
Bayesian Gaussian Copula Factor Models for Mixed Data

Jared S. Murray, PhD [Student],
Dept. of Statistical Science, Duke University, Durham, NC 27708 (jared.murray@stat.duke.edu)

David B. Dunson [Professor],
Dept. of Statistical Science, Duke University Durham, NC 27708 (dunson@stat.duke.edu)

Lawrence Carin, and
William H. Younger Professor, Dept. of Electrical & Computer Engineering, Pratt School of
Engineering, Duke University, Durham, NC 27708 (lcarin@ee.duke.edu)

Joseph E. Lucas [Assistant Research Professor]
Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710
(joe@stat.duke.edu)

Abstract
Gaussian factor models have proven widely useful for parsimoniously characterizing dependence
in multivariate data. There is a rich literature on their extension to mixed categorical and
continuous variables, using latent Gaussian variables or through generalized latent trait models
acommodating measurements in the exponential family. However, when generalizing to non-
Gaussian measured variables the latent variables typically influence both the dependence structure
and the form of the marginal distributions, complicating interpretation and introducing artifacts.
To address this problem we propose a novel class of Bayesian Gaussian copula factor models
which decouple the latent factors from the marginal distributions. A semiparametric specification
for the marginals based on the extended rank likelihood yields straightforward implementation and
substantial computational gains. We provide new theoretical and empirical justifications for using
this likelihood in Bayesian inference. We propose new default priors for the factor loadings and
develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are
evaluated through simulations and applied to a dataset in political science. The models in this
paper are implemented in the R package bfa.1
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1 Introduction
Factor analysis and its generalizations are powerful tools for analyzing and exploring
multivariate data, routinely used in applications as diverse as social science, genomics and
finance. The typical Gaussian factor model is given by

(1.1)
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where yi is a p × 1 vector of observed variables, Λ is a p × k matrix of factor loadings (k <
p), ηi ~ N(0, I) is a k × 1 vector of latent variables or factor scores, and εi ~ N(0, Σ) are

idiosyncratic noise with . Marginalizing out the latent variables, yi ~
N(0, ΛΛ′ + Σ), so that the covariance in yi is explained by the (lower-dimensional) latent
factors. The model in (1.1) may be generalized to incorporate covariates at the level of the
observed or latent variables, or to allow dependence between the latent factors. For
exposition we focus on this simple case.

This model has been extended to data with mixed measurement scales, often by linking
observed categorical variables to underlying Gaussian variables which follow a latent factor
model (e.g. Muthén (1983)). An alternative is to include shared latent factors in separate
generalized linear models for each observed variable (Dunson, 2000, 2003; Moustaki and
Knott, 2000; Sammel et al., 1997). Unlike in the Gaussian factor model the latent variables
typically impact both dependence and the form of the marginal distributions. For example,
suppose yi = (yi1, yi2)′ are bivariate counts assigned Poisson log-linear models: log E(yij |
ηi) = μj + ληi. Then λ governs both the dependence between yi1, yi2 and the overdispersion
in each marginal distribution. This confounding can lead to substantial artifacts and
misleading inferences. Additionally, computation in such models is difficult and requiring
marginal distributions in the exponential family can be restrictive.

There is a growing literature on semiparametric latent factor models to address the latter
problem. A number of authors have proposed mixtures of factor models (Chen et al., 2010;
Ghahramani and Beal, 2000). Song et al. (2010) instead allow flexible error distributions in
Eq. (1.1). Yang and Dunson (2010) proposed a broad class of semiparametric structural
equation models which allow an unknown distribution for ηi. When building such flexible
mixture models there is a sacrifice to be made in terms of interpretation, parsimony and
computation, and subtle confounding effects remain. It would be appealing to retain the
simplicity, interpretability and computational scalability of Gaussian factor models while
allowing the marginal distributions to be unknown and free of the dependence structure.

To accomplish these ambitious goals we propose a semiparametric Bayesian Gaussian
copula model utilizing the extended rank likelihood of Hoff (2007) for the marginal
distributions. This approximation avoids a full model specification and is in some sense not
fully Bayesian, but in practice we expect that this rank-based likelihood discards only a mild
amount of information while providing robust inference. An additional contribution of this
paper is to provide new theoretical and empirical justification for this approach.

