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Abstract. O’nyong-nyong virus (ONNV), an alphavirus closely related to chikungunya virus (CHIKV), has caused
three major epidemics in Africa since 1959. Both ONNV and CHIKV produce similar syndromes with fever, rash, and
debilitating arthralgia. To determine the roles of the innate and adaptive immune responses, we infected different
knockout mice with two strains of ONNV (SG650 and MP30). Wild-type, RAG1 KO, and IFNgR KO mice showed no
signs of illness or viremia. The STAT1 KO and A129 mice exhibited 50–55% mortality when infected with SG650. Strain
SG650 was more virulent in the STAT1 KO and A129 than MP30. Deficiency in interferon a/b signaling (A129 and
STAT1 KO) leaves mice susceptible to lethal disease; whereas a deficiency of interferon g signaling alone had no effect
on survival. Our findings highlight the importance of type I interferon in protection against ONNV infection, whereas the
adaptive immune system is relatively unimportant in the acute infection.

INTRODUCTION

O’nyong-nyong virus (ONNV) is a mosquito-borne virus
in the family Togaviridae, genus Alphavirus. It shares 90%
nucleotide sequence identity with chikungunya virus (CHIKV),
which recently caused major outbreaks in the Indian Ocean,
India, and Southeast Asia.1–6 O’nyong-nyong virus has caused
threemajoroutbreaksof disease inAfrica.7–10The first occurred
in Uganda in the late 1950s and early 1960s and affected over
2 million people.7 The last two outbreaks occurred in 1996 and
2003, affecting tens of thousands of people.8–11 O’nyong-nyong
virus causes a similar syndrome to CHIKV, Ross River virus
(RRV), and other Old World arthritic alphaviruses, character-
ized by fever, rash, debilitating arthralgia, and myalgia.7–11 The
disease is self-limiting and lasts a few days, though somepatients
have more persistent arthrlagia.12 In contrast to CHIKV, which
has recently been shown to produce neurologic manifestations
and death in some individuals, ONNV is not known to cause
fatal disease.6 The true incidence of ONNV infection is not
known, because the syndrome it causes is very similar to that
caused by CHIKV, dengue virus, and other African tropical
infectious diseases that are almost clinically indistinguishable.
This probably leads to frequent underreporting of ONNV
infections. Furthermore, it is difficult to distinguish antibodies
generated in response to ONNV versus CHIKV infection
because of nearly complete cross-reactivity.9,13 This difficulty
with serodiagnosis is particularly important because control
measures differ for ONNV and CHIKV as a result of the
different genera of mosquitoes that serve as vectors.
Although CHIKV and ONNV produce similar clinical syn-

dromes, their transmission cycles and geographic distributions
differmarkedly.Chikungunyavirushas repeatedly emerged from
enzootic cycles in Africa to initiate urban human-mosquito-
human cycles in Africa, Asia, and even Europe, whereas ONNV
has never been detected outside of sub-Saharan Africa.14,15

Unlike most other alphaviruses that are transmitted by Aedes

spp. and Culex spp. mosquitoes, ONNV is the only known
alphavirus transmitted by Anophelesmosquitoes (principally
Anopheles gambiae andAnopheles funestus).16,17 In addition,

although the reservoir host for many alphaviruses is known
(typically non-human primates, birds, or rodents), a reservoir
host for ONNV has not been incriminated. Humans likely
serve as amplification hosts during epidemics, but are
unlikely to sustain transmission during interepidemic periods
of up to decades.
The course of infection and pathogenesis of ONNV has not

been well described. The generation of a convenient animal
model is therefore important for understanding pathogenesis
as well as for testing new therapeutics. Finally, because it is
possible for ONNV to reemerge again in Africa with an
unknown potential to spread to other continents, thanks to
increased commerce and air travel, the development of an
animal model could be critical for public health.

MATERIALS AND METHODS

Viruses. The available strains of ONNV, MP30 and SG650,
were provided by Robert Tesh from the World Reference
Center for Emerging Viruses and Arboviruses at the Univer-
sity of Texas Medical Branch (UTMB) in Galveston, TX.
Strain MP30 (Gulu strain) was isolated from human serum
during the first documented ONNV epidemic in late 1959. It
was previously passaged 13 times in infant mouse brains and
twice on Vero African green monkey kidney cell cultures.
Strain SG650 was isolated from human serum during the
1996 outbreak in Uganda and has been passaged three times
in Vero cells.
Cell cultures. Vero cells were obtained from the American

