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Abstract
Metazoans respond to various forms of environmental stress by inducing the phosphorylation of
the α subunit of the translation initiation factor eIF2 at serine 51 (eIF2αP), a modification that
leads to a global inhibition of mRNA translation. Herein, we demonstrate that eIF2αP is induced
by pharmacological inhibition of the phosphoinositide-3-kinase (PI3K)-Akt pathway as well as by
genetic or small interfering (si)RNA-mediated ablation of Akt. Increased eIF2αP is an
evolutionary conserved process that involves the endoplasmic reticulum (ER)-resident protein
kinase PERK, which is negatively regulated by Akt-dependent phosphorylation at threonine 799.
PERK activity and eIF2αP are downregulated by activated Akt in mouse mammary gland tumors
as well as in cells exposed to ER stress or oxidative stress leading to the induction of cell survival
or death respectively. In unstressed cells, the PERK-eIF2αP pathway guards survival and
facilitates adaptation to the deleterious effects of PI3K or Akt inactivation. As such, inactivation
of the PERK-eIF2αP arm increases the susceptibility of tumor cells to death by pharmacological
inhibitors of PI3K or Akt. Thus, in addition to mTOR the PERK-eIF2αP pathway provides a link
between Akt signaling and translational control with implications in tumor formation and
treatment.
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Introduction
Control of mRNA translation is a crucial process in the regulation of expression of genes
involved in cell growth, proliferation and differentiation (1). Translational control is
intimately involved in cancer development via the selective synthesis of proteins that
influence tumor initiation, progression and metastasis (2). Most of the regulation of mRNA
translation is thought to be exerted at the initiation level through the coordinated action of
several eukaryotic initiation factors (eIFs) that facilitate the recruitment of the ribosome to
an mRNA and its positioning at the initiation codon (3). Metazoans respond to various forms
of environmental stress by blocking the initiation process via the induction of
phosphorylation of the α subunit of eIF2 at serine 51 (S51) (herein referred to as
eIF2αP) (4). eIF2αP is mediated by a family of kinases each of which responds to distinct
stimuli (4). The family includes the heme-regulated inhibitor (HRI), whose activity is
induced by heme deficiency and plays a role in regulation of globin synthesis; the general
control non-derepressible-2 (GCN2), which is activated by uncharged t-RNA in response to
amino acid deficiency; the endoplasmic reticulum (ER)-resident protein kinase PERK/PEK,
whose activity is induced by the accumulation of unfolded proteins in the ER and represents
as essential arm of the unfolded protein response (UPR); and the RNA-dependent protein
kinase PKR, an interferon (IFN)-inducible protein activated by double-stranded (ds)RNA(4).
These enzymes exhibit significant sequence similarities, particularly in the protein kinase
domain (KD), which explains their specificity towards eIF2α(4). eIF2αP is implicated in
tumorigenesis through its ability to act as either a promoter of cell survival or an inducer of
cell death in response to various types of stress including DNA damage, oncogenic stress,
ER stress or stress in tumor microenvironment (5,6).

Genetic alterations that lead to a gain in phosphoinositide-3-kinase (PI3K) signaling are
commonly observed in human cancers(7). Induction of PI3K activity following hormone,
mitogen or growth factor stimulation results in the activation of Akt/protein kinase B (PKB),
which phosphorylates several proteins involved in regulating cell survival and
proliferation (8). Among them, the mammalian target of rapamycin (mTOR) is a protein
kinase which stimulates protein synthesis by mediating, directly or indirectly, the
phosphorylation of proteins implicated in cap-dependent mRNA translation(9).

Our group recently demonstrated that eIF2αP by PKR mediates the pro-apoptotic properties
of the tumor suppressor phosphatase and tensin homolog (PTEN) independently of PI3K-
Akt signaling inhibition (10). However, the possibility remains that the PI3K-Akt pathway
signals to eIF2αP through a kinase other than PKR. Herein, we demonstrate that PERK acts
downstream of Akt and promotes an adaptation process in response to PI3K-Akt pathway
inhibition. We show that PERK is a substrate of Akt with important implications in the
regulation of eIF2αP and Akt signaling in response to stress. We further show that
inactivation of PERK and eIF2αP has profound effects on promoting tumor death in
response to pharmacological inhibition of the PI3K-Akt pathway. As such, in addition to
well-established role of the mTOR pathway the PERK-eIF2αP arm links Akt to translational
control and affects Akt function in response to stress as well as the efficacy of tumor cell
treatment with chemotherapeutic drugs targeting the PI3K-Akt pathway.