We proceed as follows: In Section 2, we propose the Gaussian copula factor model for
mixed scale data and discuss its relationship to existing models. In Section 3 we develop a
Bayesian approach to inference, specifying prior distributions and outlining a
straightforward and efficient Gibbs sampler for posterior computation. Section 4 contains a
simulation study, and Section 5 illustrates the utility of our method in a political science
application. Section 6 concludes with a discussion.

2 The Gaussian copula factor model
A p-dimensional copula  is a distribution function on [0, 1]p where each univariate
marginal distribution is uniform on [0, 1]. Any joint distribution F can be completely
specified by its marginal distributions and a copula; that is, there exists a copula  such that

(2.1)
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where Fj are the univariate marginal distributions of F (Sklar, 1959). If all Fj are continuous
then  is unique, otherwise it is uniquely determined on Ran(F1) × ⋯ × Ran(Fp) where
Ran(Fj) is the range of Fj. The copula of a multivariate distribution encodes its dependence
structure, and is invariant to strictly increasing transformations of its univariate margins.
Here we consider the Gaussian copula:

(2.2)

where Φp(·|C) is the p-dimensional Gaussian cdf with correlation matrix C and Φ is the
univariate standard normal cdf. Combining (2.1) and (2.2) we have

(2.3)

From (2.3) a number of properties are clear: The joint marginal distribution of any subset of
y has a Gaussian copula with correlation matrix given by the appropriate submatrix of C,
and yj ⫫ yj′ if and only if cjj′ = 0. When Fj, Fj′ are continuous, cj j′ = Corr(Φ−1(Fj(yj),
Φ−1(Fj′ (yj′)) which is an upper bound on Corr(yj, yj′) (attained when the margins are
Gaussian) (Klaassen and Wellner,1997). The rank correlation coefficients Kendall’s tau and
Spearman’s rho are monotonic functions of cjj′ (Hult and Lindskog, 2002). For variables
taking finitely many values cjj′ gives the polychoric correlation coefficient (Muthén, 1983).

If the margins are all continuous then zeros in R = C−1 imply conditional independence, as
in the multivariate Gaussian distribution. However this is generally not the case when some
variables are discrete. Even in the simple case where p = 3, Y3 is discrete and c13c23 ≠ 0, if
r12 = 0 then Y1 and Y2 are in fact dependent conditional on Y3 (a similar result holds when
conditioning on several continuous variables and a discrete variable as well - details
available in supplementary materials). Results like these suggest that sparsity priors for R in
Gaussian copula models (e.g. Dobra and Lenkoski (2011); Pitt et al. (2006)) are perhaps not
always well-motivated when discrete variables are present, and should be interpreted only
with great care.

A Gaussian copula model can be expressed in terms of latent Gaussian variables

 be the usual pseudo-inverse of Fj and suppose Ω is a

covariance matrix with C as its correlation matrix. If z ~ N(0, Ω) and 
for 1 ≤ j ≤ p then F(y) has a Gaussian copula with correlation matrix C and univariate
marginals Fj. We utilize this representation to generalize the Gaussian factor model to
Gaussian copula factor models by assigning z a latent factor model:

(2.4)

Inference takes place on the scaled loadings

(2.5)
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so that . Rescaling is important as the factor loadings are not otherwise
comparable across the different variables - even though Λ is technically identified it is not
easily interpreted. We also consider the uniqueness of variable j, given by

(2.6)

In the Gaussian factor model uj is , the proportion of variance
unexplained by the latent factors. In the Gaussian copula factor model this exact
interpretation does not hold, but uj still represents a measure of dependence on common
factors.

2.1 Relationship to existing factor models
The Gaussian factor model and probit factor models are both special cases of the Gaussian
copula factor model. Probit factor models for binary or ordered categorical data
parameterize each margin by a collection of “cutpoints” γj0, … γjcj (taking γj0 = −∞ and

γjcj = ∞ without loss of generality) so that . Then Fj has the
pseudoinverse

Plugging this into (2.4) and simplifying gives  where zi ~ N(0,
ΛΛ′+I), the data augmented representation of an ordinal probit factor model. Naturally the
connection extends to mixed Gaussian/probit margins as well.

