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Abstract
A review of the selection of models in dynamic contrast enhanced MRI (DCE-MRI) is conducted,
with emphasis on the balance between bias and variance required to produce stable and accurate
estimates of vascular parameters. The vascular parameters considered as a first-order model are
the forward volume transfer constant, Ktrans, plasma volume fraction, vp, and the interstitial
volume fraction, ve. To illustrate the critical issues in model selection, a data-driven selection of
models in an animal model of cerebral glioma is followed. Systematic errors and extended models
are considered. Studies with nested and non-nested pharmacokinetic models are reviewed; models
considering water exchange are considered.

Introduction
Model selection is a prerequisite for the construction of significant inferences from relevant
observations (1). In physiological studies, model selection has often been viewed as a
definitive first step, to be followed by point estimation of the parameters in the model. A
more data-driven approach, which we shall illustrate, describes model selection as an
iterative process, with an hypothesized model as a first step, and related sub-models or
extensions of the base model tested as alternatives, followed by acceptance, or reduction, or
extension of the model and further testing. This paper reviews the present state of model
selection in dynamic contrast enhanced MRI (DCE-MRI) studies that generally are intended
to construct inferences about the physiological state of a target tissue (e.g. solid tumors). It
compares some competing models, and identifies those recent efforts that show the way
forward toward a stable estimate of physiological parameters obtained via DCE-MRI
studies. The process we describe is data-driven; in order to demonstrate some of the central
elements of data-driven model selection in DCE-MRI, particularly as they relate to sources
of bias, an example from a study in a rodent model of cerebral glioma will be followed.

The Models and Their Parameters
DCE-MRI assessments are intended to allow inferences about the physiological properties
of a target tissue. Vascular and tissue properties of interest might include flow per unit
volume of tissue, i.e. specific flow (F), plasma volume fraction (vp), mean transit time (t̄),
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the rates of transfer of contrast agent (CA) across the microvasculature, parameterized by
the forward volume transfer constant (Ktrans), the reverse transvascular transfer rate constant
(kep), the permeability-surface area product (PS), extravascular extracellular volume fraction
(ve), and the diffusion constant of the indicator in the interstitial space (Di). An updated
review of pharmacokinetic models relevant to the estimate of F, vp, t̄, Ktrans, kep, and ve is
presented by Sourbron and Buckley in this issue. When MRI is used as an in vivo measure
of indicator concentration, transvascular water exchange rate and transcytolemmal water
exchange rate may affect the relationship between MRI contrast and CA concentration.
Studies of water exchange in tissues as it affects measures of T1 have a long history and a
current interest in their own right (2–7). However, this review will focus on water exchange
in tissues as it relates to DCE-MRI studies. Water exchange in pharmacokinetic modeling of
DCE-MRI studies has been most studied in breast cancer (8–10), but there are several
studies in animal models of cerebral tumor that are relevant (11–13).

Bias and Variance - Two Fundamental Concepts
Model comparisons emerge from the problem of parametric point estimation via the
likelihood approach to data analysis, due originally to Fisher, and presented in most texts on
mathematical statistics (14,15) or signal detection (16). The DCE-MRI experiment is an
example of a stationary stochastic process (16). The voxel-by-voxel measurements of image
intensity before, during, and after injection of a contrast agent are viewed as the sampling of
a random variable (signal intensity) with time in a system whose physiological properties (F,
vp, Ktrans, kep, etc.) presumably do not vary during the observation. From the point of view
of likelihood theory, all of the parametric estimates we have named are functions of random
variables (i.e., the DCE-MRI signal intensities), and thus also must be viewed as random
variables to which the fundamental concepts of bias and variance apply.

Bias is a measure of the difference between the expected mean of an experiment that is
meant to estimate the value of a parameter, and the true value of that parameter (15). An
unbiased estimate of a parameter, or of a function of a parameter, is a desirable outcome
because it assures that similarly unbiased estimates can be compared to one another.

Variance, often notated as , in the estimate of a parameter τ(θ) is a measure of its

dispersion around its expected mean. Thus,  gives the investigator an idea about how
close to the true value of τ(θ), on the average, one might expect to sample. It is a
consequence of the Cramér-Rao inequality (14,15) that biased estimates can be expected to
have lower mean-square errors (i.e. lower ‘variances’) than unbiased estimates.

In physical measurements, bias is associated with systematic errors, and variance is
associated with random-like errors. Both types of error influence model choice, with
random-like errors in the estimates of the parameters (and the covariances of the errors)
limiting the number of parameters to be estimated, and systematic errors introducing bias
into the parameters that can be estimated for a given level of signal to noise (S/N).

Systematic errors contribute to signal behavior in a predictable manner, but are not included
in the model employed. Random-like errors do not contribute in a predictable manner, but
introduce variance into the parametric estimates of the model. An example of a random-like
error in a DCE-MRI experiment is the presence of NMR ‘white’ thermal noise in the sample
and coils. Two examples of systematic behavior in a DCE-MRI experiment are the presence

of  dephasing and/or the restricted exchange of water across compartmental boundaries,
with a subsequent loss of image intensity response following contrast agent (CA)
administration (17–19). These two systematic behaviors are mentioned because they are
often not included in the model of signal response to CA tissue concentration, and thus are
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potential sources of systematic error, introducing bias in estimates of the parameters that are
included in the model to describe the behavior of the signal. Without some discriminant
measure other than change in signal intensity after CA, it might be very difficult to
distinguish between these two sources of signal loss in tissue; a model that ignores one while
including the other might yield erroneous inferences.

The Principle of Parsimony
Parsimony expresses as an operating principle that a model should deploy the least number
of parameters that adequately explain the phenomena being studied (1).

It is assumed that the systematic variation of the signal intensity after the administration of
contrast agent can be fully parameterized, and that the fully parameterized model, or some
subset of the full model, can be used to describe each data sample. Model selection
addresses the question of which subset of the full model “best” describes each of the data
samples of time-varying signal, with “best” defined via one of a number of related statistical
and probabilistic approaches that generally deploy some measure of a cost (16) that is to be
minimized.

