tTJ to the bicellular TJ
(bTJ) to compensate for the loss of occludin at bTJ. Thus, these proteins collectively support
the epithelial barrier at bi- and tricellular points [53]. Importantly, tricellulin integrates into
claudin-based TJs independent of binding with ZO-1 [53], although tricellulin can interact
with ZO-1 [51]. Finally, when localized at TJs, tricellulin expression increases electrical
resistance values and decreases permeability; while when expressed exclusively at tTJs,
tricellulin decreases solute permeability to macromolecules but not ions [54].

2.6. MarvelD3
Recently, the third member of the MARVEL containing proteins, MarvelD3, was described.
To date, very little is known about marvelD3. Two independent studies using RNAi
demonstrate phenotypes for marvelD3. Steed and colleagues show that silencing of
marvelD3 does not affect TJs as assessed by immunofluorescence of occludin and ZO-1 nor
does it affect the kinetics of TJ assembly as measured by Ca2+ switch assay. However, in the
Ca2+ switch assay and under normal Ca2+ conditions, marvelD3 silencing eventually
resulted in higher resistance readings [55]. Conversely, Raleigh and colleagues found that
silencing of marvelD3 delays the assembly of TJs [56]. In a recent genome-wide association
study, an intergenic single nucleotide polymorphism near the MARVELD3 gene was linked
to resistance to severe malaria [57]. The interactions between marvelD3 with occludin and
tricellulin is influenced by claudins and these interactions further modulate the function of
claudins [58].
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3. Tight junctions and proliferation
3.1. ZO proteins

Matter and Balda initially conceived the notion that TJ proteins could participate in cell
cycle regulation upon their discovery of the ZO-1 interacting protein ZONAB (ZO-1-
associated nucleic acid-binding protein) [59]. ZONAB interacts with the promoters of cell
cycle regulatory proteins [59] and regulates the ErbB-2 promoter activity and endogenous
ErbB-2 expression [59]. Silencing ZONAB or expressing ZO-1 peptides that bind ZONAB
reduces proliferation rates while ZONAB overexpression increases cell density [5]. ZONAB
also regulates the cell cycle through a direct interaction with PCNA and cyclin D1 [60].
Finally, ZONAB impedes differentiation by direct binding and repression of the megalin and
cubilin promoters [61], whose gene products are large (~600 and 460kDa, respectively)
glycoproteins involved in the absorption of glomerular-filtered substrates in differentiated
tubules (reviewed in [62]). Clearly, the ZO-1-ZONAB protein complex is critical to
regulation of cell proliferation and differentiation.

Intriguingly, ZO-2 appears to participate in proliferation control as a result of its nuclear
accumulation in sub-confluent cultures [63, 64]. ZO-2 interacts with the DNA-binding
protein scaffold attachment factor-B (SAF-B) [64] along with the AP-1 transcription factors
Jun and Fos, and the CCAAT/enhancer binding protein (C/EBP). ZO-2, but not ZO-1,
negatively regulates the promoters of AP-1 target genes [65]. Huerta and colleagues
identified a complex consisting of ZO-2 and c-Myc in which c-Myc binds directly to an E-
box within the cyclin D1 promoter and this complex recruits histone deacetylase 1, thus
repressing cyclin D1 [66]. A follow-up study supports ZO-2 suppression of cyclin D1
through the finding that ZO-2 inhibits the cell cycle at G1/S and shuttles into the nucleus
during G1 and leaves during mitosis, thus providing a model whereby ZO-2 is present in the
nucleus in sub-confluent (i.e. proliferating) cells, but absent from the nucleus and at the TJ
in confluent (i.e. quiescent) cells [67, 68]. Conversely, ZO-2 nuclear accumulation causes an
increase in the M2 type of pyruvate kinase, which is associated with increased proliferation
[69].

