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Abstract
Inflammatory bowel disease (IBD) is a consequence of 
the complex, dysregulated interplay between genetic 
predisposition, environmental factors, and microbial 
composition in the intestine. Despite a great advance-
ment in identifying host-susceptibility genes using 
genome-wide association studies (GWAS), the major-
ity of IBD cases are still underrepresented. The imme-
diate challenge in post-GWAS era is to identify other 
causative genetic factors of IBD. DNA methylation has 
received increasing attention for its mechanistical role 
in IBD pathogenesis. This stable, yet dynamic DNA 
modification, can directly affect gene expression that 
have important implications in IBD development. The 
alterations in DNA methylation associated with IBD 
are likely to outset as early as embryogenesis all the 
way until old-age. In this review, we will discuss the 
recent advancement in understanding how DNA meth-

ylation alterations can contribute to the development 
of IBD.
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Core tip: This review discuss the recent research ad-
vancement in the area of DNA methylation during the 
pathogenesis of inflammatory bowel disease (IBD) and 
IBD-associated cancer, with a focus on highlighting ma-
jor players mediating DNA methylation alterations dur-
ing IBD development. Temporal and spatial differential 
DNA methylation status that contributes to the disease, 
as well as epi-therapy treatment options for IBD pa-
tients, are also discussed. This emerging information 
will have important clinical significance, especially so in 
this post-genome-wide association studies era of IBD 
research.
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INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic intestinal 
inflammatory condition that affects the intestine of  mil-
lions of  individuals throughout their lifetime[1]. IBD is 
classified into two major forms, Crohn’s disease (CD) 
and ulcerative colitis (UC), which both exhibit etiologi-
cally and clinically distinct features. Patients with IBD 
have a 2-3 fold greater life time risk of  developing IBD-
associated colorectal cancer (IBD-CRC)[2]. Although 
numerous clinical and experimental reports have given 
large amount of  insights on the pathogenesis of  IBD, the 
complexity of  the initiation of  IBD renders an incom-
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plete understanding. Recently, there has been significant 
progress in identifying risk loci that are associated with 
IBD patients through genome-wide association studies 
(GWAS). These robust analyses have identified 163 IBD 
susceptible gene loci[3-6]. Genome-wide meta-analysis has 
confirmed that 71 of  these loci are associated with CD, 
but only accounts for 25% of  disease heritability[4]. The 
immediate challenge of  the post-GWAS era is to unravel 
other parameters that may be less obvious from a genetic 
point of  view. One of  such emerging fields is epigenetics, 
in particularly DNA methylation. In this review, we will 
discuss the recent progress in DNA methylation analysis 
in IBD and how it can be used as a potential therapeutic 
target. 

DNA METHYLATION ENSEMBLE IN IBD
By definition, epigenetics refers to a heritable change 
in gene expression phenotype that does not involve 
alterations in DNA sequence. DNA methylation, his-
tone modifications and non-coding RNA are the three 
major components involved in epigenetic mechanism. 
In DNA methylation, the addition of  a methyl group at 
the 5th position of  cytosine (5mC) is common on CpG 
dinucleotides in eukaryotic genomes[7]. Methylation of  
CpG rich regions (CpG islands) are relative lower and are 
usually associated with transcription silencing when the 
methylated CpG islands occur at gene promoters[8]. DNA 
methylation is catalyzed by enzymes known as DNA 
methyltransferases and the reaction is reversible. Methyl 
groups can be edited and removed via actions of  DNA 
demethylases during specific time points such as gameto-
genesis and disease onset including IBD. In this section, 
we discuss the roles of  players mediating DNA methyla-
tion in the context of  IBD development.

DNA methylation authors
Highly heritable and bona fide DNA methylation is at-
tributed towards the actions of  DNA methyltransferase. 
In the pathogenesis of  IBD and IBD-CRC, three major 
DNA methyltransferases (DNMT) have been proposed 
to be involved, including DNMT1, DNMT3a and DN-
MT3b (Figure 1).