Type Cell Culture (Bethesda, MD) and propagated at 37°C in
5% CO2 in Dulbecco’s minimum essential media (DMEM)
supplemented with 10% fetal bovine serum, and 1% penicillin
and streptomycin.
Animal studies. All mice were maintained in an ABSL-2

facility and experiments were done according to an approved
protocol from the UTMB Institutional Animal Care and Use
Committee, following the guidelines of the Association for
Assessment and Accreditation of Laboratory Animal Care,
International (AAALAC) and the National Institutes of
Health (NIH).
The C57BL/6J, recombinase activation gene 1 knockout

(RAG1 KO), and type II interferon receptor knockout
(IFNgRKO) mice were purchased from Jackson Laboratories
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(Bar Harbor, ME). The RAG1 KO, and IFNgR KO mice are
both on the C57BL/6J background. Signal transducer and
activator of transcription 1 knockout (STAT1 KO) and
129S6 mice were purchased from Taconic Farms (Hudson,
NY). The A129 (IFNa/bR KO) mice were obtained from
Slobodan Paessler (UTMB). The STAT1 KO and A129 mice
are on the 129S6 background.
Mice were inoculated subcutaneously (s.c.) in the back with

100 mL of ONNV at doses of 102 to 104 plaque-forming units
(pfu) or were inoculated in the left rear footpad (f.p.) with
10 mL of ONNV at a dose of 103 pfu. Mice were weighed and
monitored daily for clinical signs of illness for at least 14 days.
The thickness of the f.p. was measured with a digital caliper
to determine swelling. Blood obtained from the retro-orbital
sinus of selected mice was clarified by centrifugation (2,500 +
g for 5 min) and serum stored at −80°C until plaque assayed.
Moribund mice were euthanized with CO2 and tissues were
either fixed for histology (see below) or weighed and stored
at −80°C for measurement of viral load. In some studies,
mice sacrificed on days 3 and 6 were perfused with phosphate
buffered saline (PBS) before tissue collection. The PBS
was injected into the left ventricle and allowed to circulate
through the animal, and was drained from an incision in the
right atrium. Animals were perfused with at least 50 mL of
PBS until all blood was removed, indicated by clear fluid
flowing from the right atrium.
Plaque assays for viremia and tissue viral load. Frozen tis-

sues were thawed in a 10X (V/W) volume of DMEM and
homogenized using a TissueLyserII (Qiagen, Valenica, CA)
at 25 cycles/second for 5 minutes. The homogenate was clari-
fied by centrifugation (2,500 + g for 5 min) and superna-
tant was removed and stored at −80°C. Plaque assays were
performed on Vero cells in either 6- or 12-well plates as
described previously.18 Titrations were overlaid with 0.4%
agarose in DMEM. Two or 3 days later, plates were fixed with
10% formaldehyde for at least 30 minutes and stained with
crystal violet to visualize plaques.
Histology. Tissues were fixed in 10% neutral buffered for-

malin (RICCAChemical Company, Arlington, TX), and bone
tissue was decalcified overnight using Fixative/Decalcifier
(VWR International, Radnor, PA). Organs were embedded in
paraffin wax and 5 mm sections were cut for histopathological

analysis. Sections for hematoxylin and eosin (H&E) staining
were prepared as previously described.19,20

Statistics. Differences in animal weights were analyzed
using two-way analysis of variance with a Tukey-Kramer post-
hoc test. Significance was determined by a P value of < 0.05.

RESULTS

An intact interferon a/b response is sufficient for protection
against acute ONN disease. To determine if immunocompe-
tent mice are susceptible to ONNV infection, C57BL/6J mice
were infected with 103 pfu, a dose that approximates the max-
imum amount of alphaviruses transmitted by mosquito vec-
tors, of the SG650 strain.21 All C57BL/6J mice survived
infection (Figure 1). These mice did not develop signs of
illness, nor did they develop detectable viremia within the
first 6 days of infection (limit of detection 100 pfu/mL; data
not shown).
To determine which portions of the immune response were

necessary for protection against acute disease following
ONNV infection; mice with various immunologic deficiencies
were inoculated with two different strains of ONNV (SG650
and MP30). Immunodeficient mice were chosen to reflect
deficiencies in the adaptive (RAG1 KO, deficient in T and B
cells) and innate immune systems (A129, deficient in the IFN
a/b receptor; IFNgR KO, which is deficient in interferon g
receptors, and the STAT1 KO, which is deficient in all inter-
feron signaling). The STAT1 KO and A129 mice developed
fatal disease following ONNV infection (strain SG650, 103

pfu) with mortality rates of about 50% (Figure 1). By day 5
post inoculation, STAT 1 KO and A129 mice began to lose
weight (Figure 2A and B), which coincided with clinical signs
of disease including ruffled fur, lethargy, and hunched pos-
ture. Disease worsened in the STAT 1 KO animals, with 2 of
22 mice displaying hind limb paralysis by day 8. No A129
mice exhibited limb paralysis. The RAG1 KO, IFNgR KO,
C57BL/6J, and wt 129S6 mice all survived (Figure 1),
appeared healthy, and maintained stable weight throughout
the study (data not shown).
To test for variation in ONNV strain virulence, the same

mouse strains were inoculated with 103 pfu of ONNV strain
MP30. Again, RAG1 KO, IFNgR KO, C57BL/6J, and 129S6