3.2. Occludin
While the occludin null mouse exhibited no gross barrier abnormalities, the finding that
these mice exhibit mucus cell hyperplasia [70] suggests that occludin may be involved in
cell proliferation. This supposition is supported by the observations of Phillips et al, who
noted that loss of occludin increases proliferation rates [27]. Surprisingly, occludin was
identified in centrosomes and mutational analysis revealed that occludin may regulate
mitotic entry via centrosome separation in a phosphorylation-dependent manner [71].
Finally, in a cell culture model of uveal melanoma, blood vessel epicardial substance
overexpression lead to an increase in ZO-1 and occludin, which correlates with decreased
cell proliferation [72].

3.3. Claudins
Gene deletion studies in claudin-15 null mice revealed that these mice, which were viable
and developed normally, exhibited a phenotype described as megaintestine [73]. Tamura and
colleagues reported that, when compared with normal littermates, the claudin-15 (−/−)
mouse was found to have an approximate two-fold increase in the size of the upper small
intestine. The authors further characterize this phenomenon and demonstrate an increase in
proliferation of the crypts of the upper small intestine with no changes in apoptosis.
Importantly, there were no changes in the expression of other claudins and the mice did not
exhibit any disease phenotype such as cancer. In ovarian cancer, miR-155 inhibits the
proliferation of ovarian tumor initiating cells by targeting CLAUDIN-1 3′ untranslated
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region (UTR) [74]. However in hepatoma cells, miR-198 upregulates the expression of
claudin-1 and E-cadherin and this regulation contributes to cell growth retardation conferred
by miR-198 overexpression [75].

4. Tight junctions and tumorigenesis
4.1. Epithelial to mesenchymal transition

Epithelial to mesenchymal transition, or EMT, like many physiological processes, is an
essential feature to both pathological and physiological events [76]. The EMT is an
important feature of development, cancer, fibrosis, and pathology [77] and there are a
number of features that distinguish epithelial and mesenchymal cells. Epithelial cells are
characterized by well-developed junctions, an apical-basolateral polarization which is seen
at the cell-cell junction, and the ability to become motile. However, motility is a feature that
is rarely seen under normal physiological conditions [77, 78]. On the contrary, mesenchymal
cells lack polarization due to the loss of an organized junctional layer. Reorganization of the
cytoskeleton and organelles is generally not associated with a lamina [77–80]. Furthermore,
transforming growth factor-beta (TGF-β) treated cells undergo EMT and are subsequently
resistant to apoptosis [81].

In MDCK cells, TGF-β treatment induces EMT concurrent with the loss of claudin-1, -2,
occludin, and the adherens junction protein E-cadherin [82]. Moreover, expression of the
homeodomain protein HOXB7 in MCF10A and MDCK cells represses claudins-1 and -7
and mis-localizes claudin-4 while HOXB7 expressing MDCK cells form tumors in mice
[83]. The pro-EMT repressor Snail directly interacts with E-boxes within the promoters of
occludin and claudins-3, -4, and -7, but not ZO-1, and suppresses their promoter activities
thus reducing mRNA and protein content [84]. The mechanistic manner in which TJ
proteins are repressed during EMT was clarified through the finding that the TGF-β effector
proteins SMAD-3 and -4 complex with the EMT repressor protein SNAIL1 and this
SNAIL1-SMAD-3/4 complex represses occludin and claudin-3 in breast epithelial cells. The
repression of TJ molecules is relieved upon SNAIL-1 or SMAD-4 siRNA-mediated
silencing [85]. While it does not appear that ZO-1 is modified in the same manner that the
claudins and occludin are during EMT, there is evidence that ZO-1 is involved in
dedifferentiation and tumor formation. Reichert and colleagues expressed the PDZ domains
of ZO-1 leading to a lack of TJ localization [86]. Functionally, MDCK cells stably
expressing the ZO-1 PDZ domains fail to differentiate in collagen type I gel cultures, form
tumors in nude mice, and decrease epithelial markers (with a corresponding increase in
mesenchymal markers) [86]. Finally, recent studies have unveiled the findings that
tricellulin [87] and marvelD3 [88] are silenced in EMT settings of gastric carcinoma and
pancreatic cancer cells, respectively.