Other factor models which have Gaussian/probit models as special cases include
semiparametric factor models, which assume non-Gaussian latent variables ηi or errors εi,
retaining the linear model formulation (1.1) so that marginally Cov(yi) = ΛCov(ηi)Λ′ + Σ.
But F(yi) no longer has a Gaussian copula, and since the joint distribution is no longer
elliptically symmetric the covariance matrix is unlikely to be an adequate measure of
dependence. Further, the dependence and marginal distributions are confounded since the
implied correlation matrix will depend on the parameters of the marginal distributions.

Our model overcomes these shortcomings. In the Gaussian copula factor model  governs
the dependence separately from the marginal distributions, representing a factor-analytic
decomposition for the scale-free copula parameter C rather than Cov(yi). The Gaussian
copula model is also invariant to strictly monotone transformations of univariate margins.
Therefore it is consistent with the common assumption that there exist monotonic functions
h1, … , hp such that (h1(y1), … hp(yp))′ follows a Gaussian factor model, while existing
semiparametric approaches are not. Researchers using our method are not required to
consider numerous univariate transformations to achieve “approximate normality”.
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2.2 Marginal Distributions
One way to deal with marginal distributions in a copula model is to specify a parametric
family for each margin and infer the parameters simultaneously with C (see e.g. Pitt et al.
(2006) for a Bayesian approach). This is computationally expensive for even moderate p,
and there is often no obvious choice of parametric family for every margin. Since our goal is
not to learn the whole joint distribution but rather to characterize its dependence structure
we would prefer to treat the marginal distributions as nuisance parameters.

When the data are all continuous a popular semiparametric method is a two-stage approach

in which an estimator  is used to compute “pseudodata” , which are
treated as fixed to infer the copula parameters. A natural candidate is

, the (scaled) empirical marginal cdf. Klaassen and Wellner
(1997) considered such estimators in the Gaussian copula and Genest et al. (1995)
developed them in the general case. However, this method cannot handle discrete margins.
To accommodate mixed discrete and continuous data Hoff (2007) proposed an
approximation to the full likelihood called the extended rank likelihood, derived as follows:

Since the transformation  is nondecreasing, when we observe yj = (y1j, … ,
ynj) we also observe a partial ordering on zj = (z1j, … znj). To be precise we have that

(2.7)

The set D(yj) is just the set of possible zj = (z1j, … , znj) which are consistent with the
ordering of the observed data on the jth variable. Let

. Then we have

(2.8)

where (2.8) holds because given C the event Z ∈ D(Y) does not depend on the marginal
distributions. Hoff (2007) proposes dropping the second term in (2.8) and using P(Z ∈ D(Y)|
C) as the likelihood. Intuitively we would expect the first term to include most of the
information about C. Simulations in Section 4 provide further evidence of this. Hoff (2007)
shows that when the margins are all continuous the marginal ranks satisfy certain relaxed
notions of sufficiency for C, although these fail when some margins are discrete.
Unfortunately theoretical results for applications involving mixed data have been lacking.

To address this we give a new proof of strong posterior consistency for C under the
extended rank likelihood with nearly any mixture of discrete and continuous margins
(barring pathological cases which preclude identification of C). Posterior consistency will
generally fail under Gaussian/probit models when any margin is misspecified. A similar
result for continuous data and a univariate rank likelihood was obtained by Gu and Ghosal
(2009). We replace Y with Y(n) for notational clarity below.

Theorem 1. Let Π be a prior distribution on the space of all positive semidefinite correlation
matrices  with corresponding density π(C) with respect to a measure ν. Suppose π(C) > 0
almost everywhere with respect to ν and that F1, … , Fp, are the true marginal cdfs. Then for
C0 a.e. [ν] and any neighborhood  of C0 we have that
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(2.9)

where  is the distribution of  under C0, F1, … Fp.

The proof is in Appendix A. We assumed a prior π(C) having full support on . Under
factor-analytic priors fixing k < p restricts the support of π, and posterior consistency will
only hold if C0 has a factor analytic decomposition in k or fewer factors. But by setting k
large (or inferring it) it is straightforward to define factor-analytic priors which have full-
support on  (further discussion in Section 6). In practice, many correlation matrices which
do not exactly have a k-factor decomposition are still well-approximated by a k-factor
model. Finally, the result also applies to posterior consistency for  if k is chosen correctly,
given compatible identifying restrictions.

