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Abstract
Longitudinal studies document an association of pulmonary function with cognitive function in
middle-aged and older adults. Previous analyses have identified a genetic contribution to the
relationship between pulmonary function with fluid intelligence. The goal of the current analysis
was to apply the biometric dual change score model to consider the possibility of temporal
dynamics underlying the genetic covariance between aging trajectories for pulmonary function
and fluid intelligence. Longitudinal data from the Swedish Adoption/Twin Study of Aging were
available from 808 twins ranging in age from 50 to 88 years at the first wave. Participants
completed up to six assessments covering a 19-year period. Measures at each assessment included
spatial and speed factors and pulmonary function. Model-fitting indicated that genetic variance for
FEV1 was a leading indicator of variation in age changes for spatial and speed factors. Thus, these
data indicate a genetic component to the directional relationship from decreased pulmonary
function to decreased function of fluid intelligence.
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Introduction
With the unprecedented increase in average life expectancy, researchers have focused
increasing attention on establishing the etiologies of aging trajectories, particularly for traits
that contribute to quality of life such as cognitive and physical functioning. Identifying
influences on change and decline with age would enable us to understand what impacts
these processes, and thus suggest potential interventions that may enhance the cognitive and
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physical health of older adults. Many studies have demonstrated relationships between
cognitive and physical aging, including the cumulative and interactive effects of health
conditions on cognitive performance. Evidence from various approaches points to an
important role for physical functioning in cognitive aging. For example, numerous exercise
intervention studies document a positive influence of exercise on cognitive function
(Colcombe and Kramer 2003; Smiley-Oyen et al. 2008). In addition, population-based
studies have documented that pulmonary function is a longitudinal predictor of cognitive
function among older adults (Albert et al. 1995; Chyou et al. 1996; Emery et al. 1998) as
well as a cross-sectional and longitudinal predictor among middle aged and young adults
(Emery et al. 1997; Anstey et al. 2004; Richards et al. 2005). Prior studies have utilized
standard indicators of lung function from spirometric assessment to measure pulmonary
function. In particular, forced expiratory volume in one second (FEV1) is the most
commonly used indicator of pulmonary function because it provides a readily measured
indicator of lung capacity and lung responsivity that reflects over repeated assessments both
age-related and pathological changes that may occur in lung functioning. In turn, the
influence of pulmonary function on cognitive decline may result from a number of factors
including hypoxia, reduced neurotransmitter function, increased systemic inflammatory
processes, or possibly a combination of factors. Multiple methods will be required to fully
understand the etiology of the relationship between pulmonary and cognitive functioning.

Bivariate dual change score models (DCSM) allow researchers to investigate hypotheses
about the temporal dynamics between two variables (McArdle 2001; McArdle and
Hamagami 2003; McArdle et al. 2000). Incorporating longitudinal changes in both variables
and cross-trait cross-time paths, DCSM allow for the identification of leading indicators of
cognitive change: the extent to which changes in one variable impact subsequent changes in
a related variable. Recent application of DCSM to the relationship between cognitive and
pulmonary function indicated that age changes in pulmonary function precede and drive
subsequent age changes in measures of fluid intelligence (Emery et al. 2012). Temporal
dynamics is only one step toward understanding etiology. Data from longitudinal twin
studies allow researchers to examine the extent to which the relationship between age
changes in pulmonary functioning and age changes in cognition result from genetic and
environmental factors.

Simplex longitudinal models of genetic and environmental influences on pairs of traits
incorporate cross-trait cross-time paths of influence and allow for the identification of new
genetic and environmental influences at each wave of data collection (Neale and Cardon
1992). These models are often used in studies of children and young adults because all
participants tend to be approximately the same age at each measurement occasion,
simplifying the relationship between age and time. Longitudinal studies of aging are often
cross-sequential in design: each measurement occasion consists of a cross-sectional sample
of older adults (Schaie 1965, 1970). As a result, age and time cannot be equated but must be
parameterized separately in the measurement model. In addition, simplex models do not
produce estimates of longitudinal trajectories, which are the focus of studies of aging:
predictors and causes of age changes. Latent growth curve models (LGCM) can estimate
rates of change and can be parameterized as time-based or age-based models, depending on
the age range at each measurement occasion (Bryk and Raudenbush 1992; Laird and Ware
1982; McArdle and Anderson 1990). However, application of LGCM to investigations of
the relationship between two variables is limited to correlations among intercept and slope
parameters (e.g., Deary et al. 2011; Zimprich and Martin 2002) and genetic and
environmental decomposition of those correlations. In contrast, biometric DCSM
incorporates both the cross-age cross-trait paths of the simplex model and the estimates of
longitudinal trajectories of LGCM in a genetically informative model investigating the
relationship between two variables (McArdle and Hamagami 2003). For example, in a
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recent application of biometric DCSM to the relationship between processing speed and
cognitive aging, researchers concluded that genetic variance for processing speed was a
leading indicator of variation in age changes for components of cognitive functioning
(Finkel et al. 2009).