4.2 Transformation and metastasis
4.2.1. Occludin—Occludin emerged as a critical mediator of transformation from the
discovery that it is transcriptionally repressed following constitutive Raf-1 expression and
subsequent re-expression sufficiently rescued the transformed phenotype [89]. The Raf-1
induced occludin repression is mediated through a direct interaction between activated Slug
and the E-box in the occludin promoter [90]. Congruently, in addition to occludin, claudin-1,
-2 and ZO-1 are repressed by the active Ras signaling cascade, and chemical inhibition of
MEK restores TJs [91–93]. Domain analyses of occludin revealed that the N- and C-
terminal halves along with the second extracellular loop are essential for occludin reversal of
Raf-1 transformation in vitro and tumor formation in vivo, whereas the first extracellular
loop is dispensable to repression of transformation [94]. Loss of the tumor suppressor von
Hippel-Lindau (VHL) down-regulates occludin and claudin-1, independent of E-cadherin. In
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clear cell renal cell carcinoma (CCRCC) cell lines, occludin is reduced in early lesions in
patients with germline VHL mutations [95]. Occludin is epigenetically silenced through
promoter hypermethylation in murine melanoma cells and forced expression of occludin
also reduces migration in melanoma cells. Stable occludin expression in melanoma and
breast cancer cells followed by injection into the craniolateral thorax and mammary fat pad,
respectively, reduces the size of lung metastases [96]. Further, occludin induces premature
senescence in breast cancer cells, which was blocked by chemical inhibition of the MEK
pathway [97].

4.2.2. Claudins—While the current literature suggests that occludin would be an anti-
transformation protein, the verdict on the claudin family is less clear. A great deal of effort
in regards to understanding changes in claudin content in a wide range of cancers is well-
documented in clinically based association studies. In the interest of brevity, the focus of
this section shall be only on those studies where claudin content has been experimentally
manipulated. For a comprehensive review of claudins and cancer, including association
studies, please see Singh et al. [98]. Increased claudin-1 content was reported in human
primary colon carcinomas and metastases as well as in cell lines derived from primary and
metastatic tumors while genetic manipulation of claudin-1 in vitro and in vivo followed by
cellular and rodent based assays supported these observations [99]. On the other hand,
claudin-1 positivity is associated with better patient outcome in lung adenocarcinomas and
genetic manipulation in lung carcinoma cell lines supports claudin-1 as a negative regulator
of metastatic phenotypes and metastasis in vitro and in vivo [100]. Claudin-4 over-
expression in invasive pancreatic cancer cells reduces invasion and survival in soft agar
growth assays and reduces the number of lung metastases following tail vein injection in
mice [101]. Surprisingly, claudins-3 and -4 are overexpressed in ovarian cancer [102, 103]
and these findings are substantiated in human ovarian surface epithelial cells where
overexpression of claudins-3 and -4 increases cell invasion and motility and siRNA studies
support the invasion findings [104]. In ductal carcinoma in situ and invasive ductal
carcinoma of the breast, claudin-7 is down regulated, which correlates with promoter
hypermethylation in breast cancer cell lines; however, this was not the case in invasive
ductal carcinomas [105]. Claudin-2 is increased in colorectal cancer and inflammatory
bowel disease-associated colorectal cancer and expression of claudin-2 in colon cells which
lack claudin-2 expression increases cell proliferation, anchorage-independent growth, and
tumor volume in vivo [106].