Results
Inhibition of PI3K induces eIF2αP and activates PERK

When human glioblastoma U87 cells, human breast cancer SkBr3 cells or spontaneously
immortalized mouse embryonic fibroblasts (MEFs) were treated with the PI3K inhibitor
LY294002, we observed an increase in eIF2αP at S51 in a time-dependent manner (Fig. 1A,
figs. S1A, S1B). eIF2αP was also increased after treatment of U87 cells with GDC-0941,
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which is a potent and specific inhibitor of PI3K (11) (Fig. 1B). Increased eIF2αP was
specific for PI3K inhibitors because treatment of U87 cells with the mTOR inhibitor
KU0063794 (12) or the MEK1 inhibitor PD98059 (13) did not affect eIF2αP (fig. S1C, S1D).
Increased eIF2αP by PI3K inhibition is an evolutionary conserved process because it was
also observed in Drosophila melanogaster embryo Kc167 cells after treatment with
LY294002 (fig. S2A). The efficacy of LY294002 and GDC-0941 treatments in all cells was
documented by the reduction of Akt phosphorylation at S473 as well as inhibition of GSK3β
phosphorylation at S9 (Figs. 1A–B, fig. S1A, S1B). To identify the eIF2α kinase implicated
in this process, we employed Kc167 cells to knockdown either dPERK or dGCN2, the two
eIF2α kinases expressed in Drosophila cells, by siRNA. We noticed that siRNA-targeting of
either dPERK (fig. S2B) or dGCN2 (fig. S2C) prevented the induction of deIF2αP by
LY294002. Owing to the unavailability of antibodies for dPERK or dGCN2, we verified
siRNA-mediated silencing by the lack of an induction of deIF2αP in Kc167 cells after
treatment with inducers of each kinase such as thapsigargin (TG) (fig. S2B) and ultraviolet-
C (UV-C) light (fig. S2C), which activate PERK (14) and GCN2 (15) respectively. These data
implicated both dPERK and dGCN2 in eIF2αP in response to PI3K inhibition. To
substantiate these observations in mammalian cells, we examined eIF2αP in MEFs lacking
PERK and GCN2 (double knockout; DKO). We observed that unlike the wild-type (WT)
MEFs, induction of eIF2αP was not possible in DKO MEFs after treatment with LY294002
(Fig. 1C). Additional experiments with MEFs lacking either PKR (16) or HRI (17) indicated
that neither kinase is involved in eIF2αP by PI3K inhibition (fig. S3). This is further
supported by our recent work demonstrating that PKR mediates eIF2αP downstream of
PTEN independently of PI3K signaling inhibition (10). Next, we looked at the
phosphorylation of PERK at threonine (T) 980, an autophosphorylation site in the activation
loop of the kinase that is essential for eIF2αP(14). We found that LY294002 treatment of
WT MEFs led to a substantial induction of PERK phosphorylation at T980, which was
accompanied by an increase in eIF2αP (Fig. 1D). PERK activation was not due to an
induction of ER stress because LY294002 treatment did not affect the splicing of X-box
binding protein 1 (XBP-1) mRNA (fig. S4), which is as a reliable marker of UPR (18).

Inactivation of Akt leads to the induction of eIF2αP
To determine the mechanism of PERK activation, we employed Drosophila Kc167 cells to
knock-down dAkt by siRNA. We found that dAkt downregulation increased the basal levels
of deIF2αP, which, however, were not further increased after LY294002 treatment (fig.
S5A). When WT MEFs and MEFs lacking Akt 1 and 2 (Akt DKO) (19) were used, we
observed that Akt1,2-deficiency increased the basal levels of eIF2αP compared to WT
MEFs (Fig. 2A, lanes 1, 4), which was further increased after elimination of the remainder
Akt3 by siRNA (lane 7). We also observed that treatment with LY294002 induced eIF2αP
at a higher level in WT MEFs than in Akt1,2 DKO MEFs treated with either scramble
siRNA (control) or siRNA for Akt3 (Fig. 2A). This data indicated that Akt downregulation
increases eIF2αP, which cannot be further increased by PI3K inhibition in Akt-deficient
cells to the same extent as in Akt-proficient cells. To further support this data, we employed
pharmacological inhibitors of Akt, such as inhibitor VIII and XI, both of which target the
pleckstrin homology (PH) domain of Akt (20) or inhibitor IX, which directly inhibits Akt
activity(20). We observed that all inhibitors caused a substantial induction of eIF2αP in both
mouse fibroblasts (Figs. 2B-D) and human tumor cells (figs. S5B–D). The efficiency of the
treatments was verified by the impaired phosphorylation of Akt at S473 and ribosomal S6
protein at S235/236 (Figs. 2B–D; figs. S5B–D). Collectively, these data supported the
notion that Akt has a negative effect on eIF2αP.
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Akt inactivates PERK by phosphorylation at threonine 799
Mouse PERK contains seven serine and threonine residues all of which conform to a
canonical RxRxxS/T phosphorylation consensus site for Akt (Fig. 3A). To test whether
PERK is a substrate of Akt, we performed in vitro kinase assays using catalytically inactive
GST-PERK and catalytically active Akt1 or Akt2. As control, we included GST-GSK3β in
the assays, which is a bona-fide substrate of Akt. We found that active Akt induced the
phosphorylation of GST-PERK as indicated in assays with radioactive 32P-γATP (figs.
S6A, B) or non-radioactive ATP after immunoblotting with phospho-Akt substrate-specific
antibodies (fig. S6C). Phosphorylated GST-PERK was subsequently subjected to mass
spectrometry, which identified phosphorylation at T799 only (Fig. 3B). T799 of mouse
PERK and the surrounding consensus Akt substrate sequence are highly conserved in human
and rat PERK (Fig. 3B). Transient transfection assays in COS-1 cells demonstrated the
phosphorylation of Myc-PERK WT but not of Myc-PERK T799A after
immunoprecipitation with Myc-antibodies and immunoblotting with phospho-Akt substrate-
specific antibodies (Fig. 3C). Also, we noticed that T980 autophosphorylation of PERK,
which is a marker of its activation, was more highly induced in Myc-PERK T799A than in
Myc-PERK WT after expression in Cos-1 cells with Myc-Akt1 (Fig. 3D). Furthermore,
Cos-1 cells expressing Myc-PERK T799A displayed a higher level of endogenous eIF2αP
than cells expressing Myc-PERK WT consistent with the increased autophosphorylation
capacity of Myc-PERK T799A at T980 (Fig. 3D). These data demonstrated that T799
phosphorylation plays a negative role in PERK activation.

