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Key points

• Heart rate increases during exercise due to withdrawal of cardiac parasympathetic tone and
increased cardiac sympathetic nerve activity.

• We investigated the autonomic mechanisms whereby heart rate is regulated by the activation
of metabolically sensitive skeletal muscle afferents (muscle metaboreflex).

• Heart rate responses elicited by partial flow restriction during leg cycling (enhanced
metaboreflex activation) and post-exercise muscle ischemia following leg cycling and handgrip
(isolated metaboreflex activation) were evaluated under control (no drug), β-adrenergic
blockade and parasympathetic blockade conditions.

• We show that the muscle metaboreflex principally elevates heart rate by increasing cardiac
sympathetic activity, and only following dynamic exercise with a large muscle mass
(post-exercise muscle ischemia following leg cycling) does the partial withdrawal of cardiac
parasympathetic tone make a contribution to this heart rate response.

• These findings may have implications for patient populations in which alterations in skeletal
muscle afferent sensitivity have been identified.

Abstract We elucidated the autonomic mechanisms whereby heart rate (HR) is regulated
by the muscle metaboreflex. Eight male participants (22 ± 3 years) performed three exercise
protocols: (1) enhanced metaboreflex activation with partial flow restriction (bi-lateral thigh cuff
inflation) during leg cycling exercise, (2) isolated muscle metaboreflex activation (post-exercise
ischaemia; PEI) following leg cycling exercise, (3) isometric handgrip followed by PEI.
Trials were undertaken under control (no drug), β1-adrenergic blockade (metoprolol) and
parasympathetic blockade (glycopyrrolate) conditions. HR increased with partial flow restriction
during leg cycling in the control condition (�11 ± 2 beats min−1; P < 0.05). The magnitude
of this increase in HR was similar with parasympathetic blockade (�11 ± 2 beats min−1),
but attenuated with β-adrenergic blockade (�4 ± 1 beats min−1; P < 0.05 vs. control and
parasympathetic blockade). During PEI following leg cycling exercise, HR remained similarly
elevated above rest under all conditions (�11 ± 2, �13 ± 3 and �9 ± 4 beats min−1, for control,
β-adrenergic and parasympathetic blockade; P > 0.05 between conditions). During PEI following
handgrip, HR was similarly elevated from rest under control and parasympathetic blockade
(�4 ± 1 vs. �4 ± 2 beats min−1; P > 0.05 between conditions) conditions, but attenuated with
β-adrenergic blockade (�0.2 ± 1 beats min−1; P > 0.05 vs. rest). Thus muscle metaboreflex
activation-mediated increases in HR are principally attributable to increased cardiac sympathetic
activity, and only following exercise with a large muscle mass (PEI following leg cycling) is there
a contribution from the partial withdrawal of cardiac parasympathetic tone.
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Introduction

The classic work of Alam & Smirk (1937) indicated that
the arterial blood pressure (BP) response to exercise is
in part driven by a substance(s) present in the muscle
and produced during exercise. Alam & Smirk found that
making the skeletal muscle ischaemic augmented the BP
response to exercise, and that BP remained elevated if
the ischaemia was maintained during the post-exercise
period despite the muscle remaining quiescent. More than
30 years later the reflex nature of this pressor response
was shown, the activation of group III and IV muscle
afferents implicated (Coote et al. 1971; McCloskey &
Mitchell, 1972), and their discharge characteristics in
response to mechanical (mechanoreflex) and metabolic
(metaboreflex) perturbation elucidated (Kaufman &
Rybicki, 1987). Mark et al. (1985) demonstrated that iso-
lated activation of metabolically sensitive skeletal muscle
afferents during post-exercise ischaemia (PEI) sustains the
exercise-induced increase in sympathetic vasoconstrictor
activity directed to the skeletal muscle vasculature.
Animal investigations indicate that skeletal muscle afferent
activation also increases sympathetic activity to the renal
and adrenal vascular beds (Victor et al. 1989; Vissing
et al. 1991; Hayes & Kaufman, 2002). However, how
metaboreflex activation affects the autonomic control of
the heart remains less well understood.

While BP remains elevated during PEI, the
exercise-induced increase in heart rate (HR) is typically
reported to return to baseline following isometric
handgrip (Iellamo et al. 1994; Nishiyasu et al. 1994;
Cui et al. 2001; Fisher et al. 2008, 2010) or isometric
single leg knee extension (Iellamo et al. 1999). One
potential explanation for these different effects is that the
metaboreflex does not influence HR (Rowell & O’Leary,
1990), while an alternative explanation is that during
PEI any sympathetic chronotropic affect is masked by
reactivation of cardiac parasympathetic tone (O’Leary,
1993; Nishiyasu et al. 1994; Iellamo et al. 1999; Fisher
et al. 2010). Reactivation of cardiac parasympathetic
activity may result from baroreflex activation and/or loss
of the inhibitory effects on cardiac parasympathetic tone
from descending signals arising from higher brain centres
in parallel with activation of motor pathways (‘central
command’; Krogh & Lindhard, 1917; Goodwin et al.
1972) and the muscle mechanoreflex (Gladwell et al.
2005). Indirect support of this proposition in humans