4.2.3. Connection of occludin and claudins to stem cell-like phenotype and
lineage/cancer genes—Breast cancers with low gene expression of claudins 3/4/7,
occludin, and E-cadherin were termed “claudinlow” breast cancer by Herschkowitz et al.
[107]. This subtype of breast cancer is mostly triple negative (HER2−, ER−, and PR−) and
shows poor prognosis; furthermore, the claudinlow breast cancer loosely resembles the
mammary epithelial stem cell [108]. With regard to other cancer types, it remains to be
determined if the claudinlow phenotype also correlates with stem cell-like potential.

Thyroid transcription factor 1 (TTF-1 or NKX2-1) is a lung lineage gene that controls
pulmonary development and maturation [109, 110]; it is also the most recurrently amplified
gene in lung adenocarcinomas [111–114]. The gene amplification of TTF-1 suggests a pro-
oncogenic function for TTF-1. However, mouse models implicate tumor-suppressive and
anti-metastatic activities of TTF-1 [115–117]. Taken together, TTF-1 is a cancer gene with
context-dependent functional multiplicity. We recently discovered that both occludin and
claudin-1 are under direct transcriptional control by TTF-1 [118]. TTF-1 knockdown
conferred human lung cancer cells resistance to anoikis, and expression of occludin restored
cellular sensitivity to anoikis. Furthermore, overexpression of occludin impeded migration
and induced anoikis in lung carcinoma cells [118]. Interestingly, analysis of metastatic and
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non-metastatic lung cancer cells from mice revealed that occludin content is associated with
TTF-1 content, whereas loss of TTF-1 has no effect on claudin-1 protein levels.
Collectively, we suggest that the TJ proteins mediate the anti-metastatic activity of TTF-1
and predict that other tissue lineage master regulators may also be functionally linked to the
TJ constituents.

4.3. Genetic evidence linking tight junction molecules to cancer
While the literature is replete with data demonstrating the expression changes of occludin
and claudins in a wide range of cancer types, expression alterations may or may not be
indicative of genetic causes. The experimental observations reviewed so far convincingly
suggest that TJ proteins play positive and negative functional roles in the tumorigenic
process. However, direct evidence of genetic alterations of TJ genes in human cancers has
not been explicitly noted in the literature. In view of the robust cancer genomic studies in the
recent years, we wonder if an inkling of TJ gene mutations could be detected in the cancer
genomic data. To this end, we limit our analysis to the two human TJ genes (OCCLUDIN
and CLAUDIN-1). Using the cBio Cancer Genomics Portal [119], we probed 28 datasets for
mutations and DNA copy number alterations (CNAs) of these two TJ genes. The results, as
shown in Fig. 1, are rather intriguing. First of all, CNAs are the predominant form of genetic
alterations associated with both genes. In the case of occludin, the general trend is a loss of
DNA copy number. This is in line with the common decrease of occludin expression seen in
multiple tumor types [120]. However, for claudin-1, it appears that CLAUDIN-1 undergoes
DNA copy number increases frequently in cervical squamous cell carcinoma and
endocervical adenocarcinoma (30.6%) and lung squamous cell carcinoma (29.2%). These
observations may be counter-intuitive initially. However, a significant overexpression of
claudin-1 was indeed reported in cervical [121] and lung squamous cell carcinomas [122].
Therefore, gene dosage alterations are likely a factor shaping the expression patterns of TJ
molecules.

By functional cancer genomics, TJ-related molecules as a whole are considered a significant
pathway. The evidence came from a transposon-directed mutagenesis study to search for
cooperating mutations with an oncogenic K-Ras allele in promoting murine pancreatic
adenocarcinomas [123]. The results identify the TJ signaling pathway as a cellular process
that is enriched in candidate cancer genes scored positive in the screen. Since the majority of
the genes identified in the transposon insertional mutagenesis screen (90%) are predicted to
be disrupted based on the orientation of the transposon with respect to the gene, an
implication of this study is that most of the candidate cancer genes found by the study to be
associated with the TJ pathway are putative tumor suppressors. Combining this observation
and the CNAs affecting OCCLUDIN and CLAUDIN-1, we suggest that there is putative
genetic evidence linking TJ genes to tumorigenesis. Our simplistic analyses via the cBio
Portal are only meant to provoke researchers to initiate further studies to examine all the TJ
genes for genetic and epigenetic aberrations.