Previous investigation of the etiology of the relationship between pulmonary function and
cognitive aging report that correlation between lung function at baseline and cognitive
function 6 years later was primarily genetically mediated, particularly for measures of fluid
intelligence (Emery et al. 1998). The goal of the current analysis is to incorporate
longitudinal twin data on both lung function and cognitive function in a biometric DCSM to
examine the extent to which age changes in pulmonary function and age changes in
cognitive function result from common genetic and environmental factors. By directly
modeling the genetic and environmental decomposition of the lead/lag relationships between
two variables, the biometric DCSM can determine whether genetic factors impacting
pulmonary function are a leading indicator of variation in aging trajectories for cognitive
abilities, genetic factors impacting cognitive abilities are a leading indicator of aging
changes in pulmonary function, or a dynamic relationship exists with bidirectional genetic
influences. The longitudinal Swedish Adoption/Twin Study of Aging (Finkel and Pedersen
2004) includes measures of cognitive and pulmonary function. Six waves of data collection
have been completed for a sample of 808 non-demented individuals with at least one data
point and a longitudinal follow-up period of up to 19 years. The cross-sectional age range of
the sample at the first wave was 50–88 years, thus the focus of the current analysis is the
aging process during the second half of the lifespan. Based on previous results indicating
that pulmonary function is a leading indicator of age changes in spatial abilities and
processing speed (Emery et al. 2012), we hypothesize that genetic influences on pulmonary
function impact the genetic influences on variation in subsequent change in spatial abilities
and processing speed.

Method
Participants

Accrual procedures for SATSA have been described previously. In brief, the sample is a
subset of twins from the population-based Swedish Twin Registry (Finkel and Pedersen
2004). In-person testing (IPT1) took place in a location convenient to the participants, such
as district nurses’ offices, health-care schools, and long-term care clinics. Testing was
completed during a single 4-hour visit. The second (IPT2) and third (IPT3) waves of in-
person testing occurred at 3-year intervals. IPT did not occur during wave 4; therefore, the
next wave of in-person testing is labeled IPT5 and occurred after a 7-year interval (see
Finkel and Pedersen 2004). Regular 3-year testing continued after IPT5; therefore, the total
time span from IPT1 to IPT7 was 19 years.

Participant data were included from all available time points. Dementia status was
determined by clinical diagnosis based on current diagnostic criteria (Gatz et al. 1997), and
data were retained in analyses for all available assessments prior to a dementia diagnosis. In
total, 808 individuals had cognitive and pulmonary data available from at least one testing
occasion. Of those participants, 67 % have data at three or more time points and 12 %
participated in all six waves. 59 % of participants were women. Table 1 presents descriptive
information for each age interval. Because SATSA is a cohort-sequential design, new
participants were added at waves IPT2 through IPT5 and some participants were lost to
attrition. Statistical modeling accounts for missing data by giving more weight to
participants with more time points of data.
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To maintain consistency with the 3-year testing interval and to maximize the age range
available for inclusion in the study, data were divided into thirteen 3-year age intervals from
age 50 to 85. The data were divided into age intervals such that everyone with data
(regardless of IPT) at ages 50–52.9 was included in the first age interval, labeled “50.”
Sample sizes within the age intervals are maximized in the middle of the age range (60–80).
The data become too sparse (i.e., samples less than 15) after age interval “86” (i.e., after age
88.9) to support statistical modeling; therefore, only data up to age interval “86” were
included in these analyses.