comes from the observation that HR variability-derived
indices of cardiac parasympathetic tone are reported
to be augmented during PEI (Nishiyasu et al. 1994;
Iellamo et al. 1999). In addition, administration of the
cholinergic muscarinic blocker glycopyrrolate unmasks a
modest elevation in HR during PEI following low intensity
handgrip, suggesting that the metaboreflex can augment
cardiac sympathetic activity in humans (Fisher et al.
2010). However, in contrast to PEI following handgrip
both HR and BP are markedly elevated during PEI
following dynamic leg exercise (Alam & Smirk, 1938;
Bonde-Petersen et al. 1978). The autonomic alterations
underpinning these differential HR responses to isolated
metaboreflex activation are presently unclear.

Elevations in HR during PEI following leg cycling
are accompanied by reductions in spontaneous cardio-
vagal baroreflex sensitivity and HR variability (Hartwich
et al. 2011, 2013). This apparent reduction in cardiac
parasympathetic tone raises the possibility that iso-
lated muscle metaboreflex activation following leg cycling
reduces cardiac parasympathetic tone, although there
is no direct evidence to support that contention.
Notably, enhancement of muscle metaboreflex activation
during dynamic exercise also causes an elevation in
HR (Bonde-Petersen et al. 1978; Wyss et al. 1983;
Sundberg & Kaijser, 1992; O’Leary, 1993; Sun et al.
1993). Pharmacological studies in dogs demonstrate
that this increase in HR results from an increase in
cardiac sympathetic activity and/or a reduction in cardiac
parasympathetic activity (O’Leary, 1993) and studies in
humans using indirect indices of cardiac autonomic
activity (HR variability) support this (Sun et al. 1993;
Hartwich et al. 2011, 2013). These findings raise the
possibility that muscle metaboreflex activation may under
certain circumstances reduce cardiac parasympathetic
tone in humans. However, this contrasts with the more
commonly accepted view that the elevation in HR due to
muscle metaboreflex activation results from an increase
in cardiac sympathetic activity and additional studies are
required to resolve this issue.

The purpose of the present study was to elucidate
the autonomic mechanisms whereby HR is increased by
the muscle metaboreflex during various modalities of
exercise (i.e. dynamic vs. static) and utilising variable
muscle masses (i.e. one arm vs. two legs). HR and
BP responses to separate trials of leg cycling with
partial flow restriction (Protocol 1) and PEI (Protocol 2)
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were conducted under control (no drug) conditions,
with β1-adrenergic blockade (metoprolol) and with
cholinergic muscarinic blockade (glycopyrrolate). HR
and BP were also monitored during separate bouts
of isometric handgrip followed by PEI under control,
β-adrenergic and parasympathetic blockade conditions
(Protocol 3). We tested the hypothesis that HR returns
to baseline levels during PEI following handgrip due to
reactivation of cardiac parasympathetic nerve activity, but
both withdrawal of cardiac parasympathetic tone and an
increase in cardiac sympathetic activity contribute to the
HR response to muscle metaboreflex activation during leg
cycling with partial flow restriction and PEI.

Methods

The study protocol and procedures were approved by
the ethical review committee in Copenhagen (Protocol
no. H-3-2011-101) and performed in accordance with
the Declaration of Helsinki. Eight male participants
(age 22 ± 3 years; height 183 ± 6 cm; weight 74 ± 2 kg;
mean ± SD) were recruited and after being informed
of the study purpose and potential risks each
participant provided written consent for participation. All
participants were free from cardiovascular, pulmonary,
renal, metabolic and neurological conditions, and
none were taking any prescription or over-the-counter
medications. Participants were requested to avoid
strenuous exercise and alcohol consumption for 24 h,
caffeine intake for 12 h, and food intake for 2 h prior to
testing. Experiments were conducted in a room with a
mean ambient temperature of ∼22◦C.

Experimental measurements

HR was measured using a lead II electrocardiogram
(ECG; BioAmp, ADInstruments, Bella Vista, NSW,
Australia). A catheter (1.1 mm i.d., 20 gauge) was
placed in the left brachial artery and connected to
a pressure transducer (Baxter, Uden, the Netherlands)
positioned at the height of the right atrium. ECG and
BP signals were obtained through a Dialogue 2000
monitor (IBC-Danica, Copenhagen, Denmark) inter-
faced with an analog-to-digital convertor (Powerlab,
ADInstruments) and personal computer equipped with
data acquisition software (LabChart, ADInstruments).
Cardiovascular variables were sampled at 1 kHz and
beat-to-beat values of HR, systolic BP, diastolic BP and
mean arterial pressure (MAP) calculated. When requested
participants provided a rating of perceived exertion (RPE)
using a 6–20 scale (Borg, 1982) as this has been associated
with central command (Mitchell, 1990). Study drugs
were administered through a catheter inserted into a left
forearm vein.