The efficiency of semiparametric estimators such as ours is also an important issue. Hoff et
al. (2011) give some preliminary results which suggest that pseudo-MLE’s based on the
rank likelihood for continuous margins may be asymptotically relatively efficient. However,
it is unclear whether even these results apply to the case of mixed continuous and discrete
margins, which is our primary focus. Simulations of the efficiency of posterior means under
the extended rank likelihood versus correctly specified parametric models appear in Section
4.1. These results give an indication of the worst-case scenario in terms of efficiency lost in
using the likelihood approximation, and are quite favorable in general.

3 Prior Specification and Posterior Inference
3.1 Prior Specification

Since the factor model is invariant under rotation or scaling of the loadings and scores we
assume that sufficient identifying conditions are imposed (by introducing sign constraints
and fixed zeros in Λ), or that inference is on C which does not suffer from this
indeterminacy. For brevity we also assume here that k is known and fixed. Suggestions for
incorporating uncertainty in k are in the Discussion.

A common prior for the unrestricted factor loadings in Gaussian, probit or mixed factor
models is λjh ~ N(0, 1/b). However, these priors have some troubling properties outside the
Gaussian factor model: When σj ≡ 1 as in probit or mixed Gaussian/probit factor models –
or in our copula model – the implied prior on uj is

(3.1)

Figure 1 shows that these priors are quite informative on the uniquenesses, especially as k
increases. When k is small they are particularly informative on the scaled loadings,

shrinking  toward large values, rather than toward zero. This effect becomes worse as the
prior variance increases. The problem is that the normal prior puts insufficient mass near
zero. Coupled with the normalization this results in a “smearing” of mass across the columns
of , deflating uj, inducing spurious correlations, and giving inappropriately high probability
to values of the scaled loadings near ±1. Therefore the normal prior is a very poor default
choice in these models.

To address these shortcomings we consider shrinkage priors on λjh which place significant
mass at or near zero. Such parsimony is also desirable for more interpretable results.
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Shrinkage priors have been thoroughly explored in the regression context (see e.g. Polson
and Scott (2010) and references therein). In that context heavy-tailed distributions are

desirable. While somewhat heavy tails are appealing here (so that  decays slowly to

zero as ), extremely heavy tails are inappropriate. Very heavy tails imply that with
significant probability a single unscaled loading (say λjm) in a row j will be much larger

than the others so that  for 1 ≤ h ≤ k. The resulting joint prior on

 will assign undesirably high probability to vectors with one entry near ±1
and the rest near 0, yielding correlations which are approximately 0 or ±1. Applying these
priors in this new setting requires extra care.

As a default choice we recommend the generalized double Pareto (GDP) prior of (Armagan
and Dunson, 2011) which has the density

(3.2)

which we will refer to as λjh ~ GDP(α, β). The GDP is a flexible generalization of the
Laplace distribution with a sharper peak at zero and heavier tails. It has the following scale-

mixture representation:  and ξjh ~ Ga(α, β) which leads
to conditional conjugacy and a simple Gibbs sampler. The GDP’s tail behavior is
determined by α, and β is a scale parameter. Armagan and Dunson (2011) handle the
hyperparameters by either fixing them both at 1 or assigning them a hyperprior. Here taking
α = 3, β = 1 is a good default choice: The GDP(3, 1) distribution has mean 0 and variance 1,
and Pr(|λjh| < 2) ≈ 0.96. Critically, taking α = 3 leads to tails of π(λjh) light enough to

induce a sensible prior on .

Figure 1 shows draws from the implied prior on uj and  under the GDP(3, 1) prior, which
are much more reasonable than the current default Normal priors. Note that as K increases,
the prior puts increasing mass near zero without changing a great deal in the tails. This is
reasonable since we expect each variable to load highly on only a few factors, and is
difficult to mimic with the light-tailed normal priors. The prior on the uniquenesses remains
relatively flat under the GDP prior, while the normal prior increasingly favors lower values
and less parsimony.

3.2 Parameter-Expanded Gibbs Sampling
For efficient MCMC inference we introduce a parameter-expanded (PX) version of our
original model. The PX approach (Liu and Wu, 1999; Meng and Van Dyk, 1999) adds
redundant (non-identified) parameters to reduce serial dependence in MCMC and improve
convergence and mixing behavior. Naive Gibbs sampling in our model suffers from high
autocorrelation due to strong dependence between Z and Λ. We modify (2.4) by adding

scale parameters  to weaken this dependence:

(3.3)
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Since wij/vj and zij are equal in distribution (3.3) is observationally equivalent to the original
model. We assume that V is independent of the inferential parameters a priori so that π(Λ,
H, V|Y) = π(Λ, H|Y)π(V) (where H′ is the n × k matrix with entries ηik) and the marginal
posterior distribution of the inferential parameters is unchanged.