Akt antagonizes the PERK-eIF2αP pathway in stressed and tumor cells
The PERK-eIF2αP arm is an important element of the switch from the pro-survival to pro-
death signaling during chronic or severe ER stress leading to the induction of the activating
transcription factor 4 (ATF4) and CCAAT/enhancer binding protein (C/EBP) homologous
protein (CHOP) (21,22). On the other hand, activation of Akt in ER-stressed cells has been
largely associated with cell survival (23,24). As such, we wished to examine the possible
connection between PERK and Akt in response to ER stress. When WT and isogenic Akt
DKO MEFs (19) were treated with TG, we observed that Akt promoted cell survival in
response to ER stress (Fig. 4A). However, PERK phosphorylation at T980 and eIF2αP were
more highly induced in DKO than in WT MEFs after TG treatment (Fig. 4B). Also, the
ability of Akt to impair the induction of eIF2αP under ER stress was also observed in
human HT1080 cells in which all three Akt isoforms were ablated by siRNA (fig. S7).
Moreover, Akt-mediated phosphorylation of PERK was impaired in Akt DKO MEFs
compared to WT MEFs after treatment with TG (Fig. 4C). Taken together, these data
suggested that Akt negatively regulates PERK by phosphorylation at T799 in response to ER
stress. We further observed that the higher levels of PERK activity and eIF2αP in Akt DKO
MEFs were associated with increased ATF4 and CHOP expression indicating that the higher
susceptibility of the DKO MEFs to cell death by ER stress may be mediated, at least in part,
by the activation of the ATF4-CHOP arm (Fig. 4B). The pro-apoptotic role of PERK was
confirmed in experiments showing that blockade of endogenous PERK by the expression of
the dominant-negative and catalytically inactive Myc-PERK K618A caused a 40% decrease
in the susceptibility of Akt DKO MEFs to death in response to ER stress (Fig. 4D).
Collectively, these data demonstrated that Akt-mediated phosphorylation of PERK prevents
the induction of apoptosis under prolonged ER stress.

Contrary to its function in ER stress, Akt plays a pro-apoptotic role in cells subjected to
oxidative stress (25). Consistent with previous studies (25), we observed a higher
susceptibility of WT MEFs than Akt DKO MEFs to death after treatment with H2O2 (Fig.
5A). We also saw that H2O2 treatment resulted in a higher induction of eIF2αP and PERK
phosphorylation at T980 in Akt DKO MEFs than in WT MEFs (Fig. 5B). Similarly, eIF2αP
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was more highly induced in human HT1080 cells in which all three Akt isoforms were
targeted by siRNA than in cells with intact Akt after exposure to H2O2 (fig. S7). We further
noticed that Akt-mediated phosphorylation of PERK was impaired in DKO MEFs compared
to WT MEFs exposed to H2O2 (Fig. 5C). These data demonstrated that Akt activation
results in the inhibition of PERK-eIF2αP arm in cells under oxidative stress. To address the
biological role of Akt-mediated phosphorylation of PERK, PERK−/− MEFs were
reconstituted with either Myc-PERK WT or Myc-PERK T799A followed by treatment with
H2O2. We observed that the pro-apoptotic effects of H2O2 were reduced by 50% in
PERK−/− cells reconstituted with PERK T799A compared to mock transfected cells or cells
reconstituted with PERK WT (Fig. 5D). These data confirmed that PERK inactivation by
phosphorylation at T799 promotes the pro-apoptotic effects of Akt in cells subjected to
oxidative stress. Thus, PERK antagonizes Akt-mediated cell death in response to oxidative
stress.