DNMT1 is a key maintenance methyltransferase that 
primarily methylates hemimethylated DNA in the ge-
nome during DNA replication. During IBD and IBD-
CRC development, DNMT1 activity is significantly up-
regulated[9-11]. DNMT1 is highly expressed in actively 
inflamed colonic mucosa in UC patients as compared 
to normal or quiescent UC colonic mucosa[11]. In IBD-
CRC, Foran et al[9] compared the methylation profiles of  
36 IBD-CRC vs 44 sporadic CRC tumour specimens and 
demonstrated increased nuclear localization of  DNMT1 
in IBD-CRC than in sporadic-CRC, evidence linking 
inflammation-mediated DNMT1 activity. In addition, 
overexpression of  DNMT1 is proposed to correlate with 
an abundance of  CD68 positive macrophages, suggesting 
direct involvement of  DNA methylation in a pro-inflam-

matory response[9]. Stimulation of  HCT116 human colon 
cancer cells with interleukin (IL)-6 increases and stabilizes 
DNMT1 expression, leading to increase levels of  global 
methylcytosine, especially at gene promoter regions[9]. 
This effect by IL-6 is mediated through AKT (Protein 
Kinase B), but not signal transducer and activator of  
transcription 3 (STAT3) or c-Jun N-terminal kinase (Jnk), 
pathway in Hela human cervical cancer cells[9]. Alterna-
tively, another group showed that STAT3 binds directly 
onto the DNMT1 promoter in malignant T cell lym-
phoma that is responsible for inducing DNMT1 expres-
sion[12]. All these suggest that specific cell type, temporal, 
or even inflammatory vs non-inflammatory mechanisms, 
affect DNMT1 expression and activity.

DNMT1 binds to non-intronic upstream enhancer of  
Foxp3 (forkhead box P3), a locus required to induce the 
development of  regulatory T cells (Treg) capable of  sup-
pressing broad ranges of  inflammatory responses such 
as colitis[13]. Stimulation with IL-6 has been proposed 
to increase methylation in upstream enhancer regions 
of  Foxp3 in Treg cells, resulting in down-regulation of  
both mRNA and protein expression. This effect was not 
observed in STAT3-deficient Treg, providing additional 
evidence on the involvement of  the STAT3-signalling 
pathway in the methylation process[13]. In a separate study, 
Li et al[14] reported that IL-6-associated STAT3 signalling 
is highly dependent on DNMT1 enzymatic activity. They 
showed that IL-6-induced DNMT1 expression results in 
hypermethylation on the promoter of  suppressor of  cy-
tokine-signaling-3 (SOCS3), a negative regulator of  IL-6 
signalling. The decreased SOCS3 expression may then 
promote full pro-oncogenic effects of  STAT3. 

DNMT3 (includes three known members: DMNT3A, 
DMNT3B and DMNT3L) is another family of  DNA 
methyltransferase. Although DNMT3 acts primarily for 
de novo methylation during gametogenesis and develop-
ment, many reports have shown that DNMT3 can serve 
cooperatively with DNMT1 to regulate bona fide DNA 
methylation maintenance. Active UC colonic mucosa 
showed higher DNMT3B expression as compared to 
normal colonic samples or quiescent UC colon patient 
samples, but relatively lower than that of  DNMT1[11]. 
Similarly, IBD-associated neoplasm lesions showed up-
regulation of  DNMT3B expression as compared to 
colonic epithelium without any neoplastic changes[15]. 
Conversely, human colorectal cancer cell lines (HCT15, 
DLD1, Col15, HT29, SW480 and RKO) are hypermeth-
ylated on the distal DNMT3B promoter as compared to 
healthy colon tissues, correlating it to the low expression 
level that results in hypomethylation of  many of  its target 
gene promoters[16]. These different observations may sug-
gest that the etiology of  IBD-CRC and sporadic-CRC are 
mechanistically distinct. 

DNMT3A has been shown to play an important 
role in both innate and adaptive immune responses. For 
example, DNMT3A affects T cell polarization through 
IL-4 and interferon gamma (IFNγ) promoter methyla-
tion upon ligation of  T cell receptors[17]. In UC patient’s 
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peripheral T cells, levels of  methylation within IFNγ pro-
moter regions have been reported to correlate to the im-
mune response against microbial antigens[18]. In addition, 
DNMT3A hypermethylates the CpG islands within the 
tumour necrosis factor alpha (TNFα) promoter region 
in the context of  LPS stimulation[19]. However, another 
study has proposed no alteration of  DNMT3A expres-
sion levels in colonic mucosa of  UC patients[11]. It is pos-
sible that a modification of  DNA methylation status dur-
ing UC pathogenesis is mediated primarily via DNMT1 
and DNMT3B. In contrast, meta-analysis of  GWAS data 
has suggested DNMT3A as an important risk loci associ-
ated with CD[4]. Therefore, it is likely that methylation 
status in CD vs UC is controlled by different mechanisms.

In a clinical setting, the differential expression, in-
volvement, and activities of  DNMTs can provide addi-
tional options as a diagnosis marker tool to monitor IBD 
and IBD-CRC progression in patients. 