Experimental protocol

The experimental protocol was conducted over two
laboratory visits separated by ∼7–10 days. On the first
experimental visit the control trial was conducted,
followed by either the β-adrenergic or parasympathetic
blockade trial. On the second experimental visit the
remaining trial was undertaken in a counterbalanced
order. The control trials were conducted first to mini-
mise repeated catheterisations and to allow the accurate
determination of the leg cycling workload, which was
based on target HR. Time was given to permit the
participant to recover between each trial (∼15–20 min).

Metoprolol was administered in stepwise infusions
of 1 mg, with full β-adrenergic blockade considered
achieved when HR was unchanged to consecutive doses
(mean group dose 0.15 ± 0.002 mg kg−1). Glycopyrrolate
was also administered in stepwise infusions of
0.2 mg, and complete cardiac parasympathetic blockade
identified when consecutive doses caused no further
increases in HR (mean group dose 17.9 ± 1.2 μg kg−1).
If HR was changed from post-drug resting base-
line values between trials, supplementary doses of
metoprolol (0.011 ± 0.001 mg kg−1) or glycopyrrolate
(4.4 ± 0.6 μg kg−1) were administered until no further
change in HR occurred.

Protocol 1: leg cycling with partial flow restriction.
Participants performed leg cycling exercise in a
semi-recumbent position at 60 r.p.m. using a cycle
ergometer (Krogh, 1913). After a 3 min baseline period,
subjects performed ∼14 min of leg cycling at a low
intensity workload (target HR of 100 beats min−1;
44 ± 8 W). The first ∼3.5 min was used to adjust the
workload to reach the target HR. Following ∼3.5 min
of steady-state cycling (Ex1), bilateral thigh cuffs were
inflated to 100 mmHg (Tournipress Automatic, Speidel
and Keller, Germany) in order to partially restrict
blood flow to the exercising muscles and engage the
metaboreflex. After ∼3.5 min the thigh cuffs were deflated
and a further 3.5 min of steady-state leg cycling under
free-flow conditions was performed (Ex2). RPE was
obtained at the end of both periods of free-flow leg cycling
and leg cycling with partial flow restriction.

Protocol 2: leg cycling and PEI. As described for
Protocol 1, after a baseline period (3 min) participants
performed semi-recumbent cycling for ∼14 min. The
first ∼3.5 min was used to adjust the workload and
reach a target HR of 100 beats min−1 (44 ± 8 W), and
once established ∼10 min of steady-state cycling was
performed. Fifteen seconds before the end of the exercise
bout, bilateral thigh cuffs were inflated to 240 mmHg and
they remained inflated for ∼3.5 min, thus isolating the
activation of the muscle metaboreflex.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Table 1. Heart rate (HR) and blood pressure during leg cycling before (Ex1) and following (Ex2) partial flow restriction (PFR), for the
control, β-adrenergic blockade and parasympathetic blockade conditions

Experimental phase P value

Rest Exl PFR Ex2 Drug Phase Interaction

HR (beats min−1)
Control 64 ± 4 97 ± 2∗ 110 ± 3∗†‡ 100 ± 2∗ < 0.001 < 0.001 < 0.001
β-Block 57 ± 3 83 ± 3∗§ 89 ± 4∗§ 85 ± 3∗§
Parasympathetic block 114 ± 3§¶ 132 ± 4∗§¶ 145 ± 5∗†‡§¶ 135 ± 4∗§¶

SBP (mmHg)
Control 121 ± 3 136 ± 6∗ 157 ± 7∗†‡ 137 ± 6∗ 0.426 < 0.001 0.048
β-Block 116 ± 2 127 ± 4∗ 150 ± 5∗†‡ 129 ± 5∗

Parasympathetic block 120 ± 6 131 ± 5∗ 148 ± 7∗†‡ 131 ± 5∗

MAP (mmHg)
Control 82 ± 2 86 ± 3∗ 105 ± 3∗†‡ 87 ± 3∗ 0.290 < 0.001 < 0.001
β-Block 81 ± 2 84 ± 3 105 ± 3∗†‡ 85 ± 3
Parasympathetic block 90 ± 3∗ 91 ± 4 107 ± 5∗†‡ 91 ± 4

DBP (mmHg)
Control 63 ± 2 65 ± 2 83 ± 3∗†‡ 65 ± 3 0.133 < 0.001 < 0.001
β-Block 64 ± 2 62 ± 3 83 ± 3∗†‡ 63 ± 2
Parasympathetic block 75 ± 3§¶ 69 ± 4∗ 87 ± 4∗†‡ 70 ± 4∗

Values represent means (±SEM) at rest (3 min) and last minute of each experimental phase. SBP, systolic blood pressure; MAP,
mean arterial pressure; DBP, diastolic blood pressure. P values are derived from ANOVA examining main effects of drug, phase and
interaction (drug × phase). ∗P < 0.05 vs. rest, †P < 0.05 vs. Ex1, ‡P < 0.05 vs. Ex2, §P < 0.05 vs. control, ¶P < 0.05 vs. β-blockade.