5. Conclusion
The last several years have detailed new insights into the role for TJ proteins in cell
proliferation, transformation, and metastasis. In view of the considerable functional data and
putative genetic evidence connecting TJ factors to the tumorigenic process, we have come a
long way from the early demonstration of TJ attenuation in tumors more than 30 years ago
[124]. While instinctively one would expect TJ dissolution and concomitant downregulation
of TJ factors as a prerequisite for cellular transformation, the reality is that TJ molecule
expression patterns, claudins in particular, are more complex than originally anticipated. In
terms of the intricate balance of regulation of individual TJ factors, we are only beginning to
build a fundamental framework for a holistic understanding. Nevertheless, experimental
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evidence increasingly suggests that TJ proteins are players in initiation and progression of
cancers. Still, a multitude of questions remain. For example, while there have been advances
as to how occludin and claudins come to be lost in highly proliferative settings or during
transformation, little is known with regards to the precise mechanism that these proteins
utilize to intervene on the transformation process. Similarly, it is not yet known if cellular
localization is critical. The ZO proteins have been described at the TJ, but also in the
nucleus where several regulatory events are occurring [67, 68]. A recent study did
demonstrate that occludin is present at centrosomes [71], but this study lacked a mechanistic
understanding of the function of occludin’s presence at these organelles. The use of cell
culture models has been extremely valuable to solidify the claim that TJ proteins participate
in cellular events beyond barrier regulation. Clearly, it is imperative to revisit the knockout
models, perhaps in an inducible setting, to definitively attribute these protein functions to
transformation and metastasis.
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Fig. 1. Cancer genetic alteration profiles of OCCLUDIN and CLAUDIN-1
(A) The OCCLUDIN gene profile was interrogated in these studies: Acute Myeloid
Leukemia (TCGA, Provisional) altered in 0.5% of 187 cases; Bladder Cancer (MSKCC,
JCO 2013) altered in 0% of 97 cases; Bladder Urothelial Carcinoma (TCGA, Provisional)
altered in 3.8% of 26 cases; Brain Lower Grade Glioma (TCGA, Provisional) altered in
0.6% of 169 cases; Breast Invasive Carcinoma (TCGA [125]) altered in 0.4% of 482 cases;
Breast Invasive Carcinoma (TCGA, Provisional) altered in 1.6% of 760 cases; Cancer Cell
Line Encyclopedia [126] altered in 13.2% of 882 cases; Cervical Squamous Cell Carcinoma
and Endocervical Adenocarcinoma (TCGA, Provisional) altered in 0% of 36 cases; Colon
and Rectum Adenocarcinoma [127] altered in 0% of 212 cases; Colon and Rectum
Adenocarcinoma (TCGA, Provisional) altered in 0% of 221 cases; Glioblastoma [128]
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altered in 0% of 91 cases; Glioblastoma Multiforme (TCGA, Provisional) altered in 0.8% of
236 cases; Head and Neck Squamous Cell Carcinoma (TCGA, Provisional) altered in 0.3%
of 302 cases; Kidney Renal Clear Cell Carcinoma (TCGA, Provisional) altered in 0% of 290