DNA methylation editors
Editing and removal of  methyl groups from 5mC can be 
actively or passively achieved through actions of  DNA 
demethylases. Passive DNA demethylation blocks ad-
ditional methylation during DNA replication by methyla-
tion dilution, or by inactivating DNMTs. Over the years, 
the search for active demethylases has been hindered 
by the fact that demethylation process is controlled by 
indirect multi-step mechanisms. DNA demethylation 
processes appear to be executed through DNA repair 
and base excision mechanisms, rather than direct removal 
of  the methyl group from the 5mC moiety[20]. Recently, 
three proteins have been reported to potentially possess 
demethylase activity, including ten-eleven translocation 
(TET) methylcytosine dioxygenase, thymine DNA glyco-
sylase (TDG), and activation-induced cytidine deaminase 
(AID).

TET converts 5mC to 5-hydroxymethylcytosine 
(5hmC) that is predicted to lift the repression of  gene 
expression imposed by 5mC in both humans and mice[21]. 
Recently, Neves-Costa et al[22] demonstrated that TET1 
negatively regulates the expression and secretion of  a 
pro-inflammatory cytokine IL-1β in a THP-1 monocytic 

leukemia cell line. In addition, TET co-operates with 
TDG in the process of  active DNA demethylation. TDG 
excises the mismatch bases at the deaminated 5mC or its 
derivatives caused by TET[23]. However to date, neither 
TET nor TDG has been implicated in the pathogenesis 
of  IBD.

AID is another candidate involved in DNA demeth-
ylation[24,25]. AID belongs to the family of  apolipoprotein 
B mRNA-editing catalytic polypeptide (APOBECs), 
which were extensively studied due to its master regula-
tory function in antibody diversification in B cells[26]. A 
process for this antibody diversification includes im-
munoglobulin class switch recombination (CSR), im-
munoglobulin somatic hypermutation (SHM), and gene 
conversion (GC)[27]. AID was originally demonstrated as 
an enzyme to convert cytosine (C) to uracil (U) for induc-
tion of  SHM[28]. Subsequently, Morgan et al[24] unveiled an 
additional and unexpected ability of  AID to convert 5mC 
to thymidine in vitro (5mC→T), suggesting the involve-
ment of  AID in DNA demethylation. This conversion of  
5mC to T creates a T:G mismatch, which will be excised 
by T:G mismatch-specific glycosylases (i.e., TDG). The 
T position will then be replaced with unmethylated C 
through base excision repair process, thereby concluding 
a 5mC to unmethylated C transition[29]. Recently, AID has 
been implicated in the pathogenesis of  IBD and IBD-
CRC[30,31]. Endo and colleagues showed that colonic AID 
expression is up-regulated under Th2-mediated colonic 
inflammatory conditions seen in T cell receptor (TCR)-α 
knockout mice[30]. In addition, ectopic expression of  AID 
in colonic epithelial cells (CECs) was elicited in UC (54%) 
and IBD-CRC (80%) patients[30]. In contrast, AID ex-
pression was seen in only 40% of  sporadic colon cancer, 
indicating the differential pathogenesis between IBD-
CRC and sporadic-CRC with respect to AID functions. 
AID expression may be induced via IKK (IκB kinase)-
dependent NF-κB signalling and further enhanced by 
Th2 cytokines such as IL-4 and IL-13[30]. Functionally, 
overexpression of  AID in CECs has been reported to 
tremendously increase mutations within some, but not 
all, oncogenes including p53. Importantly, such mutations 
were significantly reduced in AID deficient mice[30,31]. 
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Functions Normal Active UC Inactive UC IBD-CRC Sporadic-CRC
DNMT1 Maintenance DNA methyltransferase

DNMT3A De novo  methyltransferase
Maintenance DNA methyltransferase
DNA demethylase

?

DNMT3B De novo  methyltransferase
Maintenance DNA methyltransferase
DNA demethylase

Lower expression                                                      Higher expression

Figure 1  Potential relative expression levels of DNA methyltransferase in active-ulcerative colitis, inactive-ulcerative colitis, inflammatory bowel disease-
associated colorectal cancer and sporadic-colorectal cancer patient specimens consolidate from several studies. DNA methyltransferase (DMNTs) is primar-
ily responsible for DNA methylation maintenance, whereas DNMT3A/B have additional roles in de novo DNA methylation and demethylation functions. The relative 
DNMTs expressions were built on consolidated reports that were normalized to healthy controls to display potential relative expression in different inflammatory bowel 
disease associated diseases. UC: Ulcerative colitis; IBD-CRC: Inflammatory bowel disease-associated colorectal cancer. 
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fed with regular diet. These effects were also reflected 
with colonic mucosal DNA methylation profile altera-
tions and prolonged gene expression changes, as well as 
difference in bacteria microflora when compared to mice 
with control diet. Therefore, better characterization of  
the effects and mechanisms of  imprinting and parent-of  
origin can be utilized as a clinical risk predictor of  IBD 
for offsprings of  IBD susceptible parents in the future. 