Figure 1. Survival of O’nyong-nyong virus (ONNV)-infected mice. Survival data are shown following subcutaneous infection of 6-week-old
mice with 103 plaque-forming units (pfu) of ONNV (strain SG650) or 104 pfu where noted for A129 mice. For RAG KO-, IFNgR KO-, 129S6-,
and C57BL/6J-infected mice, N = 8. For phosphate buffered saline (PBS)-inoculated controls, N = 4. For A129 infections at a dose of 103 pfu,
N = 5, A129 at 104 pfu, N = 4, and PBS control, N = 4. For infected STAT1 KO mice, N = 22 and PBS control N = 10.
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mice all survived for the duration of the study and showed
no clinical signs of disease (data not shown). Unlike ONNV
strain SG650 infections, STAT1 KO mice all survived infec-
tion with the MP30 strain (data not shown). Some mice
showed morbidity with mild weight loss (Figure 2A), hunched
posture, lethargy, and ruffled fur beginning at day 8, but all
mice began to recover by day 10. Because only a minority of
mice lost weight, there was no statistical difference between
the mean weights of the sham (PBS) and MP30-infected
groups. A129 mice were also inoculated with 103 pfu of
ONNV strain MP30. These mice appeared healthy through-
out the study (data not shown).
To test for virulence at a higher dose, A129 mice were

infected with 104 pfu of MP30. Only 3 of 8 mice showed
clinical signs of illness. There was a loss in mean weight,
which was seen beginning at days 8–9 (Figure 2B). One
mouse developed hind limb paralysis at day 9. This mouse
only developed weight loss concurrent with limb paralysis
and never displayed ruffled fur. Recovery of hind limb
function began on day 12 and continued until it was eutha-
nized on day 22 post inoculation caused by increased weight
loss. A second A129 mouse had ruffled fur, weight loss, and
hind limb weakness, which later resolved. Despite a stabi-
lized weight between days 11 and 19 post inoculation this
mouse was ultimately euthanized on day 22 post inoculation

when weight began to drop again. A third A129 mouse
developed hind limb paralysis on day 11 and was eutha-
nized on day 14.
Because mice infected with 104 pfu of MP30 showed some

morbidity, we infected four A129 mice with 104 pfu of strain
SG650 to obtain a direct comparison of the two strains. All
mice developed ruffled fur, lethargy, hunched posture, and
weight loss beginning on day 4 (Figure 2B). The first animal
died on day 6 and all expired or were euthanized by day 10
(Figure 1).
The virulence of MP30 was lower than that of SG650 in the

STAT1 KO mice, as measured by weight loss and lethality.
There also was a difference in weight loss between A129 mice
inoculated with strains MP30 (104 pfu) and SG650 (103 pfu)
on days 11–14. However, on earlier days there was no statisti-
cal difference between these groups, or between MP30 at a
dose of 104 and PBS controls. These results in A129 mice can
be explained because the 3 mice out of 8 that showed illness
were severely ill, whereas the other five mice were not ill and
gained weight, thus causing large standard deviations. In addi-
tion, as noted previously SG650 was 100% lethal in A129
mice at 104 pfu, whereas MP30 showed morbidity and mortal-
ity in 3 of 8 mice at the same dose.
To determine if the route of ONNV infection affects dis-