We choose the conjugate PX prior  (independently). The greatest benefits
from PX are realized when the PX prior is most diffuse, which would imply sending n0 → 0
and an improper PX prior. The resulting posterior for (Λ, H, V) is also improper, but we can
prove that the samples of (Λ, H) from the corresponding Gibbs sampler still have the desired
stationary distribution π(Λ, H|Y) (Appendix B). The PX Gibbs sampler is implemented as
follows:

PX parameters—Draw  where  and

Factor Loadings—We assume a lower triangular loadings matrix with a positive

diagonal; the extension to other constraints is straightforward. Let kj = max(k, j) and  be
the n × kj matrix with entries ηik for 1 ≤ k ≤ kj and 1 ≤ i ≤ n. Update nonzero elements in

row j of Λ as  where  and λjj is
restricted to be positive if j ≤ k.

Hyperparameters—Update  and (ξjh|−) ~ Ga(α + 1, β
+ |λjh|) where InvGauss(a, b) is the inverse-Gaussian distribution with mean a and scale b.

Factor scores—Draw ηi from 

Augmented Data—Update Z elementwise from

(3.4)

where T N(m, v, a, b) denotes the univariate normal distribution with mean m and variance v

truncated to (a, b),  and . If yij is missing then

. Note that (3.4) doesn’t require a matrix inversion since (zij ⫫ zij′ |
Λ, ηi, Y) for j ≠ j′, a unique property of our factor analytic representation and a significant
computational benefit as p grows.

The PX-Gibbs sampler has mixing behavior at least as good as Gibbs sampling under the
original model (which fixes V = I) (Liu and Wu, 1999; Meng and Van Dyk, 1999), and the
additional computation is negligible. The PX-Gibbs sampler often increases the smallest
effective sample size (associated with the largest loadings) by an order of magnitude or
more in both real and synthetic data. The improved mixing is also vital for the multimodal
posteriors sometimes induced by shrinkage priors. To our knowledge this is the first
application of PX to factor analysis of mixed data, but PX has previously been applied to
Gibbs sampling in Gaussian factor models by Ghosh and Dunson (2009) who introduce
scale parameters for ηi to reduce dependence between H and Λ. Since MCMC in our model

Murray et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2013 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



suffers primarily from dependence between Z and Λ our approach is more appropriate. Hoff
(2007) and Dobra and Lenkoski (2011) also use priors on unidentified covariance matrices
to induce a prior on correlation matrices in Gaussian copula models. But the motivation
there is simply to derive tractable MCMC updates and dependence between the priors on C
and V precludes our strategy of choosing an optimal PX prior, limiting the benefits of PX.

3.3 Posterior Inference
Given MCMC samples we can address a number of inferential problems. The posterior
distribution of the factor scores ηi provide a measure of the latent variables for each data
point, describing a projection of the observed data into the latent factor space, and the
factors themselves are characterized by the variables which load highly on them. Even if the
factors are not directly interpretable this is a very useful exploratory technique for mixed
data which is robust to outliers and handles missing data automatically (unlike common
alternatives such as principal component analysis).

We can also do inference on conditional or marginal dependence relationships in yi. Here
there is no need for identifying constraints in Λ which simplifies model specification. Tests
of independence like H0 : cjj′ ≤ ε versus H1 : cjj′ > ε are simple to construct from MCMC
output. When the variables are continuous the conditional dependence relationships are
encoded in R = C−1 which we can compute as

(3.5)

Eq. (3.5) requires calculating only k-dimensional inverses, rather than p-dimensional
inverses, a significant benefit of our factor-analytic representation.