The exclusion of a particular systematic effect from a model (i.e., the reduction of the set of
parameters) will generally stabilize the estimation of the remaining parameters, but will also
generate bias in their estimates. On the other hand, the inclusion of each parameter increases
the variance of all parametric estimates, and the covariances of the errors in the parametric
estimates. In model choice, these two costs are to be balanced. It should be noted that a
probabilistic approach to model selection will not discriminate between alternative models
that do not differ significantly in their goodness-of-fit. That choice must be made by
comparing the usefulness of the inferences generated by the models.

Comparison of Models in DCE-MRI
Previous work has suggested that typical DCE-MRI data samples in tumor will yield three
(20), or at most four (21,22), stable parametric estimates. In brain, the properties of the
blood-brain barrier dictate that, in the large majority of voxels of DCE-MRI studies, Ktrans

and kep will not be different from zero. Thus, the principle of parsimony mandates that in
order to make useful inferences, those parameters that are most relevant to the dynamic
behavior of the data be selected and fitted.

A number of tests for comparison of alternative models have emerged. If the alternative
models are nested (i.e., setting one and only one of the model parameters to zero produces a
sub-model), a log-likelihood ratio test of the alternative models can be performed (14). If the
alternative models are nested, and the errors of the sample are identical independently
distributed and normal, an F-statistic (23) can be employed to compare model fits – this is a
standard feature of most statistics packages. If the alternative models are not nested, one of a
number of tests based Kullback-Leibler (24) extensions of likelihood theory can be used: the
Akaike information criterion (AIC) (25,26), the Bayesian information criterion (BIC) (27),
or the minimum descriptive length (MDL) (28), among others. A further description of these
statistical tests is well outside the range of this review.

DCE-MRI Data in Relation to Model Selection
Because model selection should be a data-driven process, a close examination of typical data
is demanded, with particular attention to sources of systematic error. As an example of
DCE-MRI data, we will present an analog to human studies (20) in a DCE-MRI study at 7
Tesla in a nude rat implanted with a U251 xenograft model of cerebral glioma (29). The data
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demonstrates a number of systematic behaviors in a typical DCE-MRI experiment that are
not accounted for in commonly used models.

The Initial Model—The full model of the time variation of signal in a DCE-MRI study
should include at least F, Ktrans, kep, vp, and the two half-lives of water exchange (τb for the
protons of blood, and τI for the intracellular water protons) – 6 free parameters in total. In
the following, we will demonstrate other systematic influences on the voxel-by-voxel time
variation of DCE-MRI signal. However, the contrast-to-noise ratio (CNR) usually available
in DCE-MRI allows three (20), or at most four (30) model parameters. Thus, we begin with
a widely used subset of the full model, the standard model (SM) of Tofts et al (31),
sometimes known as the extended Tofts model. Following the initial study, we consider
what additional parameters might be included in the model, given the information in the
measurements.

The SM’s statement of the dependence of CA in tissue is as follows:

[1]

Where t is time, Ct(t) is the tissue concentration of CA, Cp(t) is the plasma concentration,
Ktrans is the forward volume transfer constant, kep is the reverse transfer rate constant, and
vp is the vascular plasma volume fraction. For a compartment diagram of this model, see
Figure 9 of the review “Classic Models…” by Sourbron and Buckley in this issue. This
equation is an approximation of the behavior of an indicator in tissue. The plasma fractional

volume and the blood fractional volume (vb) are related via the following: ,
where Hct is the hematocrit of the microvasculature. The mean value of Hct in large vessels
for adult human populations is about 0.45 (32). Individual deviations from that value and
variation due to the Fahraeus effect (33) will affect the value of Ktrans, and of vp,
proportional to the error in Hct. Thus, an unmeasured variation in microvascular hematocrit
is one of the systematic factors that can bias estimates of Ktrans and vp, but one that is
usually not given much weight because it is probably global in its effect.

It is a standard practice in physics and applied mathematics to state an observation equation,
that is, an equation that relates observables and parameters. In DCE-MRI studies, the
observation equation depends critically on the relation between CA tissue concentration and
MRI contrast. In what follows, we shall assume that the change in the longitudinal
relaxation rate, R1 (R1=1/T1) is proportional to the total amount of CA in the tissue:

[2]

Where ℜ1 is the longitudinal relaxivity of the CA in mM−1sec−1, and [Gd] is the tissue
concentration of Gadolinium, mM. It is a requirement of our assumption of stationarity in
the stochastic process that longitudinal relaxivity is assumed to be a constant. A second
assumption is that longitudinal relaxivity is independent of its location in the tissue. We will
revisit both assumptions when water exchange effects are discussed.

In order to proceed, we must specify a method of acquiring signal. A common tactic is to
follow the change of image intensity in a saturated spoiled gradient recalled echo (SPGRE)
sequence. Other sequences have been employed, e.g. various forms of a Look-Locker (LL)
inversion-recovery imaging experiment (17,18,34–40).

For the SPGRE sequence, the relation between signal and R1(t) is:

Ewing and Bagher-Ebadian Page 4

NMR Biomed. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[3]

Where: Sn(t) is the signal intensity of the nth image in a T1-weighted DCE-MRI procedure, t
is time, M0 is the magnetization of the protons in the voxel, θ is the local tip-angle, TR is the
repetition time between pulses, TE is the echo time, and R1(t) and R2*(t) are the longitudinal
and transverse relaxation rates in the voxel, respectively, as a function of time. When two
echoes are acquired, R2*(t) is computed as follows:

[4]

where S1(t) and S2(t) are the amplitudes of first and second echoes taken at time t. M0 which
is the longitudinal equilibrium magnetization is estimated via equation 3 from R1(0), a prior
independent estimate of the longitudinal relaxation rate and S1(0) and S2(0), the signal prior
to contrast agent injection. Thus, the relationship between ΔR1(t) and CA tissue
concentration is a fairly complex expression when expressed in terms of observables. In the
following, ΔR1(t), if fully related to observables would be expressed as ΔR1(t,S1(t), S2(t),
S1(0), S2(0), TE, TR, R1(0), θ), with additional parameters if water exchange is considered.
This is unwieldy in an observation equation, but the dependencies on observables should be
noted in the following observation equation, equivalent to Equation 1:

[5]

where R1a is the longitudinal relaxation rate of all protons in arterial blood, and R1t is the
longitudinal relaxation rate of all protons in the tissue.