ease, we inoculated the footpads of A129 mice with 103 pfu of

Figure 2. (A) Weight change following O’nyong-nyong virus (ONNV) infection of STAT1 KO mice. Data are shown following subcutaneous
(s.c.) infection of 6-week-old mice with 103 plaque-forming units (pfu) of ONNV (strain SG650 or MP30). For MP30-infected mice N = 14; SG650
infected mice, N = 22, and phosphate buffered saline (PBS) controls, N = 10. (B) Weight change following ONNV infection of A129 mice. Data
are shown following s.c.-infection of 6-week-old mice with 103 or 104 pfu of ONNV strain SG650, footpad (f.p.) infection of 6–8 week-old-mice
with 103 of SG650 or s.c.-infection with 104 pfu of strain MP30. For MP30 infected mice,N = 8; SG650 s.c. 103 infected mice, N = 9; SG650 104 s.c.
infected mice, N = 4; SG650 103 f.p. infected, N = 12; PBS controls, N = 7. Bars represent one standard deviation.
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SG650. These mice exhibited f.p. swelling (Figure 3), systemic
signs of illness, and weight loss (Figure 2B). Swelling was
noted in those animals inoculated with ONNV by the f.p.
beginning on day 3 (Figure 3). Animals inoculated in the back
by the s.c. route did not exhibit f.p. swelling (data not shown).
None of the animals succumbed to illness (data not shown)
and no animals displayed neurologic involvement. The MP30
strain was not used in these studies because of its attenuated
phenotype when delivered subcutaneously.
Viremia and tissue viral load in STAT1 KO and A129 mice.

Viremia in s.c-inoculated SG650 STAT1 KO mice peaked at
day 2 post infection and slowly declined to undetectable levels
by day 5 (Figure 4). The SG650 s.c.-inoculated A129 mice at
the same dose (103 pfu) exhibited a similar pattern to the
STAT1 KO mice. However, the viremia was 10- to 100-fold
higher at each time point tested except on day 5 (Figure 4). A
10-fold increase in the SG650 dose in A129 mice did not
significantly alter peak viremia titers, but extended viremia
for an extra day (Figure 4). The A129 mice inoculated in the
f.p. with 103 pfu of SG650 had a higher titer on day 1 post

infection, peaking at day 2, but progressively declined with
daily titers lower than s.c.-inoculated mice until reaching
undetectable levels at day 5 (Figure 4). Mice inoculated s.c.
with the MP30 strain had barely detectable levels of virus in
their blood. The average peak viremia of about 200 pfu/mL
was reached 2 days after s.c. infection of STAT1 KO mice,
although some animals had no detectable viremia (Figure 4).
A peak viremia of about 500 pfu/mL was reached on day 3
in A129 mice given a s.c. dose of 103 pfu of MP30, comparable
to that seen in similarly tested STAT1 KO mice. There was
no detectable viremia in A129 mice given 104 pfu of strain
MP30 by the s.c. route (data not shown). No other strains of
type I interferon competent mice tested (RAG1 KO, IFNgR
KO, 129S6 or C57BL/6J) exhibited viremia from either SG650
or MP30 s.c. infections (data not shown).
To begin to characterize the pathogenesis of ONNV infec-

tion, A129 mice were injected (either s.c. or f.p.) with 103 pfu
of the SG650 strain. Tissues were harvested following perfu-
sion on days 3 and 6 post inoculation. Mice euthanized on
day 9 were not perfused. Virus detection in tissues by plaque
assays from days 3 and 6 is summarized in Table 1. The route
of inoculation did not appear to have a drastic effect on the
location or load of virus within the mice. Generally, organ
titers were higher on day 3 than day 6 post inoculation. Addi-
tionally, fewer organs contained detectable virus as time post
infection increased (Table 1); no virus was detected from any
organ on day 9 (data not shown).
Interestingly, skeletal muscle from the left leg, which was

the site of f.p. injection in some mice, contained 3.6–5.9 logs
of ONNV on days 3 and 6 post infection, regardless of the
route (f.p. or s.c.) and location of inoculation (f.p. or back)
(Table 1). The right leg was not tested in mice inoculated
by the s.c. route. Muscle on the contralateral side of f.p.
inoculation was also positive in some mice, suggesting that
ONNV is capable of spreading and infecting skeletal muscle
far removed from the site of initial infection.
We next sought to determine the viral loads present in

animals that succumbed to illness. The A129 and STAT1 KO
mice were infected with 103 pfu of SG650, and organs were

Figure 4. Viremia in STAT1 and A129 mice. Data are shown following subcutaneous or footpad infection of 6–8 week-old mice with 103 or
104 plaque-forming units (pfu) of O’nyong-nyong virus (ONNV). For STAT1 KO mice infected subcutaneously (s.c.) with SG650 and MP30, N =
7; A129 mice infected s.c. with SG650 103 pfu, N = 5; A129 mice infected s.c with SG650 104 pfu, N = 4; A129 mice infected s.c. with 103 pfu of
MP30, N = 5; A129 mice infected via footpad (f.p.) with 103 pfu of SG650; N = 5. The limit of detection of the plaque assay was 100 pfu/mL.
Negative animals were assigned a value of one-half the limit of detection. Error bars represent one standard deviation.