cases; Kidney Renal Clear Cell Carcinoma (TCGA, in revision) altered in 0% of 418 cases;
Kidney Renal Papillary Cell Carcinoma (TCGA, Provisional) altered in 0% of 100 cases;
Lung Adenocarcinoma (TCGA, Provisional) altered in 0.8% of 129 cases; Lung Squamous
Cell Carcinoma [129] altered in 0.6% of 178 cases; Lung Squamous Cell Carcinoma
(TCGA, Provisional) altered in 0.6% of 177 cases; Ovarian Serous Cystadenocarcinoma
[130] altered in 0% of 316 cases; Ovarian Serous Cystadenocarcinoma (TCGA, Provisional)
altered in 4.8% of 311 cases; Prostate Adenocarcinoma [131] altered in 0% of 103 cases;
Sarcoma [132] altered in 0% of 207 cases; Skin Cutaneous Melanoma (TCGA, Provisional)
altered in 2.7% of 225 cases; Stomach Adenocarcinoma (TCGA, Provisional) altered in
2.6% of 115 cases; Thyroid Carcinoma (TCGA, Provisional) altered in 0.3% of 318 cases;
Uterine Corpus Endometrioid Carcinoma [133] altered in 1.2% of 240 cases; Uterine Corpus
Endometrioid Carcinoma (TCGA, Provisional) altered in 1.2% of 240 cases. (B) The
Claudin-1 gene profile was interrogated in these studies: Acute Myeloid Leukemia (TCGA,
Provisional) altered in 0% of 187 cases; Bladder Cancer (MSKCC, JCO 2013) altered in 0%
of 97 cases; Bladder Urothelial Carcinoma (TCGA, Provisional) altered in 0% of 26 cases;
Brain Lower Grade Glioma (TCGA, Provisional) altered in 1.8% of 169 cases; Breast
Invasive Carcinoma (TCGA [125]) altered in 2.1% of 482 cases; Breast Invasive Carcinoma
(TCGA, Provisional) altered in 3% of 760 cases; Cancer Cell Line Encyclopedia [126]
altered in 2.3% of 882 cases; Cervical Squamous Cell Carcinoma and Endocervical
Adenocarcinoma (TCGA, Provisional) altered in 30.6% of 36 cases; Colon and Rectum
Adenocarcinoma [127] altered in 0% of 212 cases; Colon and Rectum Adenocarcinoma
(TCGA, Provisional) altered in 0% of 221 cases; Glioblastoma [128] altered in 1.1% of 91
cases; Glioblastoma Multiforme (TCGA, Provisional) altered in 2.1% of 236 cases; Head
and Neck Squamous Cell Carcinoma (TCGA, Provisional) altered in 17.5% of 302 cases;
Kidney Renal Clear Cell Carcinoma (TCGA, Provisional) altered in 0.3% of 290 cases;
Kidney Renal Clear Cell Carcinoma (TCGA, in revision) altered in 1% of 418 cases; Kidney
Renal Papillary Cell Carcinoma (TCGA, Provisional) altered in 0% of 100 cases; Lung
Adenocarcinoma (TCGA, Provisional) altered in 6.2% of 129 cases; Lung Squamous Cell
Carcinoma [129] altered in 29.2% of 178 cases; Lung Squamous Cell Carcinoma (TCGA,
Provisional) altered in 28.8% of 177 cases; Ovarian Serous Cystadenocarcinoma [130]
altered in 13.3% of 316 cases; Ovarian Serous Cystadenocarcinoma (TCGA, Provisional)
altered in 22.8% of 311 cases; Prostate Adenocarcinoma [131] altered in 0% of 103 cases;
Sarcoma [132] altered in 1.4% of 207 cases; Skin Cutaneous Melanoma (TCGA,
Provisional) altered in 2.2% of 225 cases; Stomach Adenocarcinoma (TCGA, Provisional)
altered in 5.2% of 115 cases; Thyroid Carcinoma (TCGA, Provisional) altered in 0% of 318
cases; Uterine Corpus Endometrioid Carcinoma [133] altered in 8.3% of 240 cases; Uterine
Corpus Endometrioid Carcinoma (TCGA, Provisional) altered in 8.3% of 240 cases. The
analyses were conducted using the cBio Cancer Genomics Portal [119]. TCGA, The Cancer
Genome Atlas.
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