In what follows, we will not consider systematic errors in the setting of θ because in this
example a previous evaluation of the tip-angle across the small extent of the brains of typical
animals demonstrated that it was constant within measurement error (< 3%). However, we
note without further elaboration that, in human studies tip-angle variation across the brain
can vary substantially, particularly at higher fields. The systematic errors in tip-angle will
then propagate into estimates of R1(0), M0, and ΔR1(t), particularly at the high CA
concentrations found in arterial blood, and at as the values of Ktrans become large (41).
Thus, some independent mapping of θ should accompany human DCE-MRI studies.

Examining the Data—To form a concrete example, let us consider a DCE-MRI
experiment carried out in an athymic rat with an implanted xenograft U251 cerebral tumor at
7 Tesla. We will pay particular attention to systematic errors that are not parameterized in
the observation equations, and thus are sources of bias.

The DCE-MRI study consisted of a dual-echo SPGRE (2GE) sequence with the following
parameters: 150 acquisitions at 4.0 sec intervals: matrix: 128×64, three 2.0 mm slices, no
gap, tip angle = 27°, NE= 2 NA=1 TE = 2.0, 4.0 ms, TR = 60 ms, SW=150 kHz. CA (0.25
mmol/kg Magnevist, Bayer Healthcare Pharmaceuticals, Wayne, New Jersey) bolus
injection was performed by hand push at image 15. Total run time was 10 minutes. Prior to
the DCE-MRI sequence, and immediately after, two Look-Locker (LL) sequences were run
so that a voxel-by-voxel estimate of R1(0) in the tissue could be made pre- and post-CA
administration.
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In this example we consider the slice that contains the largest cross-section of the tumor.
Figure 1 presents a post-contrast image in the brain of the rat that will be used as an
example, with an accompanying H&E-stained tissue slide approximating the position of the
MR image. The tumor in both images is flame-shaped, but in the MRI, there is a prominent
rim of bright contrast. This pair of images suggests that, contrary to the assumptions of the
pharmacokinetic model, there may be significant transport of CA after its leakage from the
vasculature of the tumor.

Figure 2 shows the tissue, stained for von Willebrand factor (vessels) and counterstained
with hematoxylin. A margin of (presumably leaky) new vessels surrounds the tumor mass
itself. The stained vessels range in size from 100 microns downward.

Figure 3 presents a set of images from the first echo (TE = 2 ms) of the 2GE sequence,
numbered as to their order after the beginning of data acquisition. As a measure of S/N,
signal to background was about 26:1 in the 5th pre-contrast image. It might be expected that
the major contrast change with the arrival of CA would be due to T1 effects, demonstrated
by a brightening of both vasculature and tissue with leaky microvessels. An examination of
the highly vascular tissues in early images shows otherwise. Image 13 is prior to the arrival
of CA, and image 14 shows the first evidence of CA in the tissue, with darkening of the
blood of the sagittal sinus due to T2* dephasing. A dark rim in and around the tumor region
is evident in the next image (image 15), presumably also because of the presence of CA in
the vessels feeding the tumor. The second (4 ms) echo showed even more profound
decreases in image intensity. It is noticeable that the later images (e.g., image 140) showed
contrast in a more extensive region than did the early images. Either the microvessels in the
periphery of the tumor leaked at a slower rate than those located inward, or the streaming of
tumor exudate carried CA from the leaky region of the tumor to the periphery.

Figure 4 presents a time trace of the signals from the first and second echoes summed over
an ROI selected in the central tumor and corresponding to the Model 3 region (see below,
Figure 6). The strength of the T2* dephasing effect is visible in the second echo of the image
set, where the signal intensity shows an overall decrease in the region lasting for about 10
seconds, followed by an increase in the T1 effect as the CA leaks out. It is evident (see
Figure 2, image number 15) that, in highly vascular regions, the first echo intensity also
decreases for a time.

Given the two echoes’ amplitudes, their echo spacing, the tip-angle of the DCE-T1
sequence, the pre-contrast amplitudes of the first and second echoes, a Look-Locker
estimate of R1(0), and the sequence repetition time, the quantities R1(t) and R2*(t) were
calculated voxel-by-voxel using Equation 4. R1(t) and R2*(t) were then averaged across the
tumor Model 3 region to generate the plots shown in Figure 5. It is clear that the trace of
R1(t), the best available estimate of CA tissue concentration versus time, does not follow
either of the two curves of raw image contrast very well. The curve of R2*(t) is also clearly
not related to that of R1(t), mainly because at 7 Tesla the R2* relaxivity of the CA changes
by as much as a factor of 10 as it leaks out of the microvasculature (42). It should be clear
from Figures 3, 4, and 5 that T2* dephasing is a major source of bias in the estimate of the
tissue concentration-time trace of CA, and that without a measurement of the effect, no ad-
hoc correction will reliably correct for T2* dephasing. Note that, while T2* dephasing is
particularly visible at high fields, since the effect is linear in field strength (43), it is still
present at the lower fields typical of clinical imaging. Thus, T2* dephasing, almost never
measured in clinical DCE-MRI studies, is a potential source of bias in DCE-MRI parametric
estimates.
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Examining the Data: the AIF—In many prior investigations, it was noted that the
arterial input function (AIF) was a dominant source of variability in the parametric
estimates. For instance, Harrer et al (44) noted that two methods of estimating vascular
parameters that should yield approximately equal estimates of vp were not correlated until
the estimates were scaled by their input functions. To cope with the many difficulties of
actually measuring an arterial input function using T1-weighted imaging, the original Tofts
model (45) employed a standardized input function, fitted to a cohort of previously
measured Gd-DTPA concentration curves in healthy human volunteers (46). A reference
tissue approach (47,48) has also been employed to bypass the measurement of the AIF
entirely, but does not allow an estimate of the vascular volume. For slower data acquisition,
and in brain, where the timing lag and dispersion between arterial and venous blood did not
significantly affect the estimate of the time constants, a venous profile was utilized (35,49).
In a clinical study of cerebral glioma, arterial temporal profiles were selected, and then
normalized to the vasculature in normal white matter (20).