Measures
Cognitive performance—Four cognitive domains are represented in the SATSA
cognitive test battery (Nesselroade et al. 1988; Pedersen et al. 1992). Because previous
analyses (Emery et al. 2012) indicate that lung function is related primarily to measures of
spatial and speed, the current analyses focus on these two domains. Block Design (WAIS-R)
and Card Rotations assess spatial abilities and Symbol Digit and Figure Identification
measure processing speed. Reliabilities for these tests range from 0.82 to 0.96 (Pedersen et
al. 1992). Principal components analysis was used to construct latent factors from the
individual tests within each domain: spatial and speed. Factor loadings ranged from 0.79 to
0.92. Previous comparisons of factor structure between cohorts and across testing occasions
indicate that the factor structure does not vary systematically across age or time (Finkel et al.
2005). To avoid variance in measurement (cf. Wicherts et al. 2004), an invariant definition
of factors at each testing occasion was created by standardizing the cognitive measures
relative to the respective means and variances at IPT1. Then loadings from the factor
analyses conducted at IPT1 were used to construct the spatial and speed factors. For visual
interpretation, all factor scores were later transformed to T-scores using factor means and
variances from IPT1. Means and standard deviations of T-scores at each wave are included
in Table 1.

Pulmonary functioning—Spirometric testing to measure FEV1 was performed during in-
person testing on one of two intercalibrated portable 10-1 dry bellows Vicatest spirometers
(Mijnhardt, Bunnik, The Netherlands) with subjects in the seated position and their nasal
passages blocked with nose clips. At IPT1 and IPT7 only one trial was collected; during
IPT2 through IPT6 two spirometric trials were completed and data from the best trial were
used in the present analyses. During the course of the study, it became necessary to change
spirometric equipment due to the increasing difficulty of transporting the Vicatest
spirometers and the availability of new spirometric equipment that was lighter and easier for
the nurses to use. Thus, at IPT3, pulmonary function for 30 % of the subjects was measured
using the Vicatest, and the remaining subjects were assessed with a portable ML 330
spirometer (Micor Medical, Kent, United Kingdom). The two spirometers were
intercalibrated to ensure consistent measurement. FEV1 values for both spirometers were
expressed in BTPS (body temperature and pressure saturated with water vapor). Mean
uncorrected FEV1 at each testing wave is reported in Table 1. For the purposes of analysis,
FEV1 values were corrected for height and gender and the standardized score was then
transformed to T-score metric for ease of interpretation. Because smokers and nonsmokers
did not differ significantly on pulmonary functioning in this sample, data were not corrected
for smoking status.

Statistical method
Univariate analysis—A univariate biometric DCSM was used to examine genetic and
environmental influences on age changes for the cognitive factors and pulmonary function
independently. Extensive discussions of the DCSM are available (McArdle 2001; McArdle
and Hamagami 2003; McArdle et al. 2004), as well as comparisons of DCSM with LGCMs
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(Ghisletta and de Ribaupierre 2005; Lövdén et al. 2005). As presented in Fig. 1, the model is
based on latent difference scores to create a growth curve based not on performance at one
age but on change from one age to the next. Thus, Y50 represents observed performance on
measure Y at age 50, with y50 indicating the latent true score and uy50 signifying error.
Error variance (σu) is assumed to be constant at each age. Performance at age 53 is a
function of both performance at Y50 and of the change in performance that occurred
between ages 50 and 53 (Δy53). The focus of the DCSM is to predict changes in the latent
trait score (Δy), which are modeled as a function of both constant trends in change across
time and a self-feedback component (e.g., added change in the trait given the previous
score). Constant change (α) is related to the slope factor (ys) such that age changes
accumulate over time in an additive fashion. Proportional change signifies that the
difference between performances at any two adjacent ages is directly proportional to the
previous score, through the parameter β. Thus, the model for change in Y at time point t can
be written as in Eq. 1.

(1)

The values of α and β are commonly assumed to be constant across time (although this
assumption is testable) and they allow for the generation of a family of curves capturing the
trajectories of change with age. In the full DCSM model, α is set to 1 and the parameter β
differs from zero to the extent that the longitudinal change is nonlinear. In describing change
with age, then, the DCSM estimates four fixed effects: α, β, mean intercept (μ0), and mean
slope (μs).