Protocol 3: isometric handgrip and PEI. While resting
in a semi-recumbent position, participants held a
dynamometer in their right hand. The maximum
voluntary contraction (MVC) was determined as the
greatest of 3–5 efforts, each separated by 1 min. After
a 3 min resting baseline period participants performed
3 min of isometric handgrip at 25% MVC. During
handgrip the force elicited was displayed on a computer
screen to provide feedback to the subject. In the PEI trials,
a cuff (Hokanson Inc., Bellevue, WA, USA) placed around
the upper arm was inflated to 240 mmHg, 15 s before
the end of exercise in order to occlude the circulation
to the exercising muscles. The cuff remained inflated
for ∼3.5 min to isolate muscle metaboreflex activation.
One subject did not tolerate the PEI following handgrip
and was omitted from the analyses of data from this
protocol.

Data analysis

Comparisons of variables were made using repeated-
measures ANOVA. Significant main effects
and interactions were explored using post hoc
Student–Newman–Keuls tests. Statistical significance was
set at P < 0.05. Analyses were conducted using SigmaStat
for Windows (Jandel Scientific Software, SPSS, Chicago,
IL, USA).

Results

Protocol 1: leg cycling with partial flow restriction

As intended, resting HR increased with parasympathetic
blockade and tended to be reduced with β-adrenergic
blockade (P = 0.064; Table 1 and Fig. 1). HR increased
during leg cycling under all conditions. In the control
condition, partial flow restriction to enhance muscle
metaboreflex activation during leg cycling caused a
further increase in HR (�11 ± 2 beats min−1; P < 0.05 vs.
Ex1). HR also increased during partial flow restriction
with parasympathetic blockade, and the magnitude
of the increase was similar to that under control
conditions (�11 ± 2 beats min−1). In contrast, with
β-adrenergic blockade the HR response to partial flow
restriction was significantly attenuated in comparison
to control and parasympathetic blockade conditions
(�4 ± 1 beats min−1) and there was only a tendency for
HR to increase from the prevailing level established during
leg cycling (P = 0.09 vs. Ex1). Upon cessation of partial
flow restriction HR fell under control and parasympathetic
blockade conditions and returned to steady-state exercise
levels (P > 0.05 Ex 1 vs. Ex2).

Resting MAP was unaltered with β-adrenergic blockade
(P > 0.05 vs. control; Table 1 and Fig. 1), but increased
with parasympathetic blockade (P < 0.05 vs. control).
MAP increased slightly during exercise in all conditions,
but this increase only reached statistical significance in the
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control condition. Partial flow restriction increased MAP
(P < 0.05) to a similar extent in all conditions (�18 ± 2,
�21 ± 1 and �17 ± 2 mmHg in the control, β-adrenergic
and parasympathetic blockade conditions, respectively;
P > 0.05 between conditions) and fell following cessation
of partial flow restriction to steady-state exercise levels
(P > 0.05 Ex1 vs. Ex2). RPE was significantly increased

during partial flow restriction to a similar extent
in all conditions (Ex1, 9 ± 0.5, 9 ± 1 and 9 ± 0.4;
partial flow restriction, 13 ± 0.5, 14 ± 1 and 14 ± 1;
Ex2, 9 ± 0.5, 9 ± 1 and 9 ± 0.5 arbitrary units (a.u.),
for the control, β-adrenergic and parasympathetic
blockade conditions, respectively; P > 0.05 between
conditions).

Figure 1. Heart rate (HR) and mean arterial pressure (MAP) during leg cycling before (Ex1) and following
(Ex2) partial flow restriction (PFR), for control, β-adrenergic blockade and parasympathetic blockade
conditions
A, 1 min averages of HR during all experimental phases; B, change in HR elicited by partial flow restriction (PFR)
from the HR during leg cycling (average of last minute of Ex1 and Ex2). C, 1 min averages of MAP during all
experimental phases; D, change in MAP elicited by partial flow restriction (PFR) from the MAP during leg cycling
(average of last minute of Ex1 and Ex2). Control, black symbols and bars; β-adrenergic blockade, light grey symbols
and bars; parasympathetic blockade, dark grey symbols and bars. Ex1, leg cycling exercise prior to PFR; Ex2, leg
cycling following PFR; Rec, recovery. ∗P < 0.05 vs. control, †P < 0.05 vs. β-blockade.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Table 2. Heart rate (HR) and blood pressure during leg cycling (Ex) and post-exercise ischaemia (PEI) for the control, β-adrenergic
blockade and parasympathetic blockade conditions

