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Abstract
Elevated blood pressure (BP) is a major risk factor for cardiovascular disease. Several studies have
noted a consistent maternal effect on BP; consequently, mitochondrial DNA (mtDNA) variation
has become an additional target of investigation of the missing BP heritability. Analyses of
common mtDNA polymorphisms, however, have not found evidence of association with
hypertension. To explore associations of relatively rare (frequency < 5%) mtDNA variants with
BP, we identified uncommon/rare variants through sequencing the entire mitochondrial genome in
32 unrelated individuals with extreme-high BP in the Framingham Heart Study (FHS) and
genotyped 40 mtSNPs in 7,219 FHS participants. The nonsynonymous mtSNP 5913G>A
(Asp4Asn) in the cytochrome c oxidase subunit 1 of Complex IV demonstrated significant
associations with BP and fasting blood glucose (FBG) levels. Individuals with the rare 5913A
allele had, on average, 7 mm Hg higher systolic BP at baseline (Pempirical = 0.05) and 17 mg/dL
higher mean FBG over 25 years of follow up (Pempirical = 0.009). Significant associations with
FBG levels were also detected for nonsynonymous mtSNP 3316G>A (Ala4Thr) in the NADH
dehydrogenase subunit 1 of Complex I. On average, individuals with rare allele 3316A had 17 and
25 mg/dL higher FBG at baseline (Pempirical = 0.01) and over 25 years of follow up (Pempirical =
0.007). Our findings provide the first evidence of putative association of variants in the
mitochondrial genome with SBP and FBG in the general population. Replication in independent
samples, however, is needed to confirm these putative associations.
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Introduction
Hypertension affects about 1 billion people worldwide including 75 million adults in the
United States and it is a major risk factor for myocardial infarction, heart failure, and
stroke1. Although blood pressure (BP) has a substantial genetic component, with a
heritability of long-term BP estimated at about 55 percent2, the associated markers identified
in genome-wide association studies (GWAS) of BP and hypertension3-6 account for only a
small fraction of interindividual variation, and the heritability of hypertension remains
largely unexplained3, 7. To date, most of the reported genetic variants associated with BP in
the population were identified in studies of the nuclear genome 3-6, 8-11; only limited insights
have come from investigations of the mitochondrial genome. The two genomes that coexist
in each human cell jointly specify the multimeric protein complexes of the major energy-
generating oxidative phosphorylation (OXPHOS) pathway 12, and the integrity of both
genomes, their communication 13, coordinated expression, and functional compatibilities 14

are required for energy homeostasis. As the OXPHOS pathway mediates an individual's
response to factors known to affect BP – such as diet and physical activity – inherited
variation in the core OXPHOS subunits coded by the mitochondrial genome may contribute
to interindividual BP differences and susceptibility to hypertension.

The human mitochondrial genome is a double-stranded circular molecule of approximately
16.6 kb that encodes 37 genes, all contributing to a single pathway of energy production: 13
protein subunits of the OXPHOS complexes and a set of 22 transfer RNAs (tRNAs) and 2
ribosomal RNAs (rRNAs) required for their translation. In contrast to the nuclear genome,
the mitochondrial DNA (mtDNA) is present in hundreds to thousands copies per cell, and is
inherited exclusively from the mother. The 13 polypeptides are essential OXPHOS subunits
that determine the mitochondrial coupling efficiency, thus contributing to the interindividual
differences in energy utilization and, consequently, to the wide spectrum of metabolic
phenotypes in the population15. In addition to energy production, mitochondria play a
critical role in other cellular processes15. In the last decade, growing evidence has
implicated mitochondrial dysfunction in a number of complex diseases, including autism 16

and metabolic syndrome 17.

Indirect evidence of mitochondrial genetic effects on BP and hypertension has come from
observations of mother-offspring correlation of BP levels 18-23 and reports of maternal
effects on hypertension status and quantitative systolic BP of offspring 24-26. Although these
findings are indicative of a mitochondrial pattern of inheritance, maternal effects may also
reflect asymmetric expression of parental alleles due to genetic imprinting 27, or indirect
influence of maternal genotype on offspring phenotype 28. Likewise, mtDNA mutations
have been described in families with putative maternal inheritance of abnormal BP
phenotypes 29-33, but their causal role in hypertension has not been demonstrated, with a
notable exception of the 4291 T>C mutation in the mitochondrial tRNA-isoleucine gene in a
carefully characterized large kindred with a cluster of maternally transmitted metabolic
defects 34. To our knowledge, the association of specific mitochondrial mutations with
interindividual BP variation in the general population has not been reported. In particular, a
comprehensive analysis of common mtDNA variants compiled from publicly available data
sets found no evidence of association with hypertension in five study samples35.