Figure 3. Footpad swelling in A129 mice. Data are shown fol-
lowing footpad infection of 6–8 week-old mice with 103 plaque-
forming units (pfu) of ONNV (SG650, N = 12; PBS, N = 5). Error
bars represent one standard deviation.
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harvested when mice were moribund. Virus was undetectable
(< 100 pfu/gram) from moribund A129 mice (harvested days
9–12). This observation is consistent with the lack of detect-
able virus found on the day 9 harvests of non-moribund mice.
Moribund STAT1 KO mice, however, contained virus within
the brain, heart, and skeletal muscle (Table 2). These animals
were sacrificed between days 9 and 12 post inoculation. Virus
found in these organs represented the true viral organ load
because these mice were not viremic. Moribund A129 mice,
which were inoculated with 104 pfu of strain MP30, had no
detectable virus in any organ (data not shown).
Lethality of ONNV is dependent on mouse age. To deter-

mine if the outcome of ONNV infection is also age-dependent
like that of other alpahviruses, we used 12–16-week-old
STAT1 KO mice and inoculated them s.c. with varying does
of ONNV strain SG650. STAT1 KO mice were chosen for
these studies due to the more severe histologic changes (see
next section) and more severe clinical course than in the
A129, though lethality was similar in the two mouse strains.
These older mice exhibited severe morbidity and weight loss
beginning on day 4 (Figure 5) for all doses. In contrast to the
50% mortality seen in 6-week-old mice after a dose of 103 pfu
(Figure 1), all 12–16-week-old mice began to recover by day 9
or 10 post inoculation and survived regardless of the infec-
tious dose.
Murine ONNV infection produces a marked mixed

inflammatory infiltrate with numerous monocytes. Next, we
sought to characterize the pathologic changes in moribund
STAT1 KO mice induced by s.c. ONNV infection with 103

pfu of strain SG650. Histopathologic and gross evaluation of
the brain, heart, lung, liver, spleen, kidney, bowel, skeletal
muscle, and joint were performed (Figure 6). There was a
marked mixed inflammatory infiltrate with numerous mono-
cytes in all organs examined. No gross lesions were identified

in these tissues. The below histologic changes were identified
in the vast majority of mice with only a difference in the
degree of inflammation and tissue damage.
The brain (Figure 6A) exhibited meningoencephalitis,

with the severity of the inflammation increasing in animals
that survived longer. The inflammation was characterized by
perivascular cuffing, neuronal death, and a mixed inflamma-
tory infiltrate with numerous monocytes, with horseshoe-
shaped nuclei and abundant eosinophilic cytoplasm. Although
the infiltrate was predominantly monocytic, numerous neutro-
phils and lymphocyteswere also present. The heart (Figure 6B)
exhibited myocarditis as indicated by an inflammatory infil-
trate composed predominantly of monocytes with scattered
neutrophils and lymphocytes. Numerous cardiac myocytes
had a wavy appearance upon H&E staining, consistent with
loss of viability. Inflammation in the lung (Figure 6C) was
again predominantly composed of monocytes with scattered
neutrophils and lymphocytes. Bronchial epithelium showed
reactive changes; the alveolar septae were distended with the
previously mentioned inflammatory infiltrate, and there was
reduction in alveolar space possibly caused by enlargement of
the septae and alveolar collapse. The skeletal muscle of the
leg (Figure 6D) exhibited the same mixed inflammatory infil-
trate as seen in other organs. Monocytes, lymphocytes, and
scattered neutrophils surrounded dead and dying skeletal
myocytes. The ankle joint (Figure 6E) showed thickening of
the synovial lining, edema, and a mixed inflammatory infil-
trate. The architecture of the liver (Figure 6F) wasmaintained,
and no damage to the bile ducts or vascular structures was
noted. However, scattered throughout the hepatic lobules
were collections on inflammatory cells, mainly monocytes
in microgranulomas. The kidney (Figure 6G) parenchyma
retained its normal architecture, and glomeruli showed mild
increased cellularity. The interstitium had several collections
of inflammatory cells composed predominantly of monocytes
with occasional neutrophils and lymphocytes. There was no
necrosis evident in the glomeruli and tubules. The spleen
(Figure 6H) exhibited an intact architecture with appropriate
placement and numbers of lymphoid follicles. However, the
spleens of ONNV-infected mice differed in one important
way from controls: the red pulp of infected mice exhibited an
infiltrate of predominantly monocytoid cells with abundant
eosinophilic cytoplasm and numerous reactive lymphoblasts.
Necrosis was not noted in the spleen. Sections of the bowel
(Figure 6I) showed the same monocytic inflammatory infil-
trate seen in the other organs. The bowel wall was thickened
and the inflammatory infiltrate was present in all layers, from