Experimental phase P value

Rest Ex PEI Drug Phase Interaction

HR (beats min−1)
Control 66 ± 3 99 ± 2∗ 77 ± 2∗† < 0.001 < 0.001 < 0.001
β-Block 56 ± 3§ 85 ± 3∗§ 69 ± 2∗†
Parasympathetic block 114 ± 3§¶ 132 ± 4∗§¶ 123 ± 5∗†§¶

SBP (mmHg)
Control 116 ± 2 132 ± 4∗ 132 ± 3∗ 0.656 < 0.001 < 0.001
β-Block 112 ± 2 123 ± 3∗ 133 ± 4∗†
Parasympathetic block 117 ± 4 127 ± 4∗ 126 ± 5∗

MAP (mmHg)
Control 78 ± 2 84 ± 2∗ 94 ± 2∗† 0.177 < 0.001 < 0.001
β-Block 78 ± 2 81 ± 2 100 ± 3∗†
Parasympathetic block 89 ± 3§¶ 88 ± 3 99 ± 4∗†

DBP (mmHg)
Control 61 ± 2 62 ± 2 75 ± 2∗† 0.041 < 0.001 < 0.001
β-Block 61 ± 2 61 ± 3 80 ± 3∗†
Parasympathetic block 74 ± 3§¶ 68 ± 3∗ 83 ± 4∗†

Values represent means (±SEM) at rest (3 min) and last minute of each experimental phase. SBP, systolic blood pressure; MAP, mean
arterial pressure; DBP, diastolic blood pressure. P values are derived from ANOVA evaluation of main effects of drug, phase and
interaction (drug × phase). ∗P < 0.05 vs. rest, †P < 0.05 vs. Ex, §P < 0.05 vs. control, ¶P < 0.05 vs. β-blockade.

Protocol 2: leg cycling and PEI

Resting HR was increased with parasympathetic
blockade (P < 0.05) and decreased with β-adrenergic
blockade (P < 0.05; Table 2 and Fig. 2). HR increased
during leg cycling under all conditions, but the
magnitude of the increase in HR with parasympathetic
blockade (�18 ± 3 beats min−1) was less than that
under control (�33 ± 3 beats min−1) and β-adrenergic
blockade (�29 ± 3 beats min−1) conditions (P < 0.05).
During PEI, HR remained elevated in all conditions
(P < 0.05). The magnitude of the elevation in HR
during PEI was not significantly different under
control (�11 ± 2 beats min−1), β-adrenergic blockade
(�13 ± 3 beats min−1), and parasympathetic blockade
(�9 ± 4 beats min−1) conditions.

Resting MAP was increased with parasympathetic
blockade (P < 0.05 vs. control and β-adrenergic
blockade), but unaltered with β-adrenergic blockade
(P > 0.05 vs. control). MAP was slightly increased from
rest during leg cycling under control conditions, but not
with parasympathetic or β-adrenergic blockade (Table 2).
During PEI, MAP was elevated above rest and exercise
levels (P < 0.05) in all conditions. The elevation was
greater with β-adrenergic blockade (�22 ± 3 mmHg)
than control conditions (�16 ± 2 mmHg; P < 0.05), and
lower with parasympathetic blockade (�10 ± 2 mmHg;
P < 0.05 vs. control and β-adrenergic blockade; Fig. 2).
RPE was similar during leg cycling under all conditions
(9 ± 0.5, 9 ± 1 and 9 ± 1 a.u., for the control, β-adrenergic

and parasympathetic blockade conditions, respectively;
P > 0.05).

Protocol 3: isometric handgrip and PEI

Resting HR was increased with parasympathetic blockade
(P < 0.05) and tended to be decreased with β-adrenergic
blockade prior to isometric handgrip (P = 0.079;
Table 3 and Fig. 3). During handgrip, HR increased
similarly under all conditions (�26 ± 3, �18 ± 2
and �18 ± 3 beats min−1 for control, β-adrenergic and
parasympathetic blockade conditions). During PEI,
HR was slightly elevated from rest under control
conditions (�4 ± 1 beats min−1, P < 0.05 vs. rest) and
tended to be elevated with parasympathetic blockade
(�4 ± 2 beats min−1, P = 0.06 vs. rest). In contrast, with
β-adrenergic blockade HR was not significantly elevated
from rest (�0.2 ± 1 beats min−1).

MAP was increased with parasympathetic blockade
at all experimental phases (P < 0.05 vs. control and
β-adrenergic blockade), but unaltered with β-adrenergic
blockade (P > 0.05 vs. control). During handgrip, MAP
was increased from rest similarly in all conditions, and also
remained elevated during PEI to a similar extent under all
conditions (P < 0.05 vs. rest; P > 0.05 between conditions;
Table 3 and Fig. 3). RPE was similar during handgrip under
all conditions (17 ± 1, 17 ± 1 and 16 ± 1 beats min−1, for
the control, β-adrenergic and parasympathetic blockade
conditions, respectively; P > 0.05).
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Discussion