We sought to test the hypothesis that uncommon mtDNA variants (frequency < 5%) affect
common complex phenotypes in the general population. To facilitate the discovery of
infrequent alleles that influence BP, we sequenced the mitochondrial genomes of 32
unrelated individuals with extreme-high BP from the Framingham Heart Study (FHS), and a
subset of variants identified in these individuals was genotyped in 7,219 FHS participants
and tested for associations with quantitative BP phenotypes. Because increased BP is a
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common feature of metabolic syndrome - a cluster of co-occurring CVD risk factors
(obesity, hyperglycemia, dyslipidemia, and elevated blood pressure)36 - we also explored
potential associations of these variants with some metabolic phenotypes. We report the
results of our analyses of mitochondrial genome variants in relation to BP and several
metabolic traits.

Methods
Please refer to the Online Supplement for methods used to identify maternal lines and
mitochondrial lineages (haplogroups), conduct mtDNA sequencing and sequence analysis,
genotyping and the quality control of the genotype data, and for expanded description of
association and permutation analyses of single mtSNPs and haplogroups.

Study Participants
In 1971, children and spouses of children of the original FHS cohort participants were
recruited into the Framingham offspring cohort, which consists of 5,124 men and women37.
The FHS offspring participants have been examined every four to eight years 37, 38 and,
unless specified otherwise, common clinical phenotypes from all examinations were
available for this investigation. From 2002 to 2005, a third generation cohort of 4,095
individuals was recruited to the FHS39. Due to the recent recruitment of the FHS third
generation cohort, clinical data from only a single examination were available for this study.
All participants gave written informed consent for genetic research. All protocols in this
study were approved by the Institutional Review Board of Boston University Medical
Center.

Blood Pressure Phenotypes
At each clinic visit, BP was measured twice by a physician, and the two BP measurements
were averaged to derive the systolic (SBP) and diastolic BP (DBP) for that examination. If
only one BP measurement was obtained, its value was used for that examination. For
participants receiving antihypertensive medication, adjusted SBP and DBP were calculated
by adding 10 mm Hg and 5 mm Hg to the measured SBP and DBP values, respectively2.
Other exclusion criteria were described previously 2, 40.

To evaluate genetic associations using both single occasion measures and longitudinal
phenotypes, we constructed several phenotypes for SBP and DBP. We defined the
“baseline” BP traits as the BP values at examination 1 of the offspring (1971-1975) and the
third generation (2002-2005) cohorts. “Contemporary” BP traits (reflecting ascertainment
contemporaneously with DNA collection) were measured at examination 7 (1998-2001) of
the offspring participants and at examination 1 of the third generation participants. “Long-
term averaged” BP was calculated separately for SBP and DBP using mean values across
examinations 1-7 of the offspring participants with data from at least 3 clinic examinations.
In addition to continuous BP traits, we analyzed hypertension as a categorical phenotype,
defined as SBP of at least 140 mmHg or DBP of at least 90 mmHg or current
antihypertensive drug treatment at the contemporary BP examination.

Metabolic Phenotypes
Body mass index (BMI) was used as an index of obesity. To calculate BMI, weight
(kilograms) at each examination cycle of the offspring cohort and at the initial examination
of the third generation cohort, were used in conjunction with height (meters) at the initial
examination. In parallel with BP phenotypes, four adiposity phenotypes were utilized in this
study. The baseline, contemporary and long-term BMI phenotypes were defined similarly to
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those for BP phenotypes. In addition, a participant was defined as obese if his/her BMI was
at least 30kg/m2 for the contemporary BMI measurement.