Another incidence where DNA methylation dynam-
ics is activated is when colonic cellular homeostasis is 
perturbed such as during oxidative stress, which results in 
global loss or gain in DNA methylation. Oxidative stress 
and damage are common phenomenon in IBD and IBD-
CRC that are mainly contributed by the reactive oxygen 
species produced by inflammatory cells[38,39]. Oxidative 
damage in cells induces recruitment of  DNMT1 to the 
affected chromatin and forms a complex consisting of  
DNMT3B and members of  the polycomb repressive 
complex 4, including Sirtuin-1 (SIRT1), Enhancer of  
zeste homolog 2 (EZH2) and embryonic ectoderm devel-
opment (EED), to re-establish DNA methylation pattern 
after the DNA is repaired[40]. These key components re-
localize from non-GC-rich regions to GC-rich regions[40]. 
The observation was validated in an in vivo model of  
colitis where infection with human commensal entero-
toxigenic Bacteroides fragilis (ETBF) into a mouse model 
of  adenomatous polyposis coli in Multiple intestinal neo-
plasia (Min) mice induced inflammation and tumorigen-
esis[40]. This model may provide a good putative explana-
tion on the mechanism of  how certain specific genes are 
hypermethylated, whereby other loci are hypomethylated, 
within the same cell, during disease onset.

Despite well-established consensus that DNA meth-
ylation is a highly stable modification on the DNA under 
steady state, two recent reports have changed this con-
ventional perspective. In the first report, Kangaspeska 
et al[32] showed that estrogen receptor α (ERα) induces 
waves of  transcription of  its target promoter that in-
volves series of  active and cyclical demethylation and 
remethylation during the course of  transcriptional acti-
vation. DNA methylation status were quantified using 
glutathione S-transferase tagged methyl binding domain 
(GST-MBD) pull-down assay, which showed a periodicity 
of  100 min at the ERα target pS2 gene promoter. The 
second report by Métivier et al[33] showed similar cyclical 
demethylation-methylation effects at the pS2 promoter, 
and further provided evidence of  DNMTs are present 
at the promoter during transcription activation and is in-
volved in both demethylation and remethylation process-
es. Specifically, methylated CpG were deaminated by DN-
MT3A and DNMT3B, resulting in a base-pair mismatch 
that is subsequently repaired by base-excision machinery. 
These two reports pioneered a previously unreported 
cyclical methylation-demethylation association with tran-
scription and that this process is mediated by DNMTs, 
proteins previously tightly linked to only methylation 
but not demethylation. The authors have validated this 
observation in other promoters including ERα, trefoil 

However, it still remains largely unknown whether AID 
plays any specific roles in IBD and/or IBD-CRC through 
its epigenetic (demethylation) modification ability rather 
than its classical functions (SHM, CSR, and/or GC). The 
co-relationship between aberrant AID expression and 
IBD/IBD-CRC progression suggests that further studies 
on the role of  AID-mediated epithelial homeostasis can 
potentially be translated into a therapeutic strategy for 
IBD patients by targeting AID. 

In 2008, Kangaspeska et al[32] and Métivier et al[33] re-
ported that DNMT3A and DNMT3B are recruited to 
gene promoters during transcription and they directly 
mediate cyclical demethylation and also remethylation 
processes. The identification of  deaminase activity in 
DNMT3A and DNMT3B has received tremendous 
attention in the epigenetic field. Since it is clear now 
that DNMT3A and DNMT3B have dual functions for 
demethylation and methylation, the idea of  dynamic 
methylation patterns during transcription will be further 
discussed in the following section.

DYNAMICS OF DNA METHYLATION 
FROM AN IBD PERSPECTIVE
Covalent modification of  DNA through the addition of  
methyl moieties on CpG dinucleotides is highly stable 
and conserved. These epigenetic marks, however, do un-
dergo dynamic changes at specific time points, including 
embryonic development and during perturbed cellular 
homeostasis such as increased cellular stress and disease 
onset. Thus, these temporal changes will have important 
implications that are relevant to the development of  IBD. 