We aimed to determine the sympathetic and
parasympathetic contribution to the HR response
elicited by partial flow restriction during leg cycling
(enhanced metaboreflex activation) and post-exercise
muscle ischaemia following leg cycling and handgrip (iso-
lated metaboreflex activation). The main novel findings
are: (1) increases in HR elicited by partial flow restriction
during leg cycling were attenuated by β-adrenergic
blockade, but unaffected by parasympathetic blockade; (2)
the elevation in HR during PEI following leg exercise was

the same under control (no drug) conditions,β-adrenergic
blockade, and parasympathetic blockade. In contrast, the
modest elevation in HR during PEI following handgrip
was abolished with β-adrenergic blockade, as has been
shown previously (Fisher et al. 2010). Taken together these
findings indicate that the muscle metaboreflex principally
increases HR by an increase in cardiac sympathetic
activity, and only following dynamic exercise with a large
muscle mass (i.e. PEI following leg cycling) does the
partial withdrawal of cardiac parasympathetic tone make
a contribution to this HR response.

Figure 2. Heart rate (HR) and mean arterial pressure (MAP) during leg cycling and post-exercise
ischaemia (PEI) for the control, β-adrenergic blockade and parasympathetic blockade conditions
A and C, 1 min averages of absolute HR and MAP, respectively, during all experimental phases of the control
(black symbols), β-adrenergic blockade (light grey symbols) and parasympathetic blockade (dark grey symbols)
conditions. B and D, change in HR and MAP, respectively, elicited at the last minute of leg cycling (Ex, black bars)
and PEI (dark grey bars) in each condition. Rec, recovery. ∗P < 0.05 vs. Ex, †P < 0.05 vs. control; ‡P < 0.05 vs.
β-blockade.

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Table 3. Heart rate (HR) and blood pressure during isometric handgrip and post-exercise ischaemia (PEI) for the control, β-adrenergic
blockade and parasympathetic blockade conditions

Experimental phase P value

Rest Handgrip PEI Drug Phase Interaction

HR (beats min−1)
Control 68 ± 5 94 ± 4∗ 72 ± 4∗† < 0.001 < 0.001 < 0.001
β-Block 58 ± 4 76 ± 4∗§ 58 ± 3†§
Parasympathetic block 116 ± 3§¶ 133 ± 4∗§¶ 120 ± 4†§¶

SBP (mmHg)
Control 122 ± 4 152 ± 6 147 ± 6 0.091 0.001 0.635
β-Block 110 ± 2 140 ± 3 137 ± 5
Parasympathetic block 120 ± 4 150 ± 6 143 ± 5

MAP (mmHg)
Control 82 ± 2 122 ± 4 108 ± 4 0.039 0.001 0.077
β-Block 76 ± 2 109 ± 3 103 ± 4
Parasympathetic block 90 ± 3 118 ± 4 111 ± 4

DBP (mmHg)
Control 63 ± 2 87 ± 3 82 ± 3 < 0.001 < 0.001 0.080
β-Block 60 ± 2 90 ± 3 82 ± 4
Parasympathetic block 73 ± 3 99 ± 3 92 ± 4

Values represent means (±SEM) at rest (3 min) and last minute of each experimental phase. SBP, systolic blood pressure; MAP,
mean arterial pressure; DBP, diastolic blood pressure. P values are derived from ANOVA examining main effects of drug, phase and
interaction (drug × phase). ∗P < 0.05 vs. rest, †P < 0.05 vs. Ex, §P < 0.05 vs. control, ¶P < 0.05 vs. β-blockade.

Following seminal work in dogs (O’Leary, 1993),
evidence from studies in humans has indicated that during
PEI following handgrip exercise there is an augmentation
of both cardiac sympathetic and parasympathetic activity.
Nishiyasu et al. (1994) noted that indices of cardiac
parasympathetic tone, derived from HR variability
analyses, were augmented during PEI following iso-
metric handgrip, although HR had returned to base-
line levels. During modest muscle metaboreflex activation
with PEI following low intensity isometric handgrip,
pharmacological blockade of cardiac parasympathetic
tone reveals a sympathetically mediated increase in HR
(Fisher et al. 2010). This suggests that the effect of
the metaboreflex on cardiac sympathetic nerve activity
can be antagonised by enhanced parasympathetic tone
during PEI (O’Leary, 1993; Nishiyasu et al. 1994; Iellamo
et al. 1999; Fisher et al. 2010). This may in part be
due to the cessation of central command and muscle
mechanoreceptor activation at the termination of exercise,
since they have been reported to inhibit cardiac
parasympathetic control during muscular contraction
(Mitchell et al. 1989; McWilliam & Yang, 1991; McWilliam
et al. 1991; Gladwell et al. 2005). In addition, the
elevation in BP during exercise may stimulate the arterial
baroreceptors and elicit a reflex increase in cardiac
parasympathetic tone (O’Leary, 1993; Nishiyasu et al.
1994; Iellamo et al. 1999; Fisher et al. 2010). In the present
study, and as shown during PEI following high intensity
handgrip (Fisher et al. 2010), when the metaboreflex
is robustly activated HR is modestly elevated during

PEI and although this is unaltered by parasympathetic
blockade it is attenuated with β-adrenergic blockade.
Thus, with robust metaboreflex activation increases in
cardiac sympathetic nerve activity may prevail over
enhanced cardiac parasympathetic tone.