Table 1

Viral loads in organs of A129 mice days 3 and 6 post inoculation

Organs

Fraction of animals positive
for ONNV 3 days after

f.p. inoculation
Viral load*
(Log10 pfu/g)

Fraction of animals positive
for ONNV 6 days after

f.p. inoculation
Viral load*
(Log10 pfu/g)

Fraction of animals
positive for ONNV

3 days after s.c. inoculation
Viral load*
(Log10 pfu/g)

Fraction of animals
positive for ONNV 6 days

after s.c. inoculation
Viral load*
(Log10 pfu/g)

Brain 0/3 < 2.0 1/3 4.9 0/3 < 2.0 2/3 3.7–4.8
Heart 1/3 2.0 0/3 < 2.0 1/3 3.0 1/3 3.7
Lung 2/3 3.6–3.9 2/3 3.4–3.6 2/3 3.8 1/3 2.8
Liver 2/3 3.9–4.3 0/3 < 2.0 1/3 4.3 0/3 < 2.0
Spleen 3/3 3.6–4.3 0/3 < 2.0 2/3 3.3–4.0 0/3 < 2.0
Kidney 0/3 < 2.0 0/3 < 2.0 1/3 3.7 0/3 < 2.0
Right leg 1/3 3.4 2/3 4.2–4.6 ND ND ND ND
Left leg† 3/3 5.4–5.9 3/3 4.7 3/3 3.6–4.8 3/3 4.0–5.6

*Limit of detection = 2 log10 pfu/gram.
†Side of inoculated footpad.
ONNV = O’nyong-nyong virus; f.p. = footpad; pfu = plaque-forming units; s.c. = subcutaneously; ND = not determined.

Table 2

Viral load in moribund STAT1 KO mice

Organs*
Fraction of animals
positive for ONNV

Time of
death (dpi)

Viral load†
(Log10 pfu/g)

Brain 4/11 9–10 4.2–5.8
Heart 4/11 9–12 2.9–5.3
Lung 0/11 N/A NA
Liver 0/11 N/A NA
Spleen 0/11 N/A NA
Kidney 0/11 N/A NA
Skeletal muscle 5/11 9–12 3.0–5.6

*6-week-old mice infected with 103 pfu of SG650.
†Limit of detection = 2 log10 pfu/gram.
ONNV = O’nyong-nyong virus; pfu = plaque-forming units.
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the luminal glands to the serosa. There was no overt necrosis
of intestinal glands. Although no overt destruction of cells was
seen in the spleen, kidney, and bowel, this does not imply that
the inflammation did not functionally compromise these organs.
Histologic and gross examination was also carried out on

A129 mice inoculated with 103 pfu of SG650 either s.c. or by

f.p. and subsequently sacrificed on days 3, 6, and 9. These
animals had noticeably enlarged spleens with large reactive
follicles and replacement of the red pulp by immunoblasts
and other inflammatory cells starting on day 3 and beginning
to resolve on day 9 (Figure 7A–I). This splenomegaly and
large numbers of reactive follicles are the hallmarks of a

Figure 5. Weight change following O’nyong-nyong virus (ONNV) infection of 12–16-week-old STAT1 KO mice. Data are shown follow-
ing subcutaneous infection of 12–16-week-old mice with 102, 103, or 104 plaque-forming units (pfu) of ONNV (strain SG650). For the 102 and
104 cohorts, N = 3; for the 103 group, N = 11; and for the phosphate buffered saline (PBS) control group, N = 6. Error bars represent one
standard deviation.

Figure 6. Histopathologic analysis of organs in STAT1 KO mice. Hematoxylin and eosin (H&E) stained sections of organs are shown:
(A) brain, (B) heart, (C) lung, (D) skeletal muscle, (E) joint space, (F) liver, (G) kidney, (H) spleen, (I) bowel. All images are at 20 + magnification.
The yellow bar shows 200 mM scale. Arrows indicate inflammation except where noted.
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reactive spleen. The livers exhibited microgranulomas from
day 3 through 9, which were consistent with the findings for
the STAT1 KO mice (Figure 6F). Skeletal muscle of both
the s.c.- and f.p.-inoculated mice showed no detectible histo-
pathologic change on day 3 (Figure 8A–C). By day 6 post
inoculation, both groups began to show a slight mixed inflam-

matory infiltrate in the adipose tissue of the leg, with some
infiltrate of the muscle tissue (Figure 8D–F). By day 9 post
inoculation, both groups displayed severe myositis and teno-
synovitis in both legs (Figure 8G–I). The brain, lung, heart,
bone, bowel, stomach, and kidney showed no significant his-
topathologic change.