As discussed in Section 2 the presence of discrete variables complicates inference on
conditional dependence. Additionally, two discrete variables may be effectively marginally
independent even if |cjj′ | > 0 simply by virtue of their levels of discretization. For these
reasons, and for more readily interpretable results, it can be valuable to consider aspects of
the posterior predictive distribution π(y*|Y). Under our semiparametric model this
distribution is somewhat ill-defined, but we can sample from an approximation to π(y*|Y)

by drawing  via the PX-Gibbs sampler, drawing  and setting

 where  are estimators of each marginal distribution. This disregards some
uncertainty when making predictions; Hoff (2007) provides an alternative based on the

values of ,  from (3.4) but (in keeping with his observations) we find both approaches to
perform similarly.

Posterior predictive sampling of conditional distributions is detailed in Section 2 of the
supplement. Importantly, the factor-analytic representation of C allows us to directly sample
any conditional distributions of interest (rather than using rejection sampling from the joint
posterior predictive) by reducing the problem of sampling a truncated multivariate normal
distribution to that of sampling independent truncated univariate normals.

4 Simulation Study
When fitting models in the following simulations we used the GDP(3, 1) prior for λjk and
take 1/σ2 ~ Gamma(2, 2) for the Gaussian factor model and uniform priors on the cutpoints
in the probit model. The cutpoints in the probit model were updated using independence
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Metropolis-Hastings steps with a proposal derived from the empirical cdfs. All models were
fit using our R package.

4.1 Relative efficiency
First we examine finite-sample relative efficiency of the extended rank likelihood in the
“worst-casse scenario” (for our method). We compare the posterior mean correlation matrix
under the Gaussian copula factor model with the extended rank likelihood to that under 1) a
Gaussian factor model, when the factor model is true and 2) a probit factor model, when the
probit model is true. Both are special cases of the Gaussian copula factor model so we can
directly compare the parameters.

The true (unscaled) factor loadings were sampled iid GDP(3, 1). For the probit case each
margin had five levels with probabilities sampled Dirichlet(1/2, … , 1/2). We fix k at the
truth; additional simulations suggest that the relative performance is similar under
misspecified k. We performed 100 replicates for various p/k/n combinations in Fig. 2. Each
model was fit using 100,000 MCMC iterations after a 10,000 burn-in, keeping every 20th
sample. MCMC diagnostics for a sample of the fitted models indicated no convergence
issues. We assess the performance of each method by computing a range of loss functions:

Average and maximum absolute bias (  and 

respectively), root squared error:  and Stein’s loss:

. Stein’s loss is (up to a constant) the KL divergence from the
Gaussian copula density with correlation matrix C to the Gaussian copula density with
correlation matrix Ĉ and is therefore natural to consider here.

Figure 2 shows that the two methods are more or less indistinguishable in the probit case.
Our method slightly outperforms the probit model in many cases because we do not have to
specify a prior for the cutpoints. There are also some computational benefits here since in
the copula model we avoid Metropolis-Hastings steps for the marginal distributions. In the
continuous case our model also does well, although the Gaussian model is somtimes
substantially more efficient under Stein’s loss. But as p grows our model is increasingly
competitive.

4.2 Misspecification Bias and Consistency
The previous simulations suggest that the loss in efficiency in worst-case scenarios is quite
often minimal. To illustrate the practical benefit of our model (and the impact of our
consistency result) in a realistic scenario we simulated data from a one-factor Gaussian
copula factor model using the marginal distributions from Section 5 (Fig. 4). For simplicity
we take  and consider  and 0.8 (although we did not constrain the loadings to be
equal when fitting models to the simulated data). Results in Section 5 suggest that these are
plausible values.

Figure 3 shows that factor loadings for the two continuous variables (Black.Mkt.Premium
and GDP.Per.Worker) are underestimated by the Gaussian/probit model. When all the
variables are dependent there is a “ripple” effect so that even factor loadings for discrete
variables are subject to some bias. We should expect this behavior in general – the copula
correlations bound the observed Pearson correlations from above (in absolute value), with
the bounds obtained only under Gaussian margins. The difference between the Pearson and
copula correlation parameters, and hence the asymptotic bias, depends entirely on the form
of the marginal distributions. This makes proper choices of transformations critical in the
parametric model. Our model relieves this concern entirely. Although the magnitude of
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these effects is relatively mild here there is little reason to suspect this is true in general,
especially in more complex models with multiple factors and a larger number of observed
variables.