In the example we are following, a radiological (i.e. a procedure that employed radiolabeled
CA) input function obtained from previous investigations (49) was adjusted in amplitude to
yield a 1% plasma volume in the normal caudate putamen of the opposite hemisphere. This
input function was then used as an estimate of ΔR1a(t) in equation 2. Although it is a
common practice, the use of a standardized input function, normalized to a tissue, should
generate a bias in all of the parametric estimates. However, even if a good AIF could be
measured at the level of the large vessels, a major artifact in the AIF is created by the
dispersion of the input function as it travels through the feeding vasculature to the tissue
microvessels.

Consider Figure 6. The smooth curve is an averaged arterial concentration-time curve from a
group of rats studied (49) using 14C-tagged Gd-DTPA. The sampling interval of the post-
peak curve varied downward in such a manner that the expected recirculation ‘bump’ was
not seen, but this curve is otherwise a credible input function in large vessels. The other
curve with data points marked, the tissue curve, is the curve of ΔR1(t), gathered and
averaged from the caudate putamen. It is thought that this tissue, normal brain, does not leak
CA in any measurable quantity. Despite the noisiness of the tissue curve, it is clear that the
two curves do not have the same shape, or timing. Consider Equations 3 and 4. If Ktrans = 0,
then these equations state that the tissue response is some small constant (~1%) times the
arterial concentration. That is clearly not the case. There are a number of possible causes of
the visible dispersion that occurs. There may in fact be some penetration of the blood-brain
barrier by the CA; perhaps this small molecule penetrates the tissue of those vessels that are
surrounded by smooth muscle. There is undoubtedly some dispersion in the shape of the
input function that is due to the branching of the vessels between the major arteries, where
the arterial input function must be sampled, and the arterioles that deliver the CA to the
capillary bed of the tissue. There is dispersion in the capillary bed itself, and finally there is
some restriction of water exchange (see below) between the intravascular plasma, where the
CA resides, and the extravascular tissue, where the great majority of tissue water, and
therefore the great majority of MRI signal, resides.

The Model and the Data—Equation 5 states a belief that, despite the effects described
above, the major contributions to the time-dependent behavior of change in the longitudinal
relaxation rate of the tissue are described by: 1) the filling of the vasculature with CA in the
plasma; 2) the leakage of the CA from the microvasculature to the interstitial space; 3) the
reflux of CA from the interstitial space to the microvasculature. These are sequential
conditions: 2 cannot occur without first 1 happening, and 3 cannot occur without 2 first
happening. The parameter vectors that are associated with these three conditions are vp, vp
and Ktrans, and vp, Ktrans and kep. We have named these three models as Model 1, Model 2,

Ewing and Bagher-Ebadian Page 7

NMR Biomed. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and Model 3, respectively, corresponding with the number of parameters to be estimated;
note that these are physiologically and mathematically nested models. In order to cover all
the possible conditions downward, we added a Model 0, in which there is insufficient
evidence for filling of the vasculature with CA.

Model Selection—How are we to decide which model to select for each voxel’s data
sample? In this example, as in previous work (20,36) an “extra sum of squares analysis for
nested variables” (50) was employed to examine which model best described the data. An F
statistic was generated that compared each of the nested models (0, 1, 2, 3), a general
threshold of the F statistic for acceptance of the higher-order model was selected, and the
parameters of the highest-order acceptable model were used for data summary. The fitting
procedures produced, at most, maps of vp, Ktrans, kep, and F-tests for Model 0 vs. 1, Model 1
vs. 2, and Model 2 vs. 3 (F0v1, F1v2, and F2v3, respectively). A nearly complete map of vp
(excepting only Model 0 voxels) could be produced for all MRI slices, a partial map of
Ktrans could be produced for those regions where evidence of leakage was sufficiently
strong, and a smaller map of kep could be presented in those regions where there was
sufficient evidence of tissue-to-vascular reflux.

Examining the Data –Model Fit and Model Failure—Figure 7 presents the result of
voxel-by-voxel model selection in the animal of Figures 1 through 6. In examining Figure 7,
one sees from left to right a nearly complete estimate of plasma volume, vp, a map of Ktrans

in pixels where either Model 2 or Model 3 was accepted, a map of ve, where Model 3 was
accepted, and lastly a map of model choice. A summary table of parametric estimates by
model region is presented in Table 1. Model 3 estimates of Ktrans and ve are in approximate
agreement with those of human studies using MRI-DCE (20), or CT perfusion (51).
Estimates of vp are biased in some Model 2 regions - the yoke-shaped black rim of estimates
for plasma volume in the Model 2 regions surrounding the tumor contains numerous
negative values. Since a negative estimate for vp signals a violation of mass conservation,
there is clear evidence of artifact (i.e., an instance of model failure) in this region. This
region coincides with the rim of bright contrast in Figure 1. The apparent cause of this
model failure is the transport, via tumor exudate streaming, of the CA from interior adjacent
voxels to the voxels where the negative estimates of vp appear.

Graphing sample data and its associated model fit is an elementary step in the development
of relevant inferences. Since they provide intuitive answers, graphical techniques (52–54)
that generate linear fits can be powerful tools in this process. Consider Figure 8, and
equations 3 and 4. DCE-MRI data can be plotted in such a manner that the data, if the model
is correct, can be plotted and fitted to a straight line, the slope of which is Ktrans, with
intercept vp. The ordinate of the graph is called ‘stretch time.’ In Model 2, the abscissa is

calculated as , and in Model 3, the abscissa is calculated as , with
the variable kep iteratively adjusted to yield a best-fit approximation of a straight line to the
data. Note that, for computational purposes, linearizing the problem is unnecessary, since
the optimization problem remains nonlinear (in kep) for Model 3 (but Murase (55) describes
a linear technique for optimization). However, for the purpose of examining model choice,
the practice can be invaluable.

To generate the data and model fit of Figure 8, the time-varying estimates of ΔR1(t) were
summed across the 248 Model 3 voxels of the tumor (Figure 7), the radiological input
function was adjusted as described (see Figure 6), and a single value of kep was iteratively
adjusted until, when plotted as an extended Patlak Plot (36,37), the model reached a best-fit
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solution to the data. This procedure produced a remarkably good fit, with R2=0.997; in our
experience, excellent fits of this model to DCE-MRI data in cerebral glioma are typical (20).
This excellent fit generated the conclusion that, for an individual voxel, three was probably
the upper limit of the number of parameters that could be estimated. However, for the
summed data the fit is not perfect, and, as the residuals in this plot demonstrate, there is
some additional systematic behavior in the first few minutes of tissue response that is not
accounted for in the model.

