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Abstract
Autosomal Dominant Nonsyndromic Hearing Loss (ADNSHL) is a common and often
progressive sensory deficit. ADNSHL displays a high degree of genetic heterogeneity, and
varying rates of progression. Accurate, comprehensive and cost-effective genetic testing facilitates
genetic counseling and provides valuable prognostic information to affected individuals. In this
paper, we describe the algorithm underlying AudioGene, a software system employing machine-
learning techniques that utilizes phenotypic information derived from audiograms to predict the
genetic cause of hearing loss in persons segregating ADNSHL. Our data show that AudioGene has
an accuracy of 68% in predicting the causative gene within its top three predictions, as compared
to 44% for a Majority classifier. We also show that AudioGene remains effective for audiograms
with high levels of clinical measurement noise. We identify audiometric outliers for each genetic
locus and hypothesize that outliers may reflect modifying genetic effects. As personalized
genomic medicine becomes more common, AudioGene will be increasingly useful as a phenotypic
filter to assess pathogenicity of variants identified by massively parallel sequencing.
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Introduction
Hearing loss is defined as reduced hearing acuity during auditory testing. Hearing is
measured in decibels hearing level (dB HL) with a frequency-specific normative threshold
of 0 dB defining the level at which normal controls perceive a tone burst of a given intensity
50% of the time. A measurement of these thresholds across several frequencies is known as
an audiogram. A person's hearing acuity is classified as normal when it falls within 20 dB of
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these defined thresholds, with hearing loss otherwise graded as mild (20-40 dB), moderate
(41-55 dB), moderately severe (56-70 dB), severe (71-90 dB) or profound (>90 dB).
Hearing loss can be further characterized as low frequency (<500Hz), mid-frequency
(501-2000Hz) or high frequency (>2000Hz) (Smith et al., 2005).

Hearing loss is the most common sensory deficit in Western societies (Smith et al., 2005). In
the United States, congenital hearing loss occurs three times more frequently than Down
Syndrome, six times more frequently than spina bifida, and at least 50 times more frequently
than phenylketonuria (Stierman, 1994; Leonard et al., 1999; White, 2003). Thus, an
estimated 4,000 neonates are born each year in the United States with severe-to-profound
bilateral hearing loss, while another 8,000 neonates have either unilateral or mild-to-
moderate bilateral hearing loss (Mohr et al., 2000; Thompson et al., 2001; White, 2004). By
etiology, the loss is inherited in simple Mendelian fashion in more than half of these babies.
In 75-80% of inherited cases, both parents have normal hearing and the loss is classified as
Autosomal Recessive Non-syndromic Hearing Loss (ARNSHL). Autosomal Dominant Non-
syndromic Hearing Loss (ADNSHL) accounts for about 20% of cases with fractional
contributions due to X-linked and mitochondrial inheritance.

The Hereditary Hearing Loss Homepage has 95 genetic loci for ARNSHL annotated,
although only 40 of the genes for these loci have been identified (Van Camp and Smith,
2012). In order of frequency, mutations in GJB2, SLC26A4, MYO15A, OTOF, CDH23, and
TMC1 are most commonly reported (Hilgert et al., 2009). For these six genes, at least 20
mutations have been identified in persons with ARNSHL. In the case of GJB2, there are
well over 220 mutations reported, with GJB2-related deafness accounting for between
20-50% of all ARNSHL, depending on the population studied (Hilgert et al., 2009).

For ADNSHL, in contrast, no single gene accounts for the majority of cases. There are
currently 64 ADNSHL-mapped loci, with genes identified for only 25. Current data suggest
that of these 25 genes, mutations in WFS1, KCNQ4, COCH, and GJB2 are somewhat more
common as causes of ADNSHL in comparison to the other 21 genes (Hilgert et al., 2009).
Interestingly, mutations in a few genes such as WFSI, COCH, and TECTA cause an easily
recognizable audiogram configuration, which we refer to as an audioprofile. This
observation suggested to us that audioprofiles could provide a powerful phenotypic tool for
predicting hearing loss genotypes and spurred our development of AudioGene (Snoeckx et
al., 2005). We developed such a phenotypic tool, which we call ‘AudioGene’. Following
several years of testing we made the first version of AudioGene publicly available online
(http://audiogene.eng.uiowa.edu/) and reported its first application to gene prioritization in
2008 (Hildebrand et al., 2008). Subsequently, we successfully applied our machine learning
tool to other types of genetic hearing loss (Hildebrand et al., 2009; Hildebrand et al., 2011).
Here we document our updated algorithm underlying the gene prioritization by AudioGene
and further analyse its robustness to noise.