5 Application: Political-Economic Risk
Quinn (2004) considers measuring political-economic risk, a latent quantity, using five
proxy variables and a Gaussian/probit factor model. The author defines political-economic
risk as the risk of a state “manipulat[ing] economic rules to the advantage of itself and its
constituents” following (North and Weingast, 1989, pp. 808). The dataset includes five
indicators recorded for 62 countries: independent judiciary, black market premium, lack of
appropriation risk, corruption, and gross domestic product per worker (GDPW) (Fig. 4).
Additional background on political-economic risk and on the variables in this dataset is
provided by Quinn (2004), and the data are available in the R package MCMCpack. Quinn
(2004) transforms the positive continuous variables GDPW and black market premium by
log(x) and log(x+0.001) (resp.). The disproportionate number of zeros in black market
premium (14/62 observations) leaves a large spike in the left tail and the normality
assumption is obviously invalid. Since Quinn (2004) has already implicitly assumed a
Gaussian copula, our model is a natural alternative to the misspecified Gaussian/probit
model used there.

To explore sensitivity to prior distributions we fit the copula model under several priors:
GDP(3, 1), N(0, 1) and the N(0, 4) priors used by Quinn (2004). We use 100,000 MCMC
iterations and save every 10th sample after a burn-in of 10,000 iterations. Standard MCMC
diagnostics gave no indication of lack of convergence. Figure 5 shows posterior means and
credible intervals for the scaled loadings under each prior. Note that the N(0, 4) prior,
intended to be noninformative, is actually very informative on the scaled loadings (Fig 1). It
pulls the scaled loadings toward ±1, with most pronounced influence on the binary variable
Ind.Jud and the other categorical variables. The GDP prior instead shrinks toward zero as we
would expect.

We also compare our model to the Gaussian/probit model in Quinn (2004), but using the
GDP(3, 1) prior in both cases. Figure 6 shows posterior predictive means and credible
intervals for Kendall’s tau, as well as the observed values and bootstrapped confidence
intervals. Our model fits well, considering the limited sample size, and fits almost uniformly
better than the Gaussian-probit model. Other posterior predictive checks on rank correlation
measures and in subsets of the data show similar results.

Incorrectly assuming a normal distribution for log black market premium is especially
damaging. The copula correlation between GDPW and black market premium (on which the
data are most informative) is underestimated in the Gaussian/probit model: mean −0.33 and
95% HPD interval (−0.46, −0.22) as opposed to −0.56 and (−0.73, −0.40) under our model.
This is also evident in the posterior predictive samples of Kendall’s τ in Fig. 6. Figure 7
shows density estimates of draws from the bivariate posterior predictive of black market
premium and GDPW. The Gaussian/probit model is clearly not a good fit, assigning very
little mass to the bottom-right corner (which contains almost 25% of the data). The Gaussian
copula factor model assigns appropriately high density to this region. Estimates of the latent
variables are impacted as well: Figure 8 plots the mean factor scores from each model (after
shifting and scaling to a common range) for low-risk countries. The seven countries with the
lowest risk have identical covariate values except on GDPW. Our model infers mean scores
that are sorted by GDPW (higher GDPW yielding a lower score). The Gaussian/probit
model instead assigns these countries almost identical scores.
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6 Discussion
In this paper we have developed a new semiparametric approach to the factor analysis of
mixed data which is both robust and efficient. We propose new default prior distributions for
factor loadings which are more suited to routine use of this model (and similar models, such
as probit factor models). As a byproduct we also induce attractive new priors on correlation
matrices in Gaussian copula models; these are both more flexible and parsimonious than the
inverse Wishart prior used by Hoff (2007), and much more efficient computationally than
the graphical model priors of Dobra and Lenkoski (2011). They admit optimal parameter
expansion schemes which are easy to implement, and are readily extended to informative
specifications, to include covariates or to more complex latent variable models.

We have not considered the issue of uncertainty in the number of factors, but it is
straightforward to do so by adapting existing methods for Gaussian factor models. In
addition to posterior predictive checks, these include stochastic search (Carvalho et al.,
2008), reversible jump MCMC (Lopes and West, 2004), Bayes factors (Ghosh and Dunson,
2009; Lopes and West, 2004) and nonparametric priors (Bhattacharya and Dunson, 2011;
Paisley and Carin, 2009). The latter are especially promising when interest lies in C since
they preserve the computational advantages of factor-analytic priors while providing full
support on correlation matrices (which fails for fixed k < p). Particularly when the plausible
range of k is quite small, posterior predictive checking can be very effective.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

A Proof of Theorem 1
Proof. We require a variant of Doob’s theorem, presented in Gu and Ghosal (2009):

Doob’s Theorem. Let Xi be observations whose distributions depend on a parameter θ, both
taking values in Polish spaces. Assume θ ~ Π and Xi|θ ~ Pθ. Let  be the σ-field generated

by X1, … , XN and . If there exists a  measurable function f such that

for  then the posterior is strongly consistent at θ for
almost every θ [Π].