Further Considerations - Extended Models
As we noted in the Introduction, model selection is iterative. We have pointed to instances
where there is some systematic behavior in the tissue response not accounted for in the
model. Consider the last example, of deviations from the model in the first few minutes after
CA arrival. The candidates for this systematic deviation from the expected linear behavior
are numerous. On the luminal side of the microvasculature, it may be that, in this particular
animal, the radiological input function is not correct; it may be that the heterogeneity of the
tumor in the Model 3 region changes the arrival time and shape of the input function across
the regions of the tumor, and thus, while the radiological input function is approximately
correct, the input function at the various tumor regions is not; in a related hypothesis, it may
be that the dispersion of the arterial input function due to normal flow changes the input at
the tissue level (see Figure 6); it may be that restricted water exchange in the
microvasculature of the tumor changes the apparent longitudinal relaxivity of the tissue in a
concentration-dependent manner (3,17,19,34,56). In the tissue, it may be that convective
transport of the CA takes place at a relatively high rate, thus draining the tissue of CA and
violating the model, which requires that CA, once it extravasates, is reabsorbed in the
vasculature of the same voxel. All of these possibilities are plausible, and in fact may all
contribute to the behavior of the signal in varying amounts. Given the demanding S/N
requirements typical of adding model components to response functions with an exponential
kernel (57), the likelihood that a test can be developed to discriminate between these many
possible contributions appears to be remote. This leaves the investigator with a somewhat
arbitrary choice that depends essentially on an assessment of the most likely main
contributor to the residual behavior of the signal after the first three elements of the model
have been selected. There are a number of model candidates (c.f. Sourbron and Buckley
(58), Koh et al (59), or the review by Sourbron and Buckley in this issue).

In the brain, there is a strong argument for the retention of the three nested models of the
SM. If the SM is to be retained, two major candidates for addition to the SM have been flow
(60–64) and restricted inter-compartmental water exchange (8,10,19,34,65). (In the latter
case, the estimate of vp is often suppressed.) Since S/N is at a premium, and the
heterogeneity of the tumor requires the best spatial resolution available, these two models
compete.

Recent Model Selection Studies in DCE-MRI
In animal studies, model selection in an implanted cerebral glioma has been described (36);
more recently, a model selection paradigm in a DCE-MRI study in patients with
glioblastoma has been published (20). Interestingly, that latter study is methodologically
nearly a recapitulation of an earlier work (44) that considered the same hierarchy of models,
but did not submit the candidate models to formal model testing. Because there are few
formal studies of model selection in DCE-MRI, this paper will consider organs other than
the brain. Note, however, because of the blood-brain barrier, and the absence of lymphatic
drainage in the brain, there are aspects of the vascular physiology of the brain that do not
appear in other organ systems.
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See the review by Sourbron and Buckley in this issue for a description, equations, and
diagram of the two-compartment exchange (2CXM) and adiabatic approximation to the
tissue homogeneity model (AATH) models; these model systems include flow in the model
of the tissue concentration-time response. In DCE-MRI studies, when flow was added to the
basic parameter set of the SM, using either the 2CXM, or the adiabatic approximation to the
tissue homogeneity model (AATH), the instability of the solutions was notable. In fact, in
one paper (62) that estimated flow, distribution volume, PS-product, and vascular volume in
brain using the 2CXM, in the paper that modeled fitting of equivalent parameters using
AATH (64), and in a paper that used AATH in DCE studies in lung (66), all four parameters
were not estimated simultaneously, since “… the two-compartment model having four free
parameters failed to fit the actual data obtained in vivo, as well as in the simulation (62).”
Rather, some tactic was adopted that involved separately fixing the value of at least one of
the parameters while varying the other three. While this jack-knifing approach did yield
reasonable estimates, it should be noted that, because when one parameter is fixed, the final
optimized estimates of model parameters often depend on the starting point of the fitting
procedure, the final parametric estimates were likely to be biased.

In studies that summed data over an ROI drawn by a radiologist, and then fitted temporal
changes in the summed data, we have studies in bladder cancers (67), and in cervical cancers
(63). In both studies, since the concentration-time curve in tissue summed a presumably
large number of voxels (possibly in the hundreds), S/N was enhanced to the point where all
four parameters of the 2CXM model could be simultaneously estimated, and in Bains et al
(67), the matter of whether water exchange was a significant contribution to the time
variation of the data in this typically homogeneous tumor was also examined. In Donaldson
et al (63), an F-statistic was generated for the 2CXM model versus the SM, and it was
concluded that in all 30 patients studied, the 2CXM model generated significantly superior
fits, as judged by the F-statistic. These were significant results, but must be tempered by the
considerations stated above, in which the potential systematic effects of summed data are
discussed, though the choice of bladder cancer (67) significantly ameliorates this concern.

A recent paper using models with as many as the four parameters of the 2CXM, and the
reduced Akaike information criterion (AIC) for model selection on a voxel-by-voxel basis,
investigated vascular parameters in the brains of patients with multiple sclerosis (30).
Notable in this study was the preservation of stability in the model parameters, via
parsimonious approaches to data fitting, while at the same time generating as much useful
information as might be derived in each tissue. The procedures used some advanced imaging
techniques, including view sharing (68) and a 24-channel receiver with an acceleration
factor of 2. Temporal resolution was 2.1 s per image set, with 200 image sets acquired in 7
minutes. No S/N, or CNR figures were given for typical studies.

The Akaike weights, used in model comparison, can be thought of as estimates of the
relative probability of a given model for a given data sample (1,21,22). As such, they can be
used to generate probability-weighted estimates of parameters that candidate models have in
common. For instance, in the example study shown above, Model 2 and Model 3 estimates
of Ktrans could be weighted by their relative probabilities and combined to form a
multimodel estimate of the parameter Ktrans.