Twin data allow for the decomposition of individual variation (random effects) around the
group mean intercept and slope into genetic and environmental components. The variance in
any trait can be divided into three separate components: additive genetic effects (Va), shared
rearing environmental effects that serve to make the members of a family more similar (Vc),
and nonshared environmental effects including error (Ve). By fitting structural models to the
observed MZ and DZ covariance matrices, we can estimate the proportion of total variance
accounted for by the variance in genetic factors, shared environment factors, and nonshared
environment factors.

To decompose both the individual variation around the mean intercept and slope and the
correlation between the intercept and slope, a standard Cholesky model (Neale and Cardon
1992) was implemented (as in McArdle and Hamagami 2003). As shown in Fig. 1, the
model includes genetic and environmental effects specific to the intercept (a0 and e0) and
genetic and environmental effects specific to the slope (as and es). The paths from a0 and e0
to the slope (ys) generate the Cholesky decomposition of the correlation between the
intercept and slope (for simplicity, only additive genetic and nonshared environmental paths
are included in the figure).

Bivariate analysis—A bivariate biometric DCSM was used to examine genetic and
environmental contributions to the dynamic relationships between age changes in the
cognitive factors and pulmonary function (McArdle and Hamagami 2003). The extension of
the basic DCSM allows for constant change (α), proportional change (β), and a coupling
mechanism (γ) where change in trait X depends on the previous value of Y, and vice versa.
The model, presented in Fig. 2, includes time series for two traits, X and Y, with the
dynamic interrelationship between changes in the two traits modeled by two additional fixed
effects. The new parameters allow the two traits to affect each other in a dynamic way by
modeling the effect of Y on subsequent changes in X (γyx) and the effect of X on
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subsequent changes in Y (γxy). Thus, the model for the dynamic interaction of changes in X
and Y at time point t can be written as in Eqs. 2 and 3,

(2)

(3)

so that change in one trait is a time-based function of both itself and another trait. As with
the dual change parameters α and β, the coupling parameters (γxy and γyx) are assumed to
be constant over the whole time series.

Again, twin data allow us to decompose the individual variation (random effects) around the
group mean intercept and slope parameters for each variable. As shown in Fig. 2, the model
includes genetic and environmental effects specific to each intercept (ax0 and ex0, ay0 and
ey0) and genetic and environmental effects specific to the slope (axs and exs, ays and eys).
The paths from ax0 and ex0 to xs and from ay0 and ey0 to ys generate the Cholesky
decomposition of the correlation between the intercept and slope for X and Y. Coupling
parameters estimate dynamic relationships between variables within individuals. The
biometric portion of the model estimates relationships between twins, but within variables.
Thus, in the biometric bivariate DCSM, the only paths between variables are the coupling
parameters. Model testing is used to determine the impact of the coupling parameters on the
estimates of genetic and environmental variance.

It is important to note that one of the fundamental assumptions of DCSM is that data are
missing at random (MAR). Without complete mortality data, it is difficult to establish
whether the MAR assumption is met, although previous investigations of SATSA data
suggest that participants who continue in the study are significantly different from those who
drop out (e.g., personality ratings: Pedersen and Reynolds 1998). Of most importance in
investigations of aging is to demonstrate that the pattern of missing data does not differ for
older and younger participants. Cohort comparisons of missing data (Finkel et al. 2007)
indicate that the patterns of participation are fairly similar, although older participants are
somewhat more likely (71 %) than younger participants (64 %) to participate in at least 3
time points simply as a result of a greater number of opportunities for participation. At IPT2,
IPT3, and IPT5, any twins who had responded to the initial questionnaire and reached age
50 years were invited to participate in SATSA (Finkel and Pedersen 2004).

Both univariate and bivariate biometric DCSM were fit with the structural equation
modeling program Mx version 1.66b (Neale et al. 2003), using the variable length datafile
option that takes advantage of data from both complete and incomplete pairs. The raw
maximum likelihood estimation procedure was used throughout. Hypotheses were tested by
comparing model fit indices; nested models were compared using the difference Chi square
test obtained by taking the difference between the obtained model fits (−2LL) and testing its
significance with the degrees of freedom equal to the difference in the number of parameters
of the two models.