Four FBG-based traits were used in association analyses. Because fasting status was not
uniformly ascertained at the first two examinations of the offspring cohort, the baseline
phenotype used FBG at examination 3 of offspring participants and examination 1 of the
third generation cohort. The contemporary phenotype consisted of FBG at examination 7 of
the offspring and examination 1 of the third generation cohort. In continuous trait analyses
of FBG, we excluded individuals receiving drug treatment for diabetes who had a FBG <
126 mg/dL. Diabetes was defined as a FBG of at least 126 mg/dL or currently receiving
insulin or hypoglycemic drug treatment for diabetes at the contemporary examination. Long-
term FBG was calculated over examinations 3-7 of the offspring cohort for all participants
who had at least two FBG values.

Additional continuous phenotypes included serum K+ and Mg2+ levels measured at
examination 2 of the offspring cohort41, and fasting insulin levels measured at examination
cycles 7 and 1 of the offspring and third generation cohorts, respectively42. Detailed
information about these traits is described in the Online Supplement.

Association Analyses and Permutation Tests
Association analysis between an independent variable (e.g. a mtSNP or haplogroup) and a
phenotype was performed using a linear mixed effects (LME) model for a continuous
phenotype and the generalized estimation equation (GEE) model for a disease phenotype to
properly account for residual correlation among the related individuals. All association
analyses were conducted using the R software. Permutation testing was carried out to
account for multiple testing, correlations among traits, and to minimize potential false
findings from mtSNPs with low minor allele frequencies.

Results
Expanded results are provided in the Online Supplement

Characteristics of the Study Participants—Table 1 summarizes the characteristics of
the study participants at the initial examinations of the two study cohorts. At their initial
clinic visits, the third generation cohort individuals were, on average, about five years older
than the offspring cohort participants (40.2 versus 34.9), had higher BMI (26.9 kg/m2 versus
24.9 kg/m2), and a higher prevalence of obesity. Although the third generation and offspring
cohorts had about equal proportions of hypertensive individuals (∼16%), a higher proportion
were treated for hypertension in the third generation cohort (8.2% versus 2.2%).
Supplementary Table S1 summarizes the contemporary BP and metabolic phenotypes of the
two cohorts. Except for DBP, which was similar in both cohorts, all other trait values were
higher in the offspring than in the third generation cohort due to the age difference between
the two cohorts at the contemporary examination. By design, only the offspring cohort
participants contributed to the long-term measurements (Supplementary Table S2).
Moderate to high correlation was observed across traits within several phenotype categories
(e.g. BP/hypertension, BMI/obesity, and FBG/diabetes). The correlation (measured by the
Pearson correlation coefficient) ranged from 0.4 to 0.8 for BP phenotypes, 0.6 to 0.9 for
BMI phenotypes, and 0.5 to 0.8 for FBG phenotypes (Supplementary Figure S1).

Association Analyses—Table 2 summarizes the information for the 40 mtSNPs used in
association analysis. These mtSNPs were matched with the positions in reference of the
Revised Cambridge Reference Sequence (rCRS, GenBank # NC_012920)43. Four of the 40
mtSNPs genotyped in 7,219 FHS individuals were excluded from association analyses due
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to very low minor allele frequencies (Table 2). The association results that remained
significant after adjustment for multiple testing (Pempirical ≤ 0.05) are presented in Table 3.
Additional association results with observed p-values ≤ 0.05 are provided in Supplementary
Tables S3, S4, and S6-8.

The association between mtSNP 5913G>A and baseline SBP remained significant after
correction for multiple testing (Table 3). Individuals harboring the rare allele 5913A had, on
average, 7 mm Hg higher SBP at baseline than those with the common G allele. Additional
permutation analyses across continuous phenotypes at three time periods (baseline,
contemporary, and long-term averaged) demonstrated significant associations of 5913A
(Pempirical_sum = 0.005) across the three SBP phenotypes (Supplementary Table S5).

For FBG traits, several associations remained significant after permutation analyses. The
variant 3316G>A (MAFA = 0.4%) showed associations with baseline (Pempirical = 0.01) and
long-term average (Pempirical = 0.007) FBG. Individuals with the rare allele 3316A had, on
average, 17 and 25 mg/dL higher FBG at baseline and over 25 years of follow up,
respectively. In addition, the variant 5913G>A demonstrated association with contemporary
(Pempirical =0.03) and long-term average (Pempirical =0.009) FBG. Individuals with the rare
allele 5913A had 13 mg/dL and 17 mg/dL higher FBG, respectively, at the contemporary
examination and during long-term follow up than those with the common allele. This variant
also demonstrated a significant summary p-value (Pempirical_sum = 0.007) across the three
FBG traits (Supplementary Table S5).