Brix et al (21) used a measured (noisy) arterial input function and a realistic simulation
produced by the MMID4 vascular model from the National Simulation Resource at the
University of Washington to construct a realistic tissue response curve. The utility of Akaike
weighting in constructing multimodel estimates of vascular parameters was investigated in
three pharmacokinetic models - the full model with F, PS, vp, and ve - and two reduced
models, a permeability-limited model (PS, vp, and ve), and a flow-limited model (F, vp+ve).
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In the simulations, it was found that there were a number of cases where, due to the
conditions specified in the vascular model, the AIC chose the reduced models. Multimodel
estimates of in-common parameters were found to improve the precision of their estimates.
While estimates of F were found to be biased high in this study, estimates of the other
parameters were approximately unbiased.

Contrary to these results, in a modeling study using the 2XCM model as the ground truth,
and adding a realistic level of noise to the model response to a noise-free input function,
Luypaert et al (22), explored the question of whether a multimodel estimate of 2XCM
parameters would stabilize the estimates. Results were not promising, with a number of
cases shown in which the reduced and full models competed for statistical power, producing
“unexpected increases in the bias and/or uncertainty of the resulting parameter estimates.”
The authors suggest that discrepancy between their findings and those of Brix et al (21) had
to do with the level of noise added to the model curves. Some caution must be exercised in
the interpretation of this study, because, unlike other examples of computer modeling of
multimodel estimates, where admixtures of both higher- and lower-order models were used
to construct the simulated data (1,21), the underlying simulated model in the Luypaert study
was a pure 2CXM model. Nevertheless, the conclusion that the uncertainty in model
selection can lead to large errors in multimodel estimates of parameters must be taken into
account when considering multimodel parametric estimates as an alternative strategy to a
definitive selection of one model per data set.

In most experimental results in the papers we have cited, no statement of measured S/N or
CNR was included in the Results section. While noise power is not the only index of data
quality, it is certainly a useful measure, and, since signal power in MRI studies is fairly well
understood, noise power can be compared between studies and laboratories. A lack of
information about S/N in typical experiments generates uncertainty in tradeoffs between
spatial resolution, temporal resolution, and model selection; its inclusion might generate
standards that real-life studies must reach before parameter sets could be trusted.

Other Models
We have presented a physiologically relevant set of nested models that has the virtue of also
being mathematically nested. The 2CXM and AATH models extend this approach in a
natural manner; both have the strength of allowing causal inferences as to the behavior of
the system under study. Akaike weights may stabilize estimates of model parameters in
vivo. However, there are other approaches to the construction of models, and to inferences
drawn from the models.

George Box has famously said that “all models are wrong, but some are useful (69).” That
represents something of an extremum in scientific approaches to modeling, since it
undermines causality as a link between model and data. Nevertheless, this pragmatic
approach has often been adopted in medical practice because the systems under study are so
complex that often correlation, rather than causality can be established, and in many cases
the correlation can be used to predict response. Thus, it is a widespread practice to discard
the estimate of plasma volume in DCE-MRI (10,45), even though vascular filling with CA
must precede any subsequent leakage. It is noted that plasma volume may be the least stable
estimator of the three parameters of the SM (possibly because of restricted intra- to extra-
vascular water exchange), but this does not necessarily impinge upon its importance, since it
is known that increased vascular volume is a signature of tumor aggressiveness (70).
Additionally, it may be that insufficient temporal resolution (71) and/or an incorrect model
(63) lead to biased results in estimating plasma volume via the SM. To the best of our
knowledge, no formal tests of model choice have been generated to demonstrate that the

Ewing and Bagher-Ebadian Page 11

NMR Biomed. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reduced model is a better choice than the model that includes vp, although Harrer et al (44)
did point out the advantage of the SM versus the original Tofts model that ignored vp.

Other approaches have ignored reflux of indicator from the interstitium to the plasma
(61,72) (as in the original Patlak approach (52)), with the result that ve is not estimated, but
vp and possibly flow (F) are available. For a complete survey of all models presently in use
for DCE-MRI modeling, see Sourbron and Buckley in this issue. Note that, for model
systems that are not nested, likelihood ratio tests and F tests cannot be employed, but
probabilistic tests (AIC, BIC, etc.) can be use.

Water Exchange in DCE-MRI Modeling
The longitudinal relaxation of the protons of water as they encounter paramagnetic
molecules occurs at very small distances – typically nanometers. In liquids, since every
proton has an equal likelihood of encountering a paramagnetic molecule in a given time
interval (i.e. all protons are equivalent), the longitudinal relaxation rate of the ensemble of
protons is proportional to the concentration of the paramagnetic compound. In tissue, where
there are many distinct moieties, the relation between the relaxation rate and CA
concentration is not so straightforward. First, there are restrictions (mainly between the
microvascular endothelium and the interstitium) to the passage of CA, and an absolute
exclusion of the CA from the cellular interior. Since CA is then restricted as to its location,
the access of compartmentalized water molecules to the paramagnetic molecules becomes
important.

In blood, although plasma and erythrocytes form separate compartments, water exchange
proceeds at such high rates that the ensemble of all water protons in blood relaxes with a
single exponential in nearly all conditions (73). On the other hand, in brain, it is known that
significant barriers to water exchange exist across the blood: brain barrier (74). Limits to the
intra- to extra-cellular (transcytolemmal) rate of water exchange may pertain also to the
large volume of water (relative to that of interstitial space) that resides in intracellular
compartments. Given these considerations, a minimum of three compartments of water
should be considered when studying the longitudinal relaxation rate of tissue water protons.

The reader is referred to Paudyal et al (75), where an elegant summary of the compartmental
modeling of water exchange in tissue using a compact matrix notation (equation 1), based on
the model diagrammed in their Figure 1, is presented. This paper extends the earlier work of
Li et al (19), and of Paudyal et al (76).

In the brain, it is assumed that the protons associated with tissue water can be characterized
as residing in one of three following compartments: intravascular, interstitial, or intracellular
with equilibrium water exchange kinetics taking place between these compartments
(18,19,34,77). For modeling longitudinal relaxation rate of tissue water protons, the
intercompartmental equilibrium water exchange kinetics can thus be described by a linear
three-site two-exchange [3S2X] model (19).