Results
Univariate analysis

In the first step of the analysis, the univariate biometric DCSM was fit to cognitive factors
and FEV1 separately, to verify the shape of the change trajectory over age and to provide
starting values for the bivariate DCSM model. Parameter estimates (and 95 % confidence
intervals) resulting from fitting the full model are presented in Table 2, along with model fit
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statistics. Estimates of change parameters must be interpreted with caution; consider that the
mean slope estimates presented in Table 2 represent only one component of change and can
only be interpreted in the context of the proportional change component β. Positive values
for β indicate that change accumulates or accelerates with age; in combination with a
negative mean slope estimate (μs), accelerating decline with age is indicated. Thus,
accelerating decline in performance is indicated for the cognitive factors. In contrast, a
negative value for β combined with a negative mean slope indicates decelerating decline
with age. The value for β for FEV1 is negative but small and nonsignificant, indicating that
in this age range decline in FEV1 is primarily linear. These trajectories are evident in the
estimated longitudinal trajectories for mean cognitive and pulmonary function presented in
Fig. 3.

Four reduced models were used to test the significance of genetic and environmental
contributions to individual variation in the intercept and slope parameters. First, all shared
environmental effects were dropped from the models. No significant change in model fit
was found, therefore, subsequent models were compared with this reduced AE model. In
model 2, genetic influences on the mean intercept were dropped from the model (set a0 →
y0 = 0). In model 3, genetic influences specific to the slope were dropped from the model
(set as → ys = 0). In model 4, genetic influences on the correlation between the intercept and
slope were dropped from the model (set a0 → ys = 0). The results of univariate model
testing are presented in Table 3. Model testing indicates significant genetic influences on the
intercept for cognitive factors and FEV1, but no significant genetic influences specific to the
slope. Genetic influences impact the slope parameters for the cognitive factors only through
genetic influences on the intercepts via the intercept-slope correlation. No significant genetic
influences on longitudinal change in FEV1 were indicated.

Bivariate analyses
Cognitive and pulmonary function are interrelated: FEV1 correlates 0.38 with the spatial
factor and 0.27 with the speed factor. Thus, the focus of the current analysis was bivariate
models that allow for the investigation of the impact of genetic and environmental
influences on the leading role for pulmonary function in some aspects of cognitive aging.
Two dynamic relationships were investigated: FEV1 as a leading indicator of change in
spatial ability and processing speed. Results of testing the primary hypotheses are presented
in Table 4. Shared environmental effects were dropped in the first reduced model, and as in
the univariate results, there was little impact on model fit. Subsequent models were
compared with reduced model 1. Model testing results supported the conclusion that the
cognitive factor → FEV1 coupling parameters (model 2) could be dropped from the model
without significantly reducing model fit, whereas dropping the FEV1 → cognitive factor
coupling parameter significantly decreased model fit (model 3). Model 4 verifies that
coupling between the two pairs of variables, FEV1 and spatial or FEV1 and speed, cannot be
eliminated without significantly reducing model fit.

Parameter estimates resulting from fitting the AE biometric bivariate DCSM (with and
without full coupling) to these pairs of variables are presented in Tables 5 (spatial factor)
and 6 (speed factor). The addition of the coupling parameter changes the prediction of Δy
and Δx: they are now functions of α, β, and γ. Therefore, estimates of α, β mean intercept,
and mean slope parameters in the bivariate model may differ from the univariate model
results. Significance of parameters in Tables 5 and 6 was tested by dropping each parameter
individually and examining the change in model fit; the size of the model precluded
calculation of confidence intervals. Although the estimates of γ from FEV1 to the cognitive
factors are small (0.013), model comparisons presented in Table 4 demonstrate the
significance of the coupling parameter. Thus, a portion of the genetic influences on change
in the spatial and speed factors acts through dynamic coupling with FEV1.
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The differences in the parameter estimates between the full coupling and no coupling
models are subtle and require examination of the accumulating impact of these subtle
differences over many age intervals to gauge the full impact of coupling on the cognitive
factors. The results of the full and no coupling models were used to estimate the longitudinal
trajectories of genetic and environmental variance in the spatial and speed factors, both in
the full coupling model and the no coupling model. The resulting trajectories for the spatial
factor—both raw variance and proportion of variance—are presented in Fig. 4. The
accumulating impact of coupling over age is clear: although genetic variance in spatial
ability generally decreases with age, coupling from FEV1 is supporting less decline in
genetic variance and even some increase with age. In parallel, in the full coupling model,
less of the variance in the spatial factor is attributed to environmental factors. Thus, genetic
variance for FEV1 is contributing to subsequent genetic variance in the spatial factor. In the
absence of coupling with FEV1, the spatial factor manifests less genetic variance and more
environmental variance with increasing age. Trajectories for the speed factor presented in
Fig. 5 show the same pattern of results, although the magnitude of the pattern is smaller. For
both factors, genetic variance for FEV1 is contributing to subsequent genetic variance in
cognitive performance.