After correction for multiple testing, no association remained significant for BMI related
phenotypes (Supplementary Table S6), insulin levels (Supplementary Table S7), or K+ or
Mg2+ levels (data not shown). No association with phenotypes remained significant between
common European haplogroups (Supplementary Methods) after permutation analysis
(Supplementary Table S8).

Discussion
In recent years, the conventional view of mitochondria as static power plants that burn the
dietary calories for energy and heat production and house metabolic pathways has been
revised and expanded. It is now appreciated that mitochondria form dynamic cellular
networks that integrate external and internal signals to regulate numerous cell processes in
addition to energy production and thermogenesis, including calcium homeostasis, cellular
redox state, reactive oxygen species (ROS), and apoptosis 15. Epidemiologic studies have
demonstrated that mitochondrial disorders are common44, 45, and the imbalance between
energy intake and expenditure is now recognized as an important factor in diverse
pathologies, including common multifactorial disorders 16, 17.

The primary goal of this study was to identify mitochondrial genetic determinants of BP. We
also explored the effect of mtDNA variants on several metabolic traits. To our knowledge,
this is the largest family-based study of mitochondrial genome variation in relation to BP
and metabolic phenotypes conducted to date.

Results of our investigation provide support for the hypothesis that rare/infrequent alleles in
the mitochondrial genome modulate complex quantitative phenotypes. In particular, we
identified an association between mitochondrial variant 5913G>A (rs201617272) in the
cytochrome c oxidase subunit 1 (MT-CO1) and BP levels. Individuals with a rare 5913A
allele had, on average, 7 mm Hg higher baseline SBP than those with a common 5913G
allele. Remarkably, this variant has also demonstrated association with FBG levels;
individuals with 5913A had, on average, 17 mg/dL higher mean FBG over 25 years of
follow up. Associations with FBG levels were also detected for SNP 3316G>A (rs2853516)
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in NADH dehydrogenase subunit 1 (MT-ND1). Individuals with the rare allele 3316A
demonstrated much higher FBG levels than those carrying the common 3316G allele,
especially in long-term analyses, suggesting its life-long effects.

The OXPHOS pathway is at the core of mitochondrial function and dysfunction. Both
3316G>A in the MT-ND1 subunit of Complex I and 5913G>A in the MT-CO1 of Complex
IV are rare nonsynonymous mutations and may affect the functional properties of the
respective OXPHOS complexes of ATP synthesis. While overtly pathogenic mutations
result in severe and frequently fatal neuromuscular and metabolic diseases46, milder
mutations may have subtle phenotypic consequences. Mitochondrial SNP 3316A replaces
the non-polar alanine at position #4 of the MT-ND1 with a polar threonine, and SNP 5913A
substitutes the negatively charged aspartic acid at position #4 of the MT-CO1 with a neutral
asparagine. Neither change involves the highly conserved site or the known functional
domain, and the predicted pathogenicity scores for 3316G>A and 5913G>A are 0.463 and
0.197, respectively 47, 48. Therefore, both missense mutations are likely to have subtle
effects on protein function. These score values, however, are based on the programs
designed primarily to quantify the severity of mutations in single-gene diseases49 and may
not necessarily apply to late-onset multifactorial disorders49 Interpretation of predictive
scores is further obscured due to potential interactions of mitochondrial subunits with each
other and with nuclear proteins. Moreover, the same mtDNA variant may be either
deleterious or beneficial depending on the haplogroup and the environmental context 50.
These properties are not integrated in the prediction scores, necessitating “bench”
experimentation to ascertain the effects of a mutation on the OXPHOS function.

To our knowledge, no disease association has been previously reported for SNP 5913G>A.
This variant defines a rare subclade K1b of the haplogroup K51, and in our sample, 41
individuals from 16 maternal lines who carried this variant belonged, in fact, to haplogroup
K. However, a search of public databases revealed that 5913A also resides on other
haplogroup backgrounds {Pereira, #1609;Rubino, 2011 #1608}. It would be interesting to
see if the effect of 5913A on the OXPHOS function is modulated by the haplogroup
background. The 3316A variant occurred in multiple haplogroups in our study sample.
Sixteen of the 24 individuals who had the rare allele belonged to four haplogroups
(unambiguous assignment of the remaining eight individuals to one of nine common
European haplogroups was not possible). Previously, 3316G>A was reported in isolated
cases of cardiomyopathy 53 and in diabetic patients with left ventricular hypertrophy54.