During germ cell specification and post-fertilization, 
5mC undergo de novo erasure and subsequent reprogram-
ming[34]. The consequences of  such wholescale DNA 
methylation reprogramming include formation of  paren-
tal specific gene expression, including X-linked effects 
and genomic imprinting, of  which gene expression are 
predominately contributed by specific parental allele. Sev-
eral lines of  evidence have demonstrated the parent-of-
origin effects in IBD. As one of  the earliest reports, Akol-
kar et al[35] demonstrated a familial association of  IBD. In 
this study, clinical data analysis of  135 families showed 
that offspring of  IBD affected mothers had higher risk 
for CD than offspring of  fathers with IBD (P = 0.00001). 
Indeed, sex of  parent seemed to play a role in IBD sus-
ceptibility and genetic imprinting process, at least in part, 
by DNA methylation. Fransen et al[36] recently present 
limited evidence for genomic imprinting effects of  IBD 
susceptibility genes. They analysed 28 IBD susceptibility 
gene locus and found that IL12B, PR domain contain-
ing 1 (PRDM1) and nucleotide-binding oligomerization 
domain containing 2 (NOD2; L1007fs variant) have ge-
nomic imprinting effect. Recently, Schaible et al[37] showed 
that the offspring from female mice fed with methyl 
donor supplements (folic acid, betaine and vitamin B12) 
had a striking susceptibility towards dextran sulfate so-
dium (DSS)-induced colitis as compared to control mice 
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factor 3 (TFF3), and potassium inwardly-rectifying chan-
nel, subfamily J, member 8 (KCNJ8). Interestingly, these 
selected validated genes have previously been implicated 
in different studies of  IBD and IBD-CRC in patients or 
animal models[41-44]. TFF3 is secreted by intestinal goblet 
cells that forms part of  the enteric mucus layer and has 
a role in epithelial repair and restitution[45]. TFF3-/- mice 
are less reactive towards mounting repair response during 
colonic injury induced by chemical, hypoxia and radiation 
stress[46-48]. Another of  the validated candidates is KCNJ8 
(also known as KIR6.1), which forms the pore-forming 
sub-unit of  the ATP-sensitive potassium channel (KATP). 
hydrogen sulphide (H2S), produced by colonic smooth 
muscles, neurons and other enteric cell types, activates 
and opens KATP channels in a 2,4,6-trinitrobenzene 
sulfonic acid (TNBS)-induced murine colitis model[44]. 
Similarly in TNBS-induced colitis in rats, the production 
and effects of  H2S is associated with the resolution of  
colitis[49]. Nevertheless, whether cyclical demethylation-
remethylation process plays any roles in the pathogenesis 
of  IBD remains elusive, and further extensive studies will 
be required.

IMPACT OF ENTERIC MICROBES IN IBD 
HOST DNA METHYLATION
It has become increasingly apparent that dysregulated 
host microbial interactions contribute to the induction, 
exacerbation and perpetuation of  IBD. Importantly, 
commensal microbes have an ability to alter DNA meth-
ylation status. Mice that were housed in germ free (GF) 
conditions exhibited hypermethylation of  the chemokine 
ligand CXCL16 [chemokine (C-X-C motif) ligand 16] 
in the colon, as compared to mice kept under specific 
pathogen-free (SPF) environment[50]. CXCL16 expressed 
on the surface of  antigen-presenting cells, including sub-
sets of  CD19+ B cells and CD14+ monocytes/macro-
phages, mediates the adhesion and phagocytosis of  gram-
negative and positive bacteria[51,52]. Soluble CXCL16 can 
also act as a strong chemo-attractant for CXCR6+ [che-
mokine (C-X-C motif) receptor 6] T cells[53,54]. Up-regula-
tion of  CXCL16 mRNA and protein has been reported 
in CD patients[55]. Hypermethylation of  CXCL16 gene in 
GF mice leads to the gene activation and accumulation 
of  invariant natural killer T (iNKT) cells, in the colonic 
lamina propria. iNKT cells are highly conserved subset 
of  T cells expressing a semi-invariant T cell receptor, 
which is restricted to CD1d and specific for the glyco-
sphingolipid antigen α-galactosylceramide. Furthermore, 
the activated CXCL16 pathway made GF mice more 
susceptible against oxazolone-induced Th2-type of  acute 
colitis as compared to SPF mice[50]. Importantly, coloniza-
tion of  neonatal GF mice with a conventional microbiota 
reduced hypermethylation of  CXCL16 to SPF level[50]. 
However, this phenomenon was not observed when adult 
GF mice were colonized with the same conventional 
microbiota, indicating that early-life microbial exposure 
has a significant impact on host epigenetic status[50]. In 