Discussion
To test hypotheses about the genetic and environmental influences on the contribution of
longitudinal changes in lung function to subsequent changes in fluid intelligence, biometric
DCSMs were fit to the cognitive and pulmonary measures in two steps: univariate and
bivariate. In the univariate analyses, models were fit to the spatial and speed factors and
FEV1 separately. Model comparisons indicated two general conclusions. First, similar to
results from latent growth curve analyses of cognitive data (e.g., McArdle et al. 1998;
McGue and Christensen 2001; Reynolds et al. 2002, 2005), model testing indicated
significant genetic influences on the intercept and slope for each cognitive factor. Significant
genetic influences were also indicated for the intercept of FEV1; however, no significant
genetic influences were found on the rate of change in FEV1. Second, as is true in most
biometric analyses of cognitive aging (for a review see McGue and Johnson 2007),
individual variation in late adulthood is explained primarily by additive genetic and
nonshared environmental influences; model fitting provided no evidence for correlated or
shared environmental effects. The same was true for FEV1. Although rearing environmental
effects make a significant contribution to cognitive abilities during childhood, their impact
begins to decline early in adulthood (Plomin et al. 2001).

Application of bivariate DCSMs to the cognitive and pulmonary measures allowed us to
address the central hypotheses of genetic and environmental contributions to the temporal
dynamics of the relationship between lung function and cognitive aging. Three dynamic
relationships were investigated: genetic influences on FEV1 as a leading indicator of
variation in aging trajectories for cognitive abilities, genetic influences on cognitive function
as a leading indicator of aging changes in pulmonary function, or a dynamic relationship
with bidirectional genetic influences. Given previous investigations of the temporal
dynamics between lung function and cognitive aging (Emery et al. 2012) and the genetic
contributions to cross-time correlations between lung function and cognition (Emery et al.
1998), we hypothesized that genetic variance in lung function would play a leading role in
age changes in spatial abilities and processing speed. Model fitting results supported our
expectations by indicating a strong unidirectional coupling between FEV1 and the cognitive
factors. Thus, we can conclude that genetic variance in lung function is a leading indicator
of variation in fluid intelligence. Non-shared environmental factors, such as access to
physical exercise and health care, also may be important influences on fluid intelligence
especially as these non-shared factors interact with genetic factors.
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Limitations of these conclusions include the sparse data at either end of the age range,
particularly after age 89. Even though the cross-sequential nature of the SATSA design
means that older and younger adults have participated in a similar number of measurement
waves, attrition and mortality unlikely to be independent of the variables of interest:
cognitive and pulmonary function. Attrition rates did not differ by gender, zygosity, or
smoking status. More complete data in the oldest portion of the age range, however, may
have allowed us to estimate a significant decelerating age change in lung function instead of
the nonsignificant trend identified here. That, in turn, may have impacted the etiology of the
relationship between lung function and cognitive function. In the current model, the
parameters of proportional change within variables (β) and the coupling across variables (γ)
were estimated as constant across this age range. Recent analyses indicate that correlations
among cognitive variables and genetic components of those correlations are higher in older
adults (over age 65) than middle aged adults (Tucker-Drob et al. in press). It is possible,
then, that the nature and etiology of the relationship between lung function and cognitive
function varies over the second half of the lifespan. Given the computational complexity of
the biometric bivariate DCSM, requiring supercomputer facilities to fit the model to the
data, this extension of the model was not investigated at this time. Finally, although fluid
ability was quantified via two latent factors to maximize stability, the factors do not
represent the full range of abilities that are considered representative of fluid intelligence.