Our findings suggest that rare variants in the mitochondrial genome may play an important
role in the development of hypertension and diabetes. Replication of our results in
independent study samples is warranted, although very large sample sizes are required to
identify associations with such low frequency (0.4% - 0.6%) variants. Inadequate sample
sizes and the focus on common mtDNA polymorphisms and major haplogroups may explain
the failure of earlier population-based association studies to identify an association of
mtDNA variants with BP and metabolic traits 35, 55, 56. Advances in sequencing may
facilitate the identification of rare mitochondrial variants in additional large study cohorts
and allow replication of our findings in the near future.

Perspective
Results of our investigation have yielded further clues into the genetic causes of common
complex disorders. Our findings also suggest that the mitochondrial genome may harbor
additional rate variants that contribute to the risk of hypertension and metabolic disorders in
the population. Drastic decreases in the cost of sequencing now make it possible to sequence
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the entire mitochondrial genome in hundreds of individuals at a relatively low cost. Such
efforts are likely to identify additional rare causal mtDNA variants.

The associations we observed involve the rare nonsynonymous mutations. The actual effect
of the 5913A and 3316A variants on OXPHOS remains to be determined by functional
studies with the mutant MT-CO1 and MT-ND1 proteins. The analysis of intergenic
interactions within the mitochondrial genome and between the mitochondrial and nuclear
loci is another important venue of inquiry into mechanisms involved in the development of
hypertension and metabolic syndrome.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Novelty and Significance

We present the first evidence of associations of mtDNA variants with SBP and FBG in
the general population. In contrast to earlier population-based association studies of
common mtDNA polymorphisms (frequency>5%) and major mitochondrial haplogroups
with BP and metabolic traits, the focus of our investigation was on uncommon/rare
variants (frequency<1%) identified through sequencing the entire mitochondrial genome
in 32 unrelated individuals with extreme-high BP.

If confirmed in other populations, our findings may have clinical implications for
individuals harboring causal mtDNA variants. Our results also suggest that extensive
resequencing efforts directed at the mitochondrial genome will likely reveal additional
variants modulating BP and metabolic phenotypes.
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Table 1
Characteristics of the Study Participants at the Baseline Examination

Phenotypes/Covariates
Offspring Cohort (examination cycle 1:

1971-1975)
Third Generation Cohort (examination

cycle 1: 2002-2005)

Mean (SD) N Mean (SD) N

Age (yrs) 34.9 (9.7) 3201 40.2 (8.8) 4011

Body mass index (kg/m2) 24.9 (4.2) 3201 26.9 (5.6) 4011

Systolic blood pressure (mmHg) (measured) 120.1 (14.4) 2936 116.8 (14.2) 3817

Systolic blood pressure (mmHg) (treatment
adjusted)

120.4 (14.8) 2936 117.6 (15.1) 3817

Diastolic blood pressure (mmHg) (measured) 77.8 (10.0) 2936 75.3 (9.6) 3817

Diastolic blood pressure (mmHg) (treatment
adjusted)

77.9 (10.2) 2936 75.7 (10.0) 3817

* Fasting blood glucose (mg/dL) 93.0 (18.7) 2628 95.1 (18.5) 3981

Hypertension (%) 15.9 2937 16.3 3817

Hypertension treatment (%) 2.2 2937 8.2 3817

Obesity (%) 10.4 3201 23.0 4011

Diabetes (%) 2.4 2632 3.1 4011

Diabetes treatment (%) 1.0 2632 1.8 4011

† K+ 47.0 (5.1) 3708 NA NA

† Mg2+ 187.9 (16.0) 3691 NA NA

*
In the offspring cohort, we reported the initial FBG from examination 3 (1984-1987) because the fasting was not uniformly ascertained at the first

two examinations. At the examination 3, the average age and BMI (standard deviation, N) were 48.05 (9.70, 2632), and 26.02 (4.52, 2626),
respectively.