Whereas little to no elevation in HR is noted during PEI
following handgrip (Nishiyasu et al. 1994; Iellamo et al.
1999; Fisher et al. 2010), HR may be elevated substantially
during PEI following leg exercise (Alam & Smirk, 1938;
Bonde-Petersen et al. 1978). This too may be explained
by a robust metaboreflex activation evoking a profound
increase in cardiac sympathetic activity that overpowers
any increase in parasympathetic activity. However, indirect
indices of cardiac parasympathetic activity derived from
HR variability analyses are reduced to below baseline
levels during PEI following leg cycling exercise (Hartwich
et al. 2011, 2013). Therefore, withdrawal of cardiac
parasympathetic activity may also contribute to the
increase in HR under these conditions. We found an
elevation in HR during PEI following leg exercise under
control conditions that was no different to that with
β-adrenergic or parasympathetic blockade. Thus, both the
withdrawal of cardiac parasympathetic activity and/or
the activation of cardiac sympathetic activity appear able
to elicit the increase in HR during PEI following leg
exercise. This apparent redundancy in the autonomic
neural control of HR by the metaboreflex highlights
the complexity of cardiac sympathetic–parasympathetic
interactions during exercise (Levy, 1971). It is difficult
to provide an explanation for the differential effects of
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isolated muscle metaboreflex activation in the forearm
and legs on the autonomic regulation of HR, but
differences in muscle mass, exercise modality (isometric
vs. dynamic exercise) and skeletal muscle fibre type remain
as possibilities.

An alternative approach to PEI for studying the
autonomic effects of the muscle metaboreflex is via a
reduction in perfusion to the exercising skeletal muscles,
thereby inducing an oxygen demand/delivery mismatch
and consequent local metabolite accumulation. Partially
occluding the terminal aorta and attenuating blood
flow to the hindlimb of treadmill running dogs is well
established in this regard (Wyss et al. 1983; O’Leary,
1993). As a non-invasive analogue, humans studies have

utilised chambers to apply positive pressure over the
exercising muscles (Sundberg & Kaijser, 1992; Sun et al.
1993) or inflated cuffs proximal to the exercising limbs
(Bonde-Petersen et al. 1978; Hartwich et al. 2011). In both
human and animal studies a pronounced HR and pre-
ssor response is evoked by these manoeuvres. Notably,
O’Leary (1993) reported that progressively decreasing
hindlimb perfusion in canines running on a treadmill
at a constant workload induced an increase in HR,
despite β-adrenergic blockade, although the increase in
HR for a given reduction in hindlimb flow was somewhat
attenuated. These findings suggest that metaboreflex
activation in exercising canines is at least in part
attributable to a reduction in cardiac parasympathetic

Figure 3. Heart rate (HR) and mean arterial pressure (MAP) during isometric handgrip and post-exercise
ischaemia (PEI), for the control, β-adrenergic blockade and parasympathetic blockade conditions
A and C, 1 min averages of HR and MAP, respectively, during all experimental phases of the control (black symbols),
β-adrenergic blockade (light grey symbols) and parasympathetic blockade (dark grey symbols) conditions. B and
D, change in HR and MAP, respectively, elicited during the last minute of handgrip (Ex, black bars) and PEI (dark
grey bars) in each condition. Rec, recovery.
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activity. We observed that the chronotropic response to
partial flow restriction during leg cycling was attenuated
with β-adrenergic blockade, suggesting that it was in
part sympathetically mediated in humans. We also
observed reductions in cardiovagal baroreflex sensitivity
and indices of cardiac parasympathetic activity derived
from HR variability analysis during leg cycling with
partial flow restriction (Hartwich et al. 2011, 2013). We
speculate that enhanced metaboreflex activation during
exercise in humans inhibits cardiac parasympathetic
tone. However, administration of glycopyrrolate did
not influence the chronotropic response to partial
flow restriction suggesting that cardiac parasympathetic
withdrawal does not contribute to the HR response
to enhanced metaboreflex activation during exercise
in humans. Although somewhat as a paradox with
β-adrenergic blockade a small increase in HR persisted
with partial flow restriction, meaning that some inhibition
of parasympathetic withdrawal may have occurred.

During isolated muscle metaboreflex (PEI) following
either handgrip or leg cycling, HR was lower than
end-exercise levels in all conditions. This is in contrast
to what has been observed in dogs, where during PEI
following treadmill running HR remained elevated at
exercise values with parasympathetic blockade (O’Leary,
1993). The reason for these contrasting findings may be
attributable to species differences (Rowell & O’Leary,
1990) or differences in relative exercise intensities. Since
HR falls from end-exercise levels during PEI with cardiac
parasympathetic blockade it can be inferred that central
command and/or the muscle mechanoreflex can increase
HR by augmenting cardiac sympathetic nerve activity
during moderate intensity leg cycling and handgrip
exercise.