addition, recent studies showed that oral inoculation of  
lipoteichoic acid (LTA)-deficient Lactobacillus acidophilus 
bacteria (NCK2025), protect mice from colitis-associated 
cancer presumably by restoring aberrant DNA methyla-
tion pattern of  cancer-specific genes[56,57]. LTA is a major 
immunostimulatory component of  cell wall of  Gram-
positive bacteria, which can specifically bind to CD14 
and toll-like receptors (TLRs) such as TLR2 on host cells. 
It is well known that host-microbial recognition is attrib-
uted to TLRs. Of  note, TLR2 deficient (Tlr2-/-) mice were 
characterized by low abundance of  intestinal Firmicutes 
and high proportion of  Proteobacteria, Bacteroidetes and Ac-
tinonbacteria, as compared to wild-type mice[58]. This spe-
cific change in microbial composition was associated with 
epigenomic alterations. For instance, 1.4% of  the inter-
rogated genome in Tlr2-/- mice was differentially methyl-
ated[58]. Female wild-type C57BL/6J mice that were given 
methyl-donor supplemented diet produce offspring that 
exhibit different microbiome profile at postnatal day 30, 
as compared to control diet offspring[59]. All these data 
cumulatively suggest that the commensal microbiota can 
directly influence the status of  host DNA methylation 
and therefore may have important implications in IBD 
development.

In addition to how bacteria affect the host DNA 
methylome, the status of  DNA methylation on exog-
enous sources of  DNA, in this case bacterial DNA and 
host self-DNA, also plays a role in the pathogenesis of  
autoimmune diseases such as IBD. Bacterial DNA has 
high CpG frequencies but is predominately unmethylated 
and has immunostimulatory effect[60]. It was originally 
shown that the introduction of  bacterial CpG motifs 
oligodeoxynucleotides exacerbates existing intestinal 
inflammation in DSS-treated mice[61]. Recent studies 
showed that the unmethylation status of  bacterial DNA 
is the predominate factor to induce human plasmacytoid 
dendritic cells to produce high levels of  interferon-alpha 
(IFN-α), since methylation of  the bacterial DNA abol-
ished this induction[62]. These unmethylated CpG DNAs 
are recognised by the host toll-like receptor 9 (TLR9)[63]. 
Specific CpG motifs (purine-purine-CpG-pyrimidine-py-
rimidine) common in microbial DNA, but which are rare 
in mammalian DNA, have the strongest activation po-
tential of  TLR9[64]. In contrast to bacterial DNA, mam-
malian DNA has lower CpG frequencies and is predomi-
nately methylated, with an exception of  CpG islands. 
There are now increasing evidence that these mammalian 
self-DNA, presumably released from necrotic cells, can 
also be an effective TLR9 ligand[64]. Under normal cir-
cumstances, the host immune system is protected against 
self-DNA because of  the intracellular location of  TLR9. 
However, during IBD progression, natural antimicrobial 
peptide LL37 is expressed on the mucosa surfaces and 
form an immuno-complex with self-DNA, which may 
lead to the activation of  TLR9[65]. Yasuda et al[64] showed 
that CpG-rich DNA from mammalian DNA, commonly 
found on CpG islands, are optimal sequence to activate 
TLR9 and suggested a possible contribution towards 
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autoimmune diseases pathogenesis. However, this TLR9 
activation by methylated self-DNA is still comparatively 
lower than those of  unmethylated bacterial DNA[62]. As 
such, it was proposed that the initiation of  autoimmune 
disease, such as IBD, is initiated by unmethylated micro-
bial DNA whereas subsequent autoimmunity is mediated 
by methylated (or unmethylated) self-DNA[62]. Therefore, 
appropriately targeting self-DNA mediated immune re-
sponses may be another attractive option to reduce the 
perpetuation of  inflammation in IBD. 

In summary, bacterial genetics have a direct impact on 
host epigenetics. Similarly, bacterial and host (self-DNA) 
epigenetics can also directly affect host genetics to trigger 
inflammatory responses (Figure 2). 

GENOME-WIDE DNA METHYLOME 
PROFILES IN IBD
Recent advances on genomic/epigenetic technologies 
targeting the “omics” level have contributed to a plethora 
of  reports on genome-wide DNA methylome analysis to 
study the pathogenesis of  IBD. The information derived 
from the analyses in IBD will provide significant rationale 
to open up a new avenue to develop novel diagnostic 
and therapeutic strategies. Indeed, genome-wide altered 
methylation patterns have been shown to be enriched 
around GWAS identified loci[66,67]. In addition, methylome 
profiling may also resolve the differences in etiology and 