Because of their significance in chemistry, systems in exchange have a long history of study
in the NMR and MRI literature (78–81). These prior studies pertain directly to the problem
of longitudinal relaxation in compartmentalized water exchange. In particular, the Bloch-
McConnell equation (79) can be adapted for a system with three species and two exchange
rates. The system of equations that results is a set of three linear differential equations with
cross-terms in their coefficients. It is not the purpose of this review to examine the solution
of these equations, and the tedious algebra associated with that solution (see Li et al (19),
and Paudyal et al (13,75),), but note that, since there are three equations, there are three
characteristic solutions that have the form of Aie−kit, i = 1,2,3, with three values of Ai and ki.
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The ki typically differ by successive factors of 5 or more, but it is a mistake in most MR
experiments with rapidly repeated sampling to assume that the higher ki’s (shorter time
constants) do not contribute to the solution (18,82). This error has been corrected in later
studies (13,19,75),.

Landis et al, using a fast Look-Locker variant called PURR (83) in rat thigh muscle
convincingly demonstrated the effect of transcytolemmal water exchange on the recovery of
longitudinal magnetization (34). The system of equations was reduced to a two compartment
model and a clever method was devised for displaying the very small differences between
the fast-exchange assumption (FXL – the fast exchange limit assuming no restriction of
water exchange) and the fast exchange regime (FXR – moderate restriction of water
exchange). The experimental details were optimized for S/N: a homogeneous section of
thigh muscle was chosen, and 64 slice-selective inversion recovery images were acquired
without phase or read encoding, thus essentially summing all data in the slice. Tip-angle was
kept to 6 degrees (this is an important detail, because the exchange effect is minimized at
higher tip angles), and echo spacing was varied logarithmically, so that the last image was
taken at 9.6 s after inversion. Given the assumption that a single tissue was being studied,
sufficient data was available to detect deviation from a monoexponential recovery from
inversion as CA was administered to the animal, equilibrating in the thigh muscle. A reliable
finding in this investigation was that the response to CA in R1 (R1=1/T1) in tissue did not
follow the response in water: the apparent relaxivity of Gd-DTPA in the tissue was
somewhat lower than that of Gd-DTPA in water. At high concentrations, the effect was
much more noticeable, with the result that, across a range of concentrations, a nonlinearity
of R1 versus CA concentration occurred. These results were supported in brain tumor by
modeling (13), but it was noted that for clinically relevant concentrations of CA, the
discrepancy between an assumption of constant T1 relaxivity (linear relation between R1 and
CA concentration) and the maximum deviation from linearity was probably too small to be
detected in experiments where the tip-angle was around 20° and S/N was typically lower
than 20. When considering error propagation in DCE-MRI estimates, for typical values of
Ktrans in cerebral glioma, the nonlinearities in T1 relaxivity introduced errors that were
generally less than 4%. On the other hand, estimates of plasma volume were expected to be
underestimated by as much as 60%. These results were confirmed by experiment (12). Thus,
in cerebral glioma, restricted water exchange across vascular boundaries is important to
interpreting the outcome of the experiments vis-à-vis DCE estimates of plasma volume, but
is not expected to generate a strong influence on either of the rate constants (Ktrans and kep,
and thus ve) that are the typical products of DCE analysis.

In the full three-compartment model (13,19), there are five parameters that must be
estimated from DCE data: vp, Ktrans, ve, and the two rate constants of water exchange across
the vascular endothelium, and the cellular cytolemma. Given the difficulty of fitting even
four parameters to typical DCE data, the likelihood that five freely varied parameters might
be simultaneously estimated appears remote. In general, then, approaches that include water
exchange have eliminated or fixed two parameters (these are equivalent; eliminating the
parameters fixes their values at zero). The two parameters usually chosen for elimination are
vp and the rate constant for water exchange across the vascular endothelium, leaving a three-
parameter water exchange model (equivalently shutter-speed model, SSM) that estimates
Ktrans, ve, and the mean intracellular water lifetime, τI (10).

A direct comparison of the SSM to the original Tofts model (vp = 0) was undertaken in a
study of DCE-MRI in 9 patients with squamous cell carcinoma of the head and neck (82).
The BIC was used to select the most probable model, and a modified Monte-Carlo
procedure was used to estimate the variances in estimates of model parameters. MRI
procedures employed a clever scheme of interleaved radial acquisitions that allowed
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relatively high temporal sampling (2.5s) while preserving spatial information. The SM was
also studied, but the main comparison employed a three-parameter SSM (Ktrans, ve, and τI,
the intracellular water lifetime). In summed data, and in voxels with rapid uptake curves (but
not in voxels with slower uptake curves), the SSM was selected by the BIC over the Tofts
model. In a voxel-by-voxel analysis using the BIC, the SSM was superior to the Tofts model
in three-quarters of the voxels of the tumor, for all 9 patients. In a separate analysis in three
patients, the SM (vp included in the model), when compared to the Tofts model, was also
shown to improve the data fitbut did not explain the data as well as the SSM.

The statistical methodology of this study was quite thorough, with an appropriate test for
model comparison, and a robust estimator for parametric variances. However, as we have
noted, in a rapidly repeated experiment all of the eigenvalues of the SSM model need to be
included when describing the signal response to a bolus of CA. The study under discussion
employed a two-compartment model system but computed only one of the eigenvalues of
the water exchange model, even though both eigenvalues contribute to the data response as
time goes on in the experiment (13,84). A second reservation about the findings of the study
is that not all plausible alternative models were included for comparison; for the rapidly
filling tissue components, an appropriate comparison model would include flow, since an
examination of typical data (Fig 8) suggests that flow is the obvious competing model to
water exchange.

The three-parameter SSM has most successfully been applied to studies in breast tumors
(9,10,85), with a recent pilot study in prostate cancer (86). MRI procedures were relatively
undemanding (85): four to seven channel phased array breast coils, 13 to 41 s temporal
resolution, 3 mm slice thickness, 256×128 matrix on a 20 to 24 cm2 field of view.
Nevertheless, when considering biopsy-confirmed malignant versus benign lesions in 89
patients, a very high positive predictive value (~98%) was generated by calculating ΔKtrans,
the difference between an estimate of Ktrans generated by the 3-parameter SSM and an
estimate of Ktrans generated by the 2-parameter Tofts model (i.e., the SM with vp set to 0). A
smaller study in prostate cancer yielded similar results. Thus, DCE estimates analyzed using
the SSM yield an extremely significant inference using Box’s criterion of utility. As the
authors note, biopsy is both expensive for, and traumatic to, the patients who are subjected
to it, and the prospect that nearly two-thirds of the patients referred for needle biopsy can be
excluded on the basis of a DCE-MRI study strongly supports the general use of this
approach in screening for malignancies. Also supporting the idea that a significant
component of tissue response is missing when rapidly enhancing lesions are considered is a
previous study using more standard pharmacokinetic analyses that demonstrated a lower
predictive value (87) than the nearly perfect positive predictive value of the parameter
ΔKtrans.