We further examined whether inactivation of the PERK-eIF2αP arm by Akt can be observed
in vivo. To this end, we employed transgenic mice expressing a constitutively active form of
Akt1 (Akt1-DD) together with an oncogenic version of ErbB2/Neu (NDL) under the control
of the mammary tumor virus (MMTV) promoter (26). Expression of Akt1-DD in NDL mice
significantly accelerates mammary gland tumor progression compared to NDL mice
alone (26). When mammary tumors from these transgenic mice were used, we observed that
NDL tumors contained increased levels of PERK activity, which were detected by
immunohistochemical (IHC) analysis of PERK phosphorylated at T980, as opposed to NDL
tumors expressing Akt1-DD, in which detection of PERK activity by IHC was not possible
(Fig. 6). We also looked at PERK activity and eIF2αP in tumor samples by immunoblotting,
and we observed that NDL tumors contained both increased levels of PERK
phosphorylation at T980 and eIF2αP compared to NDL tumors expressing Akt1-DD (Fig.
6). The activity of Akt1-DD in tumors was indicated by the increased levels of Akt
phosphorylated at S473 as became evident by IHC analysis as well as immunoblotting (Fig.
6). These data demonstrated the inhibition of the PERK-eIF2αP pathway by activated Akt in
vivo.

eIF2αP is an adaptive response to PI3K and Akt inhibition with implications in cancer
treatment

To further address the significance of our findings, we investigated the biological role of
eIF2αP in response to PI3K-Akt pathway inhibition. To this end, we employed MEFs
bearing a S51A knock-in homozygous mutation of eIF2α (i.e. eIF2αA/A MEFs) together
with their isogenic WT counterparts (i.e. eIF2αS/S MEFs) (27). We observed that treatment
of both MEF types with LY294002 increased Go/G1 arrest and induced apoptosis, effects
that were more prominent in eIF2αA/A than in eIF2αS/S MEFs (Fig. 7A, fig. S8A). In line
with these findings, treatment of the MEFs with the Akt inhibitor VIII, IX or XI resulted in a
higher induction of death in eIF2αA/A MEFs than in eIF2αS/S MEFs as documented by
flow cytometry analysis (Fig. 7B–C, fig. S8B). Collectively, these data demonstrated that
eIF2αP promotes cell survival in response to PI3K-Akt pathway disruption. They also
implied that elimination of the cytoprotective effects of eIF2αP could render tumor cells
more susceptible to death after treatment with drug inhibitors of the PI3K-Akt pathway. To
address this possibility, we used HT1080 fibrosarcoma cells to target PERK by siRNA as
demonstrated by the decreased levels of PERK expression and impaired induction of
eIF2αP after treatment with PI3K and Akt inhibitors (fig. S9). We observed that treatment
with either the PI3K inhibitor GDC-0941 or Akt inhibitor XI induced cell death more
efficiently in cells with inactivated PERK than in cells with intact PERK (Figs. 7D, E).
These findings demonstrated that elimination of the cytoprotective effects of the PERK-
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eIF2αP arm can render tumor cells more susceptible to death after treatment with drug
inhibitors of the PI3K-Akt pathway.

Discussion
Our study reveals an essential role of Akt signaling in the negative regulation of eIF2αP.
Although genetic analysis implicates both PERK and GCN2 in this process, it is not
presently known how GCN2 activity is controlled by Akt. A previous study in budding yeast
indicated an indirect role of TOR in the regulation of GCN2, the only eIF2α kinase in this
organism. That is, TOR inhibition by rapamycin induced the dephosphorylation of GCN2 at
S577, a modification that leads to GCN2 activation and induction of eIF2αP (28). However,
S577 is not conserved in other GCN2 orthologs (28) suggesting that negative regulation of
GCN2 by mTOR is not a universal mechanism. Consistent with this notion, pharmacological
inhibition of mTOR did not affect eIF2αP in U87 cells (fig. S1C) indicating that mammalian
GCN2 is controlled by the PI3K-Akt pathway at a level different from mTOR. Nevertheless,
our biochemical and biological data clearly demonstrate an important role of PERK in the
induction of eIF2αP in response to PI3K and/or Akt inhibition. Our study further
demonstrates that the ability of Akt to function as a “check point” of survival or death is
affected by the inactivation of PERK by phosphorylation at T799 (see model fig. S10).