pathogenesis of  UC vs CD.
Nimmo et al[67] recently profiled the methylome of  

whole blood genomic DNA from 21 ileal CD patients 
and 19 healthy controls. They identified 1117 CpG 
sites that are differentially methylated. Within the list, 
35 genes overlapped with previous GWAS identified 
CD loci, including NOD2, TNFα and caspase recruit-
ment domain family, member 9 (CARD9). Comparative 
analysis of  these gene hits showed that differentially 
methylated CpG sites are located within 25-100 kb of  
the 71 previously identified GWAS CD loci. Importantly, 
sex, environmental and individual lifestyle (e.g., non-
smoking and immunomodulatory therapy status) fac-
tors were taken into consideration for the selection of  
cohort in this study because these factors are influential 
in determining IBD, as well as epigenetic changes. This 
is especially apparent as seen from the high discordance 
rate of  CD (68%) and UC (85%) in monozygotic twins, 
who had identical genomes[68]. The immediate question 
is how these identical genomes in monozygotic twins 
divert into different phenotypes outcome. A recent re-
port studied 20 monozygotic twins discordant for UC 
and investigated the genomic profile based on three-
layers of  genome-wide scans, including transcriptome 
profiling, genome-wide methylation variable positions 
(MVPs) and genome-wide differentially methylation re-
gions (DMRs)[69]. In this study, they identified 61 disease 
loci defined by differential gene expression profile and 
at least one MVP or DMR position within 50 kb from 

Figure 2  Host genetics and epigenetics alterations by commensal bacterial and self-DNA. Alterations in intestinal microflora or host pathogen recognition func-
tions, such as toll-like receptor (TLR)2, directly affect host DNA methylation. Endocytosis of bacterial and release of unmethylated bacterial DNA into host cell triggers 
inflammatory response via TLR9. Strong activation requires a purine-purine-CpG-pyrimidine-pyrimidine bacterial DNA motif. Endocytosis of CpG rich methylated self-
DNA also activates TLR9 to induce similar inflammatory response via TLR9, but with on a less magnitude compared to stimulation via bacterial DNA. 
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the transcription start site. Promoter regions of  these 
hits showed prominent hypomethylation, whereas gene-
intronic regions were more frequently hypermethylated. 
However, none of  these 61 loci overlapped with the 
previously reported 47 UC GWAS risk loci[5]. Neverthe-
less, environmental factors and lifestyle surely contrib-
ute to the pathogenesis of  IBD and provide the most 
direct clues to understand how identical genomes from 
monozygotic twins can have distinct susceptibility to 
IBD. IBD usually occurs during young adulthood and 
the peak age of  onset is around 15-30 years old[70,71]. 
Thus, identification of  the changes in methylome dur-
ing crucial developmental time point can provide great 
insights on IBD risk. Studies showed that postnatal day 
90 mice had increase susceptibility to DSS-induced coli-
tis as compared to postnatal day 30 mice[59]. Methylation 
specific amplification microarray (MSAM) revealed 271 
differential methylation genomic intervals between the 
above two mice groups[59]. These results suggest that 
age-dependent methylation dynamics is another impor-
tant aspect to consider in the risk of  IBD. 

In addition to prying into the individual genomic status in 
UC or CD as compared to normal individuals, epigenome-
wide profiling can also dissect the differences in disease-
associated loci between UC and CD. Cooke et al[66] recently 
characterized the genome-wide methylation changes in 
the rectal samples obtained from patients with inflamed 
UC/CD and non-inflamed UC/CD. Consistent with oth-
er reports, many identified loci in this study overlapped 
with GWAS-identified risk loci, including CARD9, in-
tercellular adhesion molecule 3 (ICAM3) and cadherin 1 
(CDH1). Inflamed UC and CD, as well as non-inflamed 
UC formed individual methylome signatures when com-
pared to normal control individuals. Interestingly, there 
was no difference in the methylation profile between in-
flamed UC and inflamed CD. In contrast, 13 differentially 
methylated loci were identified between non-inflamed 
UC and non-inflamed CD. These multiple comparison 
suggests that the different sub-types of  IBD, as well as 
disease severity, may be distinguished by their methylome 
status. In addition, Lin et al[72,73] also reported the methy-
lome profiles of  UC and CD patients derived B cells and 

intestinal tissues. Therefore, the methylome may be one of  
the useful clinical diagnostic biomarkers in IBD (Table 1). 
However, much more careful attention would be neces-
sary in this regard because different cell types exhibit dif-
ferent methylomes in IBD.