A recent genome-wide association study concluded that 51 % of the variance in spatial/fluid
cross-sectional performance was accounted for by the thousands of SNPs included in the
analysis (Davies et al. 2011). The results of the biometric DCSM analysis reported here
suggest that researchers attempting to define the nature of the relationship between these
SNPs and fluid intelligence may benefit from focusing their efforts on genetic factors
influencing pulmonary function. In fact, we know from previous biometric bivariate DCSM
analyses that genetic variance in processing speed drives subsequent changes in fluid
intelligence (Finkel et al. 2009). The current analyses indicate that genetic variance in lung
function drives subsequent changes in processing speed. Combination of analyses of this
nature may allow researchers to begin to piece together the cascade effect of genetic
influence as it works through the system: genes influence changes in lung function which
impact subsequent changes in processing speed which impact subsequent changes in other
aspects of fluid intelligence. Extensive information about genes associated with lung
function is available (e.g., Chowdhary et al. 2012). We know that the path from gene
product to phenotype is enormously complicated and subject at every stage to environmental
influences as well. Combining results from several types of analyses, including DCSM, will
bring us closer to understanding the etiology of cognitive functioning and cognitive aging.
The significant outcome of the accumulation of subtle effects identified by the DCSM
emphasizes the necessity of multiple waves of longitudinal data to fully comprehend the
long-term impact of risk and protective factors for cognitive decline.
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Fig. 1.
A univariate biometric dual change score model to examine genetic and environmental
influences on age changes in Y. Error variance (σu) is assumed to be constant at each age; α
represents constant change and is related to the slope factor ys; β represents proportional
change. The model includes an estimate for intercept (y0), mean intercept (μ0), and mean
slope (μs). The model includes genetic and environmental effects specific to the intercept (a0
and e0) and specific to the slope (as and es). The paths from a0 and e0 to the slope (ys)
generate the decomposition of the correlation between the intercept and slope
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Fig. 2.
A bivariate biometric dual change score model to examine genetic and environmental
influences on the relationship between age changes in two measures (Y and X). Error
variance (σu) is assumed to be constant at each age within each factor; αy and αx represent
constant change related to the slope factors ys and xs; βy and βx represent proportional
change in Y and X; cross-trait coupling is indicated by γyx and γxy. The model includes
estimates for intercepts (y0 and x0), mean intercepts (μy0 and μx0), and mean slopes (μys
and μxs). The model includes genetic and environmental effects specific to the each
intercept (ax0 and ex0, ay0 and ey0) and specific to each slope (axs and exs, ays and eys). The
paths from ax0 and ex0 to xs and from ay0 and ey0 to ys generate the decomposition of the
correlation between the intercept and slope for X and Y
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Fig. 3.
Phenotypic longitudinal trajectories for the SPAT spatial factor, SPED speed factor and
FEV1
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Fig. 4.
Longitudinal trajectories in total and proportion of genetic (A) and environmental (E)
variance for the spatial factor, with and without full coupling with FEV1
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Fig. 5.
Longitudinal trajectories in total and proportion of genetic (A) and environmental (E)
variance for the speed factor, with and without full coupling with FEV1
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Table 2

Parameter estimates (and 95 % confidence intervals) from fitting the univariate biometric dual change score
model

Parameters Spatial factor Speed factor FEV1

Fixed effects

 Mean intercept, μ0 54.98 (53.94, 56.04) 56.95 (55.94, 57.96) 55.24 (54.02, 56.47)

 Mean slope, μs −9.67 (−12.17, −7.34) −8.06 (−9.74, −6.43) −0.17 (−2.63, 2.17)

 Constant change, α =1 = 1 = 1

 Proportional change, β 0.17 (0.12, 0.22) 0.13 (0.09, 0.16) −0.02 (−0.06, 0.03)

Random effects

 Intercept deviation, σ0

  Additive genetic 8.29 (6.63, 9.47) 7.66 (6.00, 8.44) 5.33 (2.13, 7.52)

  Shared environment 2.64 (−5.56, 5.56) 0.00 (−4.55, 4.55) 3.41 (−6.07, 6.07)

  Nonshared environment 3.26 (2.15, 4.30) 2.93 (1.83, 3.98) 5.93 (4.75, 7.16)

 Slope deviation, σs

  Additive genetic 0.07 (−0.26, 0.26) −0.26 (−0.39, 0.39) 0.00 (−0.71, 0.71)