The biological implications of our findings are highlighted by the ability of PERK and Akt
to respond to ER stress and oxidative stress, two forms of stress that are intimately linked to
tumorigenesis. Specifically, ER stress is induced in solid tumors deprived from nutrients,
glucose and oxygen as a result of limited tumor vascularization (29,30). Under these
conditions, tumor cells have developed mechanisms to adapt to ER stress in order to
maintain their survival and growth. Mild forms of ER stress in tumors leads to PERK
activation, which promotes adaptation through translational and transcriptional
mechanisms (29). However, tumor adaptation becomes faulty under conditions of severe or
chronic forms of ER stress (21,22) leading to the induction of a pro-apoptotic program that is
orchestrated not only by the sustained activation of PERK (Fig. 4) but also by the
inactivation of Akt (31). Cell adaptation through PERK and eIF2αP also involves inhibition
of ROS production and reduction of damage caused from oxidative stress as part of an anti-
oxidant mechanism that utilizes the induction of ATF4 (32,33) and expression of NF-E2-
related factor 2 (Nrf2) (34). The anti-oxidant function of PERK has profound effects on
tumor promotion (35,36) as well as tumor resistance to chemotherapeutic drugs (36). Contrary
to PERK and eIF2αP, Akt increases ROS synthesis through the inhibition of the
transcriptional function of FoxO proteins (25). Akt may further increase ROS synthesis by
downregulating the PERK-eIF2αP arm, which in turn facilitates cell death from oxidative
stress (Fig. 5 and Ref. (25)). The ability of Akt to respond to oxidative stress has also been
linked to the induction of senescence in mouse and human fibroblasts (25,37). The pro-
senescent function of Akt may have implications not only in the regulation of tumorigenesis
but also in the development of metabolic diseases such as insulin resistance and
diabetes (38). Unlike Akt, the role of PERK in regulation of senescence is not known
although eIF2αP has been shown to be increased in senescent cells as part of UPR (39,40).
Several observations support the notion that UPR is compromised with aging (41) indicating
that PERK and eIF2αP may play a role in senescence initiated by activated Akt.

Our study provides evidence for a role of PERK and eIF2αP in anti-cancer therapies
targeting the PI3K pathway. Specifically, we show that the ability of activated Akt to impair
the PERK-eIF2αP arm is a property of tumor cells grown in vitro as well as in vivo (Fig. 6).
We also show that inactivation of the cytoprotective effects of the PERK-eIF2αP arm
increases the susceptibility of human tumor cells to death by inhibitors of PI3K or Akt (Fig.
7). This is consistent with many studies showing that drug inhibitors of PI3K and Akt
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signaling are inducers of apoptosis in several types of cancer; however, the best use of them
in the clinics is in combination with other chemotherapies (42). Our data show that
inactivation of PERK and eIF2αP may be a suitable means to improve the efficacy of
current chemotherapies targeting PI3K-Akt signaling. Our data suggest that eIF2αP may
represent an important mechanism of addiction of tumor cells to chemotherapeutic drugsand
as such, it is a potential target for anti-cancer therapy.

Materials and Methods
Plasmids

Myc-PERK wild type, Myc-PERK K618A and GST-PERK K618A constructs were
described elsewhere (14).

Cell culture and treatments
PKR−/−, PERK−/− or HRI−/− MEFs and their isogenic wild type counterparts were
maintained in culture as described (43). eIF2α S/S and eIF2α A/A MEFs were cultured as
described elsewhere (27). The culture of Akt DKO MEFs and their isogenic wild type MEFs
was described elsewhere (25). HT1080 and U87 cells were cultured as previously
described (10,44). Drosophila Kc167 cells were obtained from Drosophila Genomics
Resource Center (DGRC) and were grown in Shields and Sang insect medium containing
yeast extract (1g/L), bactopeptone (2.5g/L) and 5% heat-inactivated fetal calf serum. The
MCF-7 cells were maintained in RPMI-1640 media supplemented with 10% heat-
inactivated calf serum. LY294002 (Biomol), H2O2 (Biorad), bortezomib (LC laboratories),
thapsigargin (Sigma), the Akt inhibitors VIII, IX or XI (EMD Chemicals), GDC-0941
(Selleck Chemicals), PD98059 (Selleck Chemicals) and KU0063794 (Bethyl laboratories)
were used in concentrations described in figure legends. Treatments with LY294002 were
refreshed every 12 hours up to indicated time points of the experiments.

Protein extraction, immunoblotting and immunoprecipitation
Protein extraction from mouse and human cells was performed as described (10). Protein
extraction from Drosophila Kc167 cells was performed as described (45). Immunoblot
analyses of protein extracts was performed as described (10). The primary antibodies were as
follows: anti-dAkt pS505 rabbit polyclonal antibody (Cell Signaling), anti-Akt/PKB pS473
rabbit polyclonal antibody (Cell Signaling), anti-Akt/PKB rabbit polyclonal antibody (Cell
Signaling), anti-S6-pSer235/236 rabbit polyclonal antibody (Cell Signaling), rabbit serum to
phospho-S51 of eIF2α (Invitrogen), anti-eIF2α rabbit polyclonal antibody (Santa Cruz),
anti-Myc antibody (Santa Cruz), anti-actin mouse monoclonal antibody (ICN), anti-PKR
(B10) mouse monoclonal antibody (Santa Cruz), anti-PERK pT980 rabbit monoclonal
antibody (Cell Signaling), homemade anti-PERK mouse monoclonal antibody, anti-phospho
S/T Akt substrate antibody (Cell Signaling), anti-ATF4 antibody (Proteintech group), anti-
CHOP antibody (Santa Cruz). The secondary antibodies were horseradish peroxidase
(HRP)-conjugated anti-mouse IgG antibody and HRP-conjugated anti-rabbit IgG antibody
(Amersham Pharmacia Biotech). Myc-tagged proteins were immunoprecipitated from 500
μg protein extracts using 2 μg of anti-Myc antibody conjugated to anti-mouse IgG
sepharose beads (Sigma). Endogenous PERK was immunoprecipitated from 500 μg protein
extracts using 5 μg homemade anti-PERK monoclonal antibody coupled to anti-mouse IgG
sepharose beads (Sigma).