However, ΔKtrans does not translate easily into causal models. What, for instance, would be
inferred from a change downward in ΔKtrans after a therapeutic intervention? What
therapeutic target (e.g. vascular, cellular, cell signaling) should be selected in the event that
is ΔKtrans elevated, and points to a malignancy? In terms of the three parameters to be
estimated, why is it allowable to eliminate plasma volume as a parameter of the model,
when it is known that vascular proliferation is a sign both of malignancy and of likelihood of
metastasis?

One weakness of the treatment of model selection in DCE-MRI studies is that, despite the
tools to objectively select and combine models through the methods of multi-model
parametric estimation (1), there are very few formal studies of alternative models that
include all relevant alternatives. For instance, in the SSM breast cancer studies, no formal
comparison to other three-parameter models (e.g., the three parameters of the SM, vp, ve,
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Ktrans) was performed, so no judgment as to whether the three parameter SSM competitively
provided the best fit to the data, versus other three parameter models, was available. A study
that formally compared the SSM to the SM in the internal obdurator muscle (84) showed no
advantage for the SSM. A comparison of DCE-MRI to dynamic computed tomography
studies in bladder cancer using 2CXM as a model system (67) concluded that transvascular
water exchange might affect the estimate of vp, but the other parametric estimates were
unaffected by either transvascular or transcytolemmal water exchange. These negative
results should be viewed with some caution, because 1) the strength of water exchange
effects depends on the sequence parameters, and particularly on the flip-angle employed, 2)
the amount of CA in the tissue will determine the strength of the transcytolemmal water
exchange effects 3) the tissue under study is an important determinant of the most useful
model.

Finally, we note the increasing use of the formal tools of model selection (20–22,30,66) as a
promising trend. If these tools are applied in a uniform and comprehensive manner to the
matter of model selection in DCE-MRI studies, an objective selection of model, a balance of
bias against variance, and thus a stable and reproducible estimate of model parameters.

Conclusion/Further Work
Model selection does not take place in a vacuum. It is preceded by a full theoretical
description of the model system and an experiment designed to generate a system response
that will allow model parameters to be estimated. Data-driven model selection is then
followed by the generation of inferences based on stable parametric estimates.

In the DCE-MRI experiment, the full set of models that describes the system starts with a
model of MRI data acquisition and image reconstruction combined with a model of signal
response following the introduction of a paramagnetic compound to the vasculature of the
tissue. A plethora of system properties influence the signal response - we have presented and
discussed a number of influences, including T2* dephasing, vascular leakage or the lack
thereof, T1 shortening, water exchange, R2* relaxivity changes, dispersion due to flow,
artifacts in acquiring an input function, etcetera. While it is convenient to treat the data
acquisition as being partitioned, e.g. to consider the phenomena of image formation as
separate from the phenomena of pharmacokinetics, the researcher should keep in mind that
every system property will influence the final analysis, and thus impinge on the inferences
drawn. For instance, we have noted that T2* dephasing and/or water exchange and/or
dispersion due to flow all might contribute to an initial decrease in T1 signal response after
CA administration.

We remind the reader that there is no substitute for good data acquired under an
experimental design that has used a priori knowledge to minimize, or better yet measure,
systematic effects that tend to confound inferences that might otherwise be drawn from the
data.

Biological systems are complex and are generally characterized by “tapering” effects. For
instance, in a DCE-MRI study in a tumor, a main effect across time might be the T1
shortening due to CA leakage. Less dominant effects might be T2* dephasing, dispersion of
the input due to flow, water exchange, and so on. The experiment that gathers the data can
and should be designed to weight the measured response of the system toward the effects
that lead to the inferences that are of interest. For instance, T2* effects can be minimized by
shortening echo times, or can be estimated by acquiring multiple echoes in an SPGRE
experiment. Water exchange effects can be minimized or emphasized by increasing or
decreasing the flip angle.
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Even when the experimental design has been optimized for the desired inference in a
biological system with tapering systematic effects, there will still typically not be enough
information in the data sample to fit the full model. This is where model selection enters.
Model selection is a data driven process that is intended to ideally balance bias and variance
in the analysis of a data set. The virtue of a formal process of model selection, such as we
have described here, is that it generates, in some sense, the ‘best’ set of models that apply to
the data.

Since a useful inference is the final product of experimentation, there are still areas in which
the judgment of the investigators is paramount. If there are two models of the same order
that describe the data equally well, the more useful model might well be chosen. On the
other hand, causality may be a dominant concern, as in our example of physiologically
nested models in the brain.

In DCE-MRI studies, clinically important inferences will eventually dominate model
selection (Box’s criterion of utility). These may well vary from tissue to tissue, and from
pathology to pathology; it may be that, because Ktrans values are very high and flow and
vascular volume are relatively small, water exchange models will be selected in breast
cancer, and, because Ktrans values are relatively low and flow and vascular volume are
relatively high, 2CXM models will be selected in brain tumors (75).

A matter that we have not directly addressed, but is relevant to the model choice problem -
the tradeoff between spatial resolution, temporal resolution, and S/N – should be resolved
for common pathologies in consultation with clinicians. It may be that, in some pathologies,
a more reliable picture of the physiological state of the tissue will trump a better localization
of the pathology. This matter needs attention in the design of experiments, and modification
as experience with the newly available physiological measures establishes their clinical
relevance.

In order to ensure the stability of parametric estimates we recommend for all DCE-MRI
studies that, when higher order models are to be used (3 or 4 parameters), they should be
routinely tested against models of lower order. In the highest-order model systems, plausible
alternative models of the same order should be tested against each other. It may be possible,
given that scenario, to use a probabilistic approach to generate multimodel estimates of
parameters that are common across alternate model systems. S/N figures should be stated for
common sequences in order that noise power can be compared across sites, and estimates of
the variances and covariances of the parametric estimates should be available.
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