Figure 7. Histopathologic analysis of spleen in A129 mice. Hematoxylin and eosin (H&E) stained sections are shown: (A) phosphate buffered
saline (PBS) day 3, (B) footpad (f.p.)-inoculated day 3, (C) subcutaneously (s.c.)-inoculated day 3, (D) PBS day 6, (E) f.p.-inoculated day 6,
(F) s.c.-inoculated day 6, (G) PBS day 9, (H) f.p.-inoculated day 9, (I) s.c.-inoculated day 9.

Figure 8. Histopathologic analysis of skeletal muscle in A129 mice. Hematoxylin and eosin (H&E) stained sections are shown: (A) phosphate
buffered saline (PBS) day 3, (B) footpad (f.p.)-inoculated day 3, (C) subcutaneously (s.c.)-inoculated day 3, (D) PBS day 6, (E) f.p.-inoculated
day 6, (F) s.c. inoculated day 6, (G) PBS day 9, (H) f.p.-inoculated day 9, (I) s.c.-inoculated day 9.
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DISCUSSION

Similar to other Old World alphaviruses like CHIKV and
RRV, ONNV causes a clinical syndrome characterized by
fever, rash, debilitating arthralgia, and myalgia. Many studies
have been done into the pathogenesis of CHIKV and RRV,
including those of human patients, the development of animal
models, and in the case of CHIKV, non-human primate
models. These studies have shown a critical role for macro-
phages/monocytes in the pathogenesis of these viruses.22–24 In
addition, these studies have shown the importance of type I
interferons and complement in mice.25–29 In humans, overlap
has been identified between persistent CHIKV and rheuma-
toid arthritis; and proinflammatory mediators seem to play
a role in disease progression and persistence.30–33 However,
the study of ONNV has received relatively little attention
since its discovery, though it was the cause of one of the
largest known arboviral outbreaks in the late 1950s and early
1960s in Uganda. Other than its clinical symptoms, very little
is known about the pathogenesis of ONNV virus compared
with CHIKV and RRV.
This study has begun to elucidate the portions of the murine

immune response involved in protection against acute disease

following ONNV infection. Our survival results showed three
major points: 1) the innate immune response is sufficient to
control ONNV infection after a dose of 103 pfu, as indicated
by the lack of detectable viremia and/or clinical illness in
RAG1 KO mice. It is possible that higher doses of ONNV
given to RAG1 KO might generate transient viremia and clin-
ical signs of illness. However, we chose a dose of 103 pfu to
approximate the amount of alphaviruses transmitted by mos-
quito vectors.21 These results do not imply that the adaptive
immune response, which confers memory and protection from
future challenges of ONNV, is unimportant. Rather, the adap-
tive immune response does not appear to be essential for sur-
vival during acute infection; 2) IFNg by itself is not necessary to
control acute disease. The IFN-gR KO mice did not generate
detectable viremia or signs of illness; 3) The IFN a/b response
appears to be very important for protection against acute
disease. The A129 mice, which are deficient for IFN a/b
receptors, and STAT 1 KO mice, which are deficient in IFN
a/b and g signaling, exhibited 50–55% mortality after a s.c
dose of 103 pfu. These findings are similar to other studies
showing the importance of the IFN a/b response has in host
defense against other alphavirus infections.28,29,34–37

Our data are consistent with the findings of others that have
demonstrated lethality from ONNV in the AG129 mouse,
which is deficient in type I and type II interferon receptors;
and with those of the closely related alphavirus, CHIKV.38,39

Mice deficient in STAT1 and in type I interferon receptors
show the same mortality when inoculated s.c., although histo-
logically and clinically STAT1 KO mice show more severe
disease. These findings imply that, although IFNg is not nec-
essary on its own in protection against infection, it might
compensate for a type I interferon deficiency to some extent.
The finding of mortality in s.c.-inoculated A129 mice is in
contrast to those inoculated by the f.p. Although these ani-
mals did show clinical signs of illness, none died at the same
dose, which caused 50% mortality in the s.c.-inoculated mice.
It has been shown that mouse f.p. inoculation with CHIKV,

although not totally recapitulating human disease, does
result in severe myositis and tenosynovitis in the inoculated

leg.40–42 In this study, we showed very similar results to those
seen with CHIKV-induced f.p. swelling and severe myosi-
tis.40–42 There is a mixed inflammatory infiltrate composed
predominately of monocytic and some lymphoid cells. In
addition to these findings, we have shown myositis occurs in
both hind limbs regardless of the site of inoculation.
It is not surprising that we found infectious ONNV in the