DNA transfections
Transient transfections of COS1 cells were performed using Lipofectamine Plus Reagent
(Invitrogen) following the manufacturer’s protocol. Cells (5×105) were seeded in 60mm
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plates and 5 μg of plasmid DNA was used for transfection. Cells were then incubated at
37°C for 48hrs including any treatment.

RNA interference
MEFs were transfected with siRNA using the Amaxa Nucleofector system (MEF kit 1)
according to manufacturer’s specifications. HT1080 cells were transfected with siRNA
using LipoFectamine 2000 according to manufacturer’s specifications. Treatment of cells
with siRNA against mouse Akt3 (SMARTpool, Dharmacon), human Akt1, Akt2 and Akt3
(SMARTpool, Dharmacon), human PERK (SMARTpool, Dharmacon) or scrambled control
siRNA (Dharmacon) was performed for 48hrs.

Drosophila RNAi and analysis
dsRNAs for targeting Drosophila Akt/PKB, S6K, PERK and GCN2 were synthesized by in
vitro transcription in 20μl reactions using a T7 MEGAscript™ RNAi kit (Ambion). DNA
templates for IVT were generated by RT-PCR from total Drosophila cellular RNA using the
TRIzol reagent as specified by the manufacturer (Invitrogen). As silencing control human
transferrin receptor dsRNA (TfR) was generated by RT-PCR from total RNA obtained from
human HT1080 cells. Primers (which incorporated a 5′ and 3′ T7 promoter) for dAkt/
dPKB, dS6K, dPERK and dGCN2 dsRNA synthesis are listed in the supplemental material.
Drosophila Kc167 cells (1×106) were diluted in 1ml serum-free medium and incubated with
dsRNA (20μg) in a six-well cell culture dish for 30min at room temperature followed by
addition of 2ml of media containing 10% fetal bovine serum. The cells were incubated for
additional 3 days to allow turnover of the target protein.

Flow cytometry analysis
Cells were seeded (2×105 cells) in 100 mm plates and treated with LY294002, thapsigargin,
H2O2 or Akt inhibitors VIII, IX or XI at the concentrations and times indicated in the text.
Cells were detached with phosphate buffer saline (PBS) that contained 1mM EDTA and
centrifuged at 900xg for 5 minutes. Cells were fixed by adding 4 ml of ice-cold 70% ethanol
gently to the pellet and stored at −20°C overnight. For staining, ethanol was removed and
cells were re-suspended in 0.5 ml of PBS containing 50 μg/ml propidium iodide (P4170,
Sigma) and 20 μg/ml RNase (Sigma). Cells were incubated at room temperature for 30
minutes in the dark and subjected to flow cytometry analysis on a FACScan cell sorter.
PERK −/− MEFs and Akt1 −/− Akt2 −/− DKO MEFs were transfected with pcDNA-GFP
plasmid alone or together with plasmid DNA bearing either Myc-PERK wild-type cDNA,
Myc-PERK T799A cDNA or Myc-PERK K618A cDNA. Forty eight hours after
transfection, cells were treated with H2O2 (0.5mM) for 2 and 4 hours or thapsigargin (1μM)
for 18 and 24 hours. The GFP-positive cells were gated and their subG1 levels analyzed by
FACS following staining with Hoechst 33342 (10 μg/ml).