EPI-THERAPY TARGETING DNA 
METHYLATION IN IBD
Several compounds targeting DNA methylation status has 
been demonstrated to have potential therapeutic effects 
on animal models of  IBD and/or human IBD patients. 
One of  these compounds is folate, a methyl donor that 
exerts an effect to increase global methylation. Chronic 
UC patients that were given dietary folinic acid, a vitamer 
of  folic acid, supplementation (15 mg/d) had a lower risk 
of  colon cancer[74]. Kominsky et al[75] recently also showed 
that intraperitoneal injection of  folate (50 mg/kg) into 
DSS-treated mice results in less severe colitis. In addi-
tion, dietary folate deficiency led to aggravation of  DSS-
induced colitis in rats[76]. These results are consistent 
with clinical reports showing that folate deficiencies are 
common in IBD patients[77-79]. However, oral dietary 
supplementation of  folate did not seem to have an ef-
fect on the suppression of  IBD-CRC in an azoxymeth-
ane/DSS-associated cancer model[80]. In this model, diet 
supplementation with folic acid (8 mg/kg) did not show 
any alterations in intestinal microflora or difference in 
tumor initiation, growth and progression as compared to 
the control mice without receiving folic acid supplement. 
One possible reason for this failure is that the chronic 
inflammation that has transited into tumorigenic stage 
would have acquired more stable genetic changes includ-
ing chromosomal instability and translocation, as well as 
genetic mutations, as compared to acute intestinal inflam-
mation. These alterations in DNA sequence may occur 
at critical DNA methylated CpG sites and hence global 
methylation effects of  folate can no longer re-establish 
methylation at these mutated CpG target sites. 

Development of  small compounds that can directly 
or indirectly affect DNA methylated mediated gene ex-

Table 1  High throughput DNA methylome profiling in inflammatory bowel disease

Ref. Disease Tissue/cell Array platform Significant differential methylation GWAS overlap

Human patients
Lin et al[73]    UC and CD Intestinal Illumina goldengate 7 CpG sites Not reported
Cooke et al[66]    UC and CD Rectal Illumina infinium human 

methylation 27
3604 (UC) and 472 (CD) loci Yes

Lin et al[72]    UC and CD B cell Illumina goldengate 24 (UC) and 14 (CD) CpG sites Not reported
Häsler et al[69]    UC Intestinal Illumina human methylation 27 

and nimblegen custom 385K
61 loci No

Nimmo et al[67]    CD Whole blood Illumina human methylation 27 1117 CpG sites Yes
Mouse

Kellermayer et al[59]    DSS colitis (postnatal 
day 30 vs day 90)

Colon Custom array (Agilent) 271 intervals Not reported

Kellermayer et al[58]    Tlr2-/- Colon Custom array (Agilent) 387 intervals Not reported

UC: Ulcerative colitis; CD: Crohn’s disease; GWAS: Genome-wide association studies; DSS: Dextran sulfate sodium.
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pression may also be useful targets of  IBD treatment. 
Meng et al[81] demonstrate that using a combination of  
a novel tylophorine analog W-8, together with TGF-β 
(transforming growth factor), demethylates Foxp3 pro-
moter. Tylophorine analogs, including W-8, are phen-
anthroindolizidine alkaloids that have anti-cancer and 
anti-inflammatory effects. The effect of  W-8 is medi-
ated through ERK (extracellular signal-regulated kinase) 
pathway inhibition that results in the down-regulation 
of  DNMT1 expression. Therefore, W-8 appears to up-
regulate Foxp3 expression by demethylating the promoter 
in the presence of  TGF-β and promotes differentiation 
of  naïve CD4+ T cells into Foxp3+ Treg cells with im-
munosuppression capabilities.

The challenge in developing innovative therapies 
for IBD has been on-going. Currently, oral and topical 
aminosalicylates are usually the first-line medication to 
treat IBD. Other immunosuppressive agents including 
azathioprine, methotrexate and cyclosporine are also in 
used. However, the beneficial effects of  these drugs are 
accompanied with detrimental side effects, such as al-
lergy. In addition, not all patients respond to these treat-
ments. Recently, the use of  anti-TNFα antibody has also 
been deployed to control IBD in patients. However, on 
top of  the adverse side effects of  anti-TNFα antibody, 
the administration of  the treatment requires invasive 
intravenous infusion or subcutaneous injection and the 
high cost of  this form of  medication, which range from 
US$3000 to US$8000 per infusion, is a major disadvan-
tage. Therefore epi-therapy drug design is an attractive 
alternative method to develop an effective, low-cost and 
non-invasive therapy for IBD patients.

CONCLUSION
DNA methylation has great heuristic potential in im-
proving our understanding of  the IBD pathogenesis in 
the post-GWAS era. Individuals who inherited a normal 
set of  DNA may still be susceptible to IBD depending 
on epigenetic changes during their course of  life. As 
described in this review, epigenetics changes that may ac-
count for IBD risk begin right from the fertilized egg to 
entire life period (Figure 3). Further advancements in this 
promising field would allow the discovery of  new media-
tors to control DNA methylation/demethylation, aiming 
to improve the lives of  patients with IBD and IBD-CRC. 
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