  Shared environment 0.00 (−0.21, 0.21) 0.00 (−0.22, 0.22) −0.16 (−0.59, 0.59)

  Nonshared environment −0.17 (−0.27, 0.27) 0.23 (−0.32, 0.32) −0.41 (−0.65, 0.65)

 Slope on level

  Additive genetic −1.42 (−1.98, −0.91) −1.00 (−1.31, −0.54) 0.28 (−0.34, 0.69)

  Shared environment −0.56 (−1.16, 1.16) 0.00 (−0.79, 0.79) −0.34 (−0.63, 0.63)

  Nonshared environment −0.58 (−0.88, −0.22) −0.46 (−0.73, −0.10) −0.27 (−0.54, 0.03)

 Error deviation, σu 17.45 (16.20, 18.83) 17.67 (16.45, 19.01) 23.55 (21.96, 25.29)
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Table 3

Model-fitting results for univariate biometric dual change score model

Overall misfit (−2LL)

Models Parameters Spatial Speed FEV1

Full model 15 16,721 17,881 18,696

1. Drop shared env. 12 16,721 17,881 18,697

2. Drop a0 → y0 11 16,898* 18,039* 18,749*

3. Drop as → ys 11 16,722 17,885 18,698

4. Drop a0 → ys 11 16,776* 17,920* 18,697

*
Change in model fit versus model 1 is significant at p < 0.01
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Table 4

Model-fitting results for bivariate biometric dual change score models

Overall misfit (−2LL)

Models Parameters Spatial Speed

Full model 28 35399 36567

1. Drop shared env. 22 35400 36567

2. Drop γ factor → FEV1 21 35400 36568

3. Drop γ FEV1 → factor 21 35415* 36577*

4. Drop all coupling 20 35418* 36583*

*
Significant change in model fit versus model 1 (p < 0.01)
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Table 5

Parameter estimates from the bivariate biometric dual change score model between FEV1 and the spatial
factor

Parameters FEV1 Full coupling Spatial FEV1 No coupling Spatial

Fixed effects

 Mean intercept, μ0 55.15** 55.22** 55.28** 54.98**

 Mean slope, μs −0.18 −9.19** −0.10 −9.70**

 Constant change, α =1 =1 =1 =1

 Proportional change, β −0.02 0.14** −0.02 0.18**

 Coupling, γ FEV1 → spatial 0.013** =0

 Coupling, γ spatial → FEV1 0.000 =0

Random effects

 Intercept deviation

  Additive genetic 6.30** 8.73** 6.35** 8.72**

  Nonshared environment 5.92** 3.16** 5.88** 3.16**

 Slope deviation

  Additive genetic 0.46 0.18 0.46 0.14

  Nonshared environment −0.41 −0.15 −0.42 −0.16

 Slope on level

  Additive genetic 0.06 −1.36** 0.06 −1.54**

  Nonshared environment −0.27 −0.48** −0.26 −0.55**

 Error deviation, σu 4.85 4.18 4.85 4.18

**
Model comparison indicates parameter is significantly different from zero at p < 0.01
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Table 6

Parameter estimates from the bivariate biometric dual change score model between FEV1 and the speed factor

Parameters FEV1 Full coupling Speed FEV1 No coupling Speed

Fixed effects

 Mean intercept, μ0 55.25** 57.02** 55.28** 56.94**

 Mean slope, μs 0.09 −8.22* −0.11 −8.05**

 Constant change, α =1 =1 =1 =1

 Proportional change, β −0.03 0.12** −0.02 0.13**

 Coupling, γ FEV1 → speed 0.013** =0

 Coupling, γ speed → FEV1 0.006 =0

Random effects

 Intercept deviation

  Additive genetic 6.29** 7.74** 6.36** 7.75**

  Nonshared environment 6.00** 2.69** 5.88** 2.67**

 Slope deviation

  Additive genetic 0.47 −0.31** 0.46 −0.29**

  Nonshared environment 0.45* 0.21 0.42 0.21

 Slope on level

  Additive genetic 0.14 −0.96** 0.06 −1.03**

  Nonshared environment −0.25 −0.37* −0.26 −0.38*

 Error deviation, σu 4.85 4.21 4.85 4.20

Model comparison indicates parameter is significantly different from zero at *p<0.05; **p<0.01
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