brain and skeletal muscle of A129 mice. The presence of virus
in the heart could be a function of myocyte tropism as has
been reported in CHIKV infection.43,44 It is of interest that
the inflammatory infiltrate seen in the tissues of all animal
groups is composed predominantly of monocytes. In the
STAT1 KO mice, cell death was seen in the brain, heart,
skeletal muscle, and to an extent in the liver. Other tissues,
although they exhibited an inflammatory infiltrate, did not
appear to have a high level of overt cellular death. However,
this does not imply the absence of organ dysfunction. The
infiltrate did not have a high number of lymphocytes. In
A129 mice the inflammatory infiltrates were observed only in
the skeletal muscle and liver. The infiltrate in the liver was
composed of microgranulomas. These changes were seen
independent of the route of inoculation. The changes noted
in the spleen most likely represent a reactive process to anti-
genic stimulation. The findings of mixed cellularity in the red
pulp composed of monocytes, immunoblasts, and plasma cells
are consistent with an infectious process such as that seen in
infectious mononucleosis. We did not determine if tissue
damage is virally induced or is a byproduct of the host
response to infection. One could speculate that much of the
damage is complement- and monocyte-driven, as seen in
other arthralgic alphaviruses, or perhaps T cell-driven.45,46 The
age-dependent virulence of ONNV is typical of alphaviruses
and has been described in numerous rodent models of
alphavirus infection and pathogenesis.28,42,47–55

Our results also represent progress in developing a murine
model to represent human disease after ONNV infection.
The STAT1 KO and A129 mice inoculated s.c. do recapitu-
late the myositis and tenosynovitis that are probably present
in humans, as suggested by findings from human infections
with the closely related CHIKV. Mice however differ from
humans, who are not known to die of ONNV infection.56 As
stated previously, this is in contrast to A129 mice inoculated
in the f.p., which show clinical illness, f.p. swelling, and myo-
sitis but do not have either neurologic or fatal disease and is
most likely closer to human disease than those inoculated by
the s.c. route. In addition, STAT1 KO and A129 mice (regard-
less of route of inoculation) generate a viremia peaking on
days 2–3 that wanes by day 5, which is typical of alphavirus
infections of humans. The ability to cause neurologic disease
appears to be a common property of many alphaviruses.
As seen in earlier studies, 100 pfu of CHIKV is lethal for

A129 mice by 3 days post inoculation.18 This dose is 10-fold
lower than the dose of ONNV needed to induce 50% mor-
tality. Mortality increased to 100% when the ONNV dose
was increased to 104 pfu. These results indicate that ONNV
is less virulent than CHIKV in the mouse model. However,
it is difficult to say whether ONNV is less virulent than
CHIKV in humans. Both of these viruses cause very similar
human disease syndromes. Even though fatal ONNV infec-
tions have not been described in the literature, surveillance
during outbreaks has been less rigorous than during recent
CHIKV epidemics. Although mouse models can suggest
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differences in pathogenesis, human data from infected indi-
viduals are needed to compare the virulence of ONNV and
CHIVK in humans.
During this study we used the two available strains of

ONNV (SG650 and MP30). These two strains show striking
differences in virulence and clinical signs. The SG650 strain is
more virulent in the mouse model and caused neurologic signs
in only about 10% of STAT1 KO mice inoculated by the s.c.
route, whereas it caused no neurologic illness in A129 mice
inoculated by the s.c. route. The MP30 strain on the other hand
usually caused minimal disease. A dose of 104 pfu had to be
reached to obtain mortality. However, MP30 caused neuro-
logic signs in all mice that succumbed to illness. Because of
the low virulence and propensity to cause neurologic signs
when illness does occur, we feel that MP30 infection does
not represent a good model of human ONN disease. In con-
trast, A129 mice inoculated by the f.p. at 103 pfu showed
clinical illness and f.p. swelling, though no mortality. There-
fore, we believe that f.p. inoculation in the A129 mouse most
closely resembles human disease. These differences in viru-
lence could be caused by the passage history of the two viral
strains. The MP30 strain has been passaged numerous times
in suckling mouse brain, whereas SG650 has only been pas-
saged in Vero cells three times. The MP30 strain may be
displaying a more neuroadapted phenotype as has been seen
in Sindbis virus, which after passage in young mouse brains
shows neurotropism and increased neurovirulence.57

Although it received little attention for 50 years following
its discovery, the recent outbreaks of CHIKV in the Indian
Ocean, India, Southeast Asia, and Europe have shown that an
arthralgic Old World alphavirus can mutate to cause explo-
sive outbreaks. O’yong-nyong also has the potential to cause
large future outbreaks in Africa and possibly elsewhere.
Because ONNV uses the same vectors exploited by malaria
parasites, Anopheles mosquitoes, many locations susceptible
to malaria may also be vulnerable to ONNV.
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