Examples of audioprofiles similar to those generated by AudioGene for two loci are shown
in Figure 1. There are obvious differences in progression and shape of these audioprofiles. It
is these differences that AudioGene leverages for predicting hearing loss genotypes. Initially
conceived as a method of directing Sanger-based genetic testing for hearing loss, which is
costly and labor intensive, AudioGene's phenome-based analysis is now of exceeding
importance in filtering genomic data generated from massively parallel sequencing
platforms that can interrogate all genetic causes of non-syndromic hearing loss
simultaneously (Shearer et al., 2010; Shearer et al., 2011).

In this article, we describe the algorithms, procedures, and methods used to conduct
automatic prioritization of genetic loci based on patient-derived audiograms. This
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prioritization procedure results in a ranked list of genetic loci for a given audioprofile. These
methods are used both in a large-scale pipeline to classify sets of audiograms submitted for
analysis, as well as a web-based portal for independent analysis of audiograms from patients
or their physicians. In most cases, the steps outlined apply to both training data as well as
previously unclassified audiograms.

Methods
Audiometric Data

The dataset used to train AudioGene consists of audiograms collected from publications,
original audiograms provided by authors, and by otolaryngology and audiology clinics. Our
dataset was comprised of 3,312 audiograms from 1,445 patients. The typical audiogram
included data for six frequencies: 250Hz, 500Hz, 1kHz, 2kHz, 4kHz, and 8kHz.
Audiograms based on fewer than four frequency points were excluded. To date, we have
developed four versions of AudioGene based on the number of available audiograms – in
the latest version, after processing 3,024 audiograms are included in the training set. The
total number of patients and audiograms for each locus is listed in Supp. Table S1.

Preprocessing
Audiograms in the dataset were preprocessed prior to their use in prioritization or training. If
available, audiograms from both ears taken at the same time were combined by retaining the
minimum value (i.e. better acuity) at each frequency. This results in a composite audiogram
that has the least amount of hearing loss at each frequency. Coefficients of second and third
order polynomials were then fit to each audiogram and added as secondary features. Linear
interpolation and extrapolation were used next to replace missing threshold values. Each
collection of patient-derived audiograms was grouped into a ‘bag’ for use with multi-
instance classifiers, with a one-to-many relationship between patients and audiograms
(Auer, 1997). For classifiers that did not support multi-instance datasets, each bag was
reduced to a single representative audiogram using the geometric average of the audiograms
in the bag.

Prioritization
Patient audiograms collected during clinical care visits as part of a diagnostic protocol
(referred to subsequently as ‘unknown’ audiograms) were ranked according to the
probabilities generated by a modified Support Vector Machine (SVM) using a linear kernel
capable of utilizing multi-instance datasets, which was already implemented in Weka (Frank
et al., 2004; Hall et al., 2009). SVM training was performed using the Sequential
Minimization Optimization algorithm (SMO), in which a one-versus-one strategy is used to
handle multiple classes in conjunction with pair-wise coupling to generate the probabilities
for each locus (Vapnik, 1995; Platt, 1998). Since probabilities of SVMs are not well
calibrated, they are only useful in ranking. The multi-instance SVM processes the bagged
audiograms at the kernel level, where the kernel distance between two patients is the sum of
all pairwise kernel distances between all pairs of audiograms in each patient's bag. The loci/
genes are then ranked in decreasing order of probability to produce a prioritized list of loci
to inform genetic testing efforts. While these probabilities are useful for ranking they are not
regularized, and are therefore only useful as relative probabilities.

Classifier Choice
Five different classifiers were evaluated using two strategies. 1) Accuracy, area under ROC
curves (AUC), precision and recall were computed for each classifier using ten 10-fold
cross-validation experiments. AUC, precision and recall were then computed for each class
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using a weighted average based on the size of each locus. 2) We performed a leave-one-out
analysis of the aforementioned prioritization method using each classifier. Audiogram bags
corresponding to each patient were removed from the training set one at a time, and the
prioritization method was performed with the classifier being evaluated. For this analysis,
patients were considered correctly classified if their locus was ranked amongst the top N
loci, using the ranking method described in the previous section. SVM, Multi-instance
SVM, a Majority classifier, Random Forest (Breiman, 2001), and