An assumption inherent in the use of PEI is that
metabolically sensitive skeletal muscle afferents are
activated in the absence of central command or muscle
mechanoreceptors, and account for the resultant auto-
nomic and haemodynamic changes observed. However,
this may not faithfully represent the conditions under
which the metaboreflex is usually activated (Kaufman,
2010; Hartwich et al. 2011). While a similar population of
muscle afferents is likely to be activated by hypoperfusion
of the exercising muscle a change in intramuscular
pressure may also stimulate those muscle afferents that
are mechanically sensitive (Kaufman & Rybicki, 1987;
McClain et al. 1993; Haouzi et al. 1999). Furthermore, the
sensitivity of some mechanically sensitive muscle afferents
may be enhanced by an accumulation of metabolites
within the exercising skeletal muscles (Kaufman &
Rybicki, 1987; Fisher & White, 2004). The contribution
of these populations of skeletal muscle afferents to the
autonomic responses we observed cannot be excluded;
however, we feel that it is unlikely because they are
inconsistent with their described effects in humans.

Isolated muscle mechanoreflex activation with passive
calf muscle stretch evokes a modest increase in HR
(∼5 beats min−1) that is abolished with pharmacological
blockade of cardiac parasympathetic nerve activity or
parasympathetic withdrawal evoked with low intensity
rhythmic handgrip (10% MVC; Gladwell et al. 2005).
However, the HR responses to partial flow restriction
we observed were more marked (∼11 beats min−1)
and preserved with cardiac parasympathetic blockade.
Furthermore, the HR responses to passive calf stretch
also appear to be independent of the level of metabolites
within the muscles being lengthened (Fisher et al. 2005).
In contrast to passive stretch, muscle mechanoreflex
activation induced by external compression of the calf with
a wide cuff inflated to 300 mmHg does not increase HR
even when applied during PEI following high intensity
isometric calf exercise (50–70% MVC; Bell & White,
2005). Passive muscle stretch (Cui et al. 2006) and venous
distension (Cui et al. 2011) increase sympathetic outflow
to the skeletal muscle vasculature, but the effects on
cardiac sympathetic activity in humans remain unclear.
In addition, thigh cuff inflation increased RPE suggesting
that central command was increased, possibly as a result
of a skeletal muscle afferent activation on central motor
drive, or a change in skeletal muscle fibre recruitment and
leg cycling mechanical efficiency (Gandevia, 2001; Amann
et al. 2009).

Pharmacological blockade of cardiac parasympathetic
nerve activity was undertaken using glycopyrrolate
because unlike atropine it does not cross the blood–brain
barrier (Proakis & Harris, 1978). However, we used a
β-adrenergic blocker (metoprolol) which does cross the
blood–brain barrier, thus a direct effect within the central
nervous system cannot be ruled out (Neil-Dwyer et al.
1981). It is also a limitation of the present investigation
that cardiac output was not assessed. Some controversy
surrounds the effect of the muscle metaboreflex on
cardiac output and the potential influence of the muscle
group examined (Pawelczyk et al. 1997; Bastos et al.
2000; Crisafulli et al. 2003), thus additional studies are
warranted.

Alterations in skeletal muscle afferent sensitivity have
been identified in a number of cardiovascular diseases,
such as hypertension (Smith et al. 2006; Delaney et al.
2010) and heart failure (Piepoli et al. 1996; Middlekauff
et al. 2004). An inappropriate cardiovascular response
to exercise could impair exercise tolerance and increase
the risk of an acute cardiovascular event (e.g. stroke,
myocardial infarction). However, much of the human
work examining the influence of chronic cardiovascular
conditions on muscle afferent sensitivity has focused
on autonomic control of peripheral vasculature (e.g.
muscle sympathetic nerve activity) rather than that of
the heart. Given the cardioprotective actions of cardiac
parasympathetic tone and the link between heightened
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cardiac sympathetic drive and arrhythmia in exercise
(Billman et al. 2006), it is important to elucidate the
influence of skeletal muscle afferents on the autonomic
regulation of the heart in both health and disease.

In summary, autonomic regulation of HR by the muscle
metaboreflex was investigated and the extent to which it
is influenced by the mode of activation evaluated. Our
findings indicate that partial flow restriction during leg
cycling to enhance metaboreflex activation principally
evokes a sympathetically mediated increase in HR.
Similarly, the modest elevation in HR during isolated
metaboreflex activation with PEI following handgrip
appears to be sympathetically mediated, while in contrast
PEI following leg cycling leads to a partial maintenance
of the exercise-induced increase in HR due to increased
cardiac sympathetic activity and/or withdrawal of cardiac
parasympathetic tone. These observations indicate that
the mode of muscle metaboreflex activation and the
muscle group examined are important determinants of
the autonomic control of HR.
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