Therefore we must establish the existence of a consistent estimator of C which is measurable

with respect to the σ-field generated by the sequence  (a coarsening of the σ-

field generated by . Let . Let Rni(Y(n) be the p-

vector with entry j given by Rnij and let . Observe that the information
contained in the extended rank likelihood (namely the boundary conditions in the definition
of the set D(Y(n))) is equivalent to the information contained in Rn(Y(n). Hence a function
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that is measurable with respect to , the σ-field generated by , is also

measurable with respect to the σ-field generated by  and we may work
exclusively with the former.

Let  and . Then  where Uij = Fj(yij) by the SLLN, so

 and therefore Ui is  measurable. Note that if Fj is discrete Uij is
merely a relabeling of yij (each category/integer is “labeled” with its marginal cumulative
probability). So Ui is a sample from a Gaussian copula model with correlation matrix C0
where the continuous margins are all U[0, 1] and the discrete marginal distributions are
completely specified. The problem of estimating C from Ui reduces to estimating ordinary
and polychoric/polyserial correlations with fixed marginals and it is straightforward to verify
that the distribution of Ui is a regular parametric family admitting a consistent estimator of
C, say hN(U1, … , UN). Therefore there exists a sequence of  measurable functions
hN(U1, … , UN) → h(U1, U2, …) = C0 almost surely and

(A.1)

where (A.1) holds because a null set under the measure induced by Rn(Y(n) is also null under

.

Appendix

B Validity of the PX Sampler

Let Θ be the inferential parameters and let  Our working

prior for (v1, … vp) is . To verify that samples of Θ from the PX-
Gibbs sampler have stationary distribution π(Θ|Y) we need to show that as n0 → 0 the
transition kernels under the marginal sampling scheme (alternately drawing from π(W|Θ,Y)
and π(Θ|W)) and the blocked sampling scheme (alternately drawing from π(W|Θ, V, Y) and
π(Θ, V|W)) converge (Meng and Van Dyk, 1999). The tth updates under the two schemes
are as follows:

Scheme 1: Draw  and . Set r = vj0/vj1 and

draw 

Scheme 2: Draw . Set r = v(t−1)j/vtj and draw

Updates for the rest of Θ under both schemes are the same as in Section 3.2. As n0 → 0

under Scheme 1 the distribution of  approaches a point mass at 1 and Scheme 1
converges to Scheme 2 with n0 = 0.
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Figure 1.
Induced priors on the scaled factor loadings (top row) and uniquenesses (bottom row)
implied by different priors as K varies
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Figure 2.
Efficiency (ratio of the loss under our model to that under the Gaussian/probit model) of the
posterior mean under a range of loss functions
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Figure 3.
Posterior mean factor loadings using 100 simulated datasets generated with the margins in
Section 5 using our model (GCFM) versus a mixed Gaussian/probit model (G/P).
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Figure 4.
Distributions of 4 variables from the political risk dataset in Quinn (2004). The fifth,
Ind.Jud, is binary with 34/62 ones.
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Figure 5.
Posterior means/90% HPD intervals for scaled factor loadings under the different priors.
Differences due to priors are larger for discrete variables, and largest for Ind.Jud (which is
binary)
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Figure 6.
Posterior predictive mean and 95% HPD intervals of Kendall’s τ under our model (Cop) and
the Gaussian-probit model (Mix) as well as the observed values and bootstrapped 95%
confidence intervals.
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Figure 7.
Posterior predictive distributions of log GDP and log black market premium, with observed
data scatterplots. Note the cluster of points in the bottom-right corner; even though they
represent over 20% of the sample the predictive density from the model in Quinn (2004)
assigns very little mass to this area.
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Figure 8.
Comparison of the political-economic risk ranking obtained via our model and the mixed-
data factor analysis of Quinn (2004). Points are posterior means and lines represent marginal
90% credible intervals.
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