In vitro phosphorylation assays
In vitro Akt kinase assays with GST-PERK K618A and GST-GSK3β K85R/K86R as
substrate were performed using 32P-γATP, 25mM MgAc and 0.25mM cold ATP. For Akt1
(Upstate), kinase reaction buffer contained 40mM MOPS/NaOH and 1mM EDTA; for Akt1
(Biomol), 25mM MOPS, 12.5mM β-glycerophosphate, 5mM EGTA, 2mM EDTA, 25mM
MgCl2, 0.25mM DTT; for GST-Akt2 (Biomol), 50mM Tris, 0.5mM DTT, 1mM EGTA,
0.2mM sodium orthovanadate. Kinase reactions were incubated for 30min at 30°C. Samples
were subjected to SDS-PAGE, stained with Coomassie blue and subjected to
autoradiography. Non-radioactive in vitro Akt kinase assays were performed as described
above in the presence of 3 mM ATP. The mass spectrometry procedure is included in the
supplementary materials.
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Statistical analysis
All quantitative variables are presented as means ± S.D. We compared the differences of
three groups or more using one-way ANOVA and the differences of two groups using two-
tailed Student t test (GraphPad Prism 5), and p < 0.05 was considered statistically
significant.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Induction of eIF2αP by PI3K inhibition requires PERK and GCN2
(A, B) Human glioblastoma U87 cells were left untreated (A–B, lane 1) or treated with
20μM LY294002 (A, lanes 2–3) or with 5μM and 10μM GDC-0941 (B, lanes 2–3) for the
indicated hours (h). (C) Isogenic WT or PERK−/−GCN2−/− (double knockout; DKO) MEFs
were left untreated (C, lanes 1, 3) or treated with 20 μM LY294002 (C, lanes 2, 4) for 6 h.
(D) Immortalized WT MEFs were left untreated (lane 1) or treated with 20μM LY294002
for the indicated hours (h). (A–D) Protein extracts (50 μg) were immunoblotted for the
indicated proteins. The ratio of eIF2αP to total eIF2α or actin and phosphorylated PERK to
total PERK for each lane is indicated. Panels A to D are representative of three independent
experiments.
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Figure 2. Akt inactivation causes the induction of eIF2αP
(A) Akt wild-type (WT) cells were left untreated (lane 1) or treated with 20 μM LY294002
(lanes 2, 3) for the indicated hours (h). Akt1−/−Akt2−/− (double knockout; DKO) MEFs were
treated with either scrambled control siRNA (lanes 4–6) or siRNA against Akt3 (lanes 7–9)
in the absence (lanes 4, 7) or presence of 20 μM LY294002 (lanes 5, 6, 8, 9) for the
indicated hours (h). (B–D) Immortalized wild-type MEFs were treated with the indicated
concentrations of Akt inhibitor VIII (C), IX (D) or XI (E) for different times (h). (A–D)
Protein extracts (50 μg) were immunoblotted for the indicated proteins. The ratio of eIF2αP
to either total eIF2α or actin for each lane is indicated. Panels A to D are representative of
three independent experiments.
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Figure 3. Akt inactivates PERK by phosphorylation at threonine 799
(A) Sequence alignment of putative Akt phosphorylation sites in mouse PERK. (B) MS2
spectrum of SREGpTSSSIVFEDSGCGNASSK phosphopeptide of mouse PERK
phosphorylated by Akt1 subjected to in-gel digestion with trypsin. The analysis was
performed on a LTQ linear ion trap mass spectrometer. MS/MS spectra were assigned with
MASCOT as described in Materials and Methods. Scaffold was used to filter MS/MS based
identification and annotate MS/MS spectra. The spectrum shows a peptide, which contains
the phosphothreonine 799 residue identified by the analysis of the peptide’s y and b
fragments. An intense neutral loss of phosphoric acid (−98) was observed from the precursor
ion (peaks at 1122.63). Alignment of the amino acid sequence surrounding the T799
phosphorylation site indicates its conservation in mouse, human and rat PERK orthologs.
(C) Cos-1 cells (5×105) were transfected with 5 μg of pcDNA-empty vector DNA (lane 1)
or 5 μg of pcDNA-vector containing either Myc-tagged mouse PERK wild type (WT)
cDNA (lane 2) or Myc-tagged mouse PERK T799A cDNA (lane 3). Forty-eight hours after
transfection, protein extracts (500 μg) were subjected to immunoprecipitation with anti-Myc
antibody followed by immunoblotting with anti-phospho S/T Akt substrate antibody (top
panel) or anti-Myc antibody (bottom panel). (D) Cos1 cells (5×105) were transfected with
2.5 μg of pcDNA vector containing Myc-Akt1 cDNA (lanes 1–3) and 2.5 μg of pcDNA-
vector containing Myc-PERK WT cDNA (lane 1), Myc-PERK T799A cDNA (lane 2) or
pcDNA vector alone (lane 3). Forty-eight hours after transfection, protein extracts (50 μg)
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were immunoblotted for the indicated proteins. The ratio of phosphorylated Myc-PERK to
total Myc-PERK as well as eIF2αP to total eIF2α for each lane is indicated. Panels C and D
are representative of three independent experiments.
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Figure 4. PERK counteracts the pro-survival properties of Akt in ER-stressed cells