†
The K+ and Mg2+ were measured only at examination 2 (1979-1983) for the offspring cohort.

NA, Not Applicable.
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Table 2
Description of the 40 mtSNPs Genotyped in 7,219 FHS Individuals

* Mitochondrial SNPs (Amino Acid Change) † MAF Map Locus

150C>T T(0.0377) D-loop

217T>C C(0.0132) D-loop

228G>A A(0.0256) D-loop

‡456C>T T(0.043) D-loop

462C>T T(0.0709) D-loop

499G>A A(0.0257) D-loop

§1719G>A A(0.0659) MT-RNR2

3316G>A (Ala4Thr) A(0.0036) MT-ND1

3505A>G (Thr67Ala) G(0.022) MT-ND1

4216T>C (Tyr304His) C(0.1782) MT-ND1

4336T>C C(0.0167) MT-TQ

§4580G>A A(0.0302) MT-ND2

4917A>G (Asn150Asp) G(0.0926) MT-ND2

5046G>A (Val193Ile) A(0.0118) MT-ND2

5460G>A (Ala331Thr) A(0.0556) MT-ND2

5913G>A (Asp4Asn) A(0.0059) MT-CO1

6663A>G (Ile254Val) G(0.0022) MT-CO1

§7028T>C C(0.4387) MT-CO1

§8251G>A A(0.0643) MT-CO2

‡8255G>C (Val224Leu) C(4e-04) MT-CO2

8393C>T (Pro10Ser) T(0.0117) MT-ATP8

‡8411A>C (Met16Leu) C(3e-04) MT-ATP8

8857G>A (Gly111Ser) A(0.0019) MT-ATP6

§9055G>A (Ala177Thr) A(0.0898) MT-ATP6

9804G>A (Ala200Thr) A(0.0045) MT-CO3

10084T>C (Ile9Thr) C(0.0041) MT-ND3

§10398A>G (Thr114Ala) G(0.2116) MT-ND3

10463T>C C(0.0936) MT-TR

10506A>G (Thr13Ala) G(0.004) MT-ND4L

§12308A>G G(0.2257) MT-TL2

12820G>A (Ala162Thr) A(0.0014) MT-ND5

§13368G>A A(0.088) MT-ND5

§13708G>A A(0.1123) MT-ND5

13934C>T (Thr533Met) T(0.0188) MT-ND5

13966A>G (Thr544Ala) G(0.0185) MT-ND5

14798T>C (Phe18Leu) C(0.1406) MT-CYTB

15452C>A (Leu236Ile) A(0.1779) MT-CYTB
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* Mitochondrial SNPs (Amino Acid Change) † MAF Map Locus

15693T>C (Met316Thr) C(0.023) MT-CYTB

‡15889T>C C(5e-04) MT-TT

15928G>A A(0.0876) MT-TT

*
The position of a mitochondrial variant within the Revised Cambridge Reference Sequence (rCRS, GenBank # NC_012920)43 and its

common>minor alleles. For a nonsynonymous mtSNP, the changed amino acid and its position within the protein is shown in parentheses. All
nucleotide changes are indicated as L-strand substitutions.

†
MAF and minor allele frequency were calculated using the entire sample.

‡
mtSNPs were excluded from statistical analysis due to low call rate (< 95%, mt456) or having fewer than 10 variants (mt8255, mt8411, and

mt15889) in the entire sample.

§
The mtSNPs that define the nine major European mtDNA haplogroups.

Abbreviations: MT, mitochondrially encoded; MT-RNR2, 16S ribosomal RNA; MT-ND1, MT-ND2, MT-ND3, MT-ND4L, MT-ND5, are the
NADH dehydrogenase subunits 1, 2, 3, 4L, and 5, respectively; MT-CO1, MT-CO2, MT-CO3 are the Cytochrome c oxidase subunits 1, 2, and 3;
MT-ATP6 and MT-ATP8, ATPase subunits 6 and 8; MT-CYTB, Cytochrome b; tRNA, transfer RNA; MT-TL2, tRNA leucine 2; MT-TQ, tRNA
glutamine; MT-TR, tRNA arginine; MT-TT, tRNA threonine. D-loop, DNA-displacement loop - the non-coding region between the nucleotides
16024-576 in a circular mtDNA molecule.
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