(A) Isogenic WT MEFs and Akt DKO MEFs were treated with 1 μM thapsigargin (TG) for
the indicated hours (h). Cell death (% subG1) was determined by propidium iodide staining
and flow cytometry analysis. Histograms show quantification of results from three
independent experiments; error bars indicate SD, n=3. The group difference was tested by
ANOVA (P<0.0004 for comparison). (B, C) WT and Akt DKO MEFs were treated with 1
μM TG for the indicated hours (h). (B) Protein extracts (50 μg) were immunoblotted for the
indicated proteins. The ratio of eIF2αP to total eIF2α, T980 phosphorylated PERK to total
PERK as well as the ratio of ATF4 or CHOP to actin for each lane is indicated. (C) Protein
extracts (500 μg) were subjected to immunoprecipitation with anti-PERK antibody followed
by immunoblotting with anti-phospho S/T Akt substrate antibody (top panel) or PERK
antibody (bottom panel). The ratio of phosphorylated PERK to total PERK for each lane is
indicated. (D) Akt DKO MEFs were transfected with 10 μg of pcDNA vector alone or 10
μg pcDNA vector bearing Myc-PERK K618A cDNA in the presence of 5 μg vector
containing the GFP cDNA. Cells were treated with TG for 18 and/or 24 h and stained with
Hoechst 33342. Cell death (% subG1) was assessed in cells expressing GFP by cell sorting
and flow cytometry analyses. Histograms show quantification of results from three
independent experiments; error bars indicate SD, n=3. The group difference was tested by
ANOVA (P<0.0006). Panels B and C are representative of three independent experiments.
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Figure 5. PERK antagonizes the pro-apoptotic function of Akt in response to oxidative stress
(A) Isogenic WT MEFs and Akt DKO MEFs were treated with 0.75 mM or 1 mM H2O2 for
1 hour. Cell death (% subG1) was determined by propidium iodide staining and flow
cytometry analysis. Histograms show quantification of results from three independent
experiments; error bars indicate SD, n=3. The group difference was tested by ANOVA
(P<0.0002 for comparison). (B, C) WT and Akt DKO MEFs were treated with increased
concentrations of H2O2 for 1 h. (B) Protein extracts (50 μg) were immunoblotted for the
indicated proteins. The ratio of eIF2αP to total eIF2α and T980 phosphorylated PERK to
total PERK for each lane is indicated. (C) Protein extracts (500 μg) were subjected to
immunoprecipitation with anti-PERK antibody followed by immunoblotting with anti-
phospho S/T Akt substrate antibody (top panel) or PERK antibody (bottom panel). (D)
PERK−/− MEFs were transfected with 10 μg of pcDNA vector alone or 10 μg pcDNA
vector bearing either Myc-PERK WT cDNA or Myc-PERKT799A cDNA in the presence of
5 μg vector containing the GFP cDNA. Cells were treated with H2O2 (0.5mM) for 1 h and
stained with Hoechst 33342. Cell death (% subG1) was assessed in cells expressing GFP by
cell sorting and flow cytometry analyses. Histograms show quantification of results from
three independent experiments; error bars indicate SD, n=3. The group difference was tested
by ANOVA (P<0.0002 for comparison). Panels B and C are representative of three
independent experiments.
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Figure 6. Akt downregulates PERK activity and eIF2αP in mouse mammary gland tumors in
vivo
Mammary tumors from transgenic mice expressing either NDL 2–5 alone (NDL-CON;
#8109, #8398) or NDL 2–5 together with hyperactive Akt1-DD (NDL-Akt1DD; #1098,
#1302) subjected to IHC analysis for PERK phosphorylated at T980 (PERK-pT980), Akt
phsophorylated at S473 (Akt-pS473) as well as hematoxylin and eosin (H&E) staining (left
panel). Lysates of mammary tumors from NDL-CON or NDL-Akt1DD mice were
immunoblotted for the indicated proteins. The ratio of phosphorylated PERK to total PERK,
phosphorylated Akt to total Akt and eIF2αP to total eIF2α for each lane is indicated (right
panel).
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Figure 7. The PERK-eIF2αP arm promotes cell survival and reduces the efficacy of anti-tumor
treatment with inhibitors of PI3K and Akt
Isogenic eIF2α S/S and eIF2α A/A MEFs were treated with 20 μM LY294002 for 24 or 48
h (A), 50 μM Akt inhibitor VIII for 12h (B), or 50 μM Akt inhibitor XI for 48 h (C).
HT1080 cells were treated with either scrambled control siRNA or siRNA against PERK in
the absence or presence of either 10 μM GDC-0941 (D) or 50 μM Akt inhibitor XI (E) for
the indicated hours (h). Cell death (% subG1) (A–E) was assessed by propidium iodide
staining and flow cytometry analysis. (A) Histograms show quantification of results from
seven independent experiments; error bars indicate SD, n=7. The group difference was
tested by ANOVA (P<0.0004 for comparison). (B–E) Histograms show quantification of
results from three independent experiments; error bars indicate SD, n=3. The group
difference was tested by ANOVA (B: P<0.002; C: P<0.0001; D: P<0.001; E: P<0.001 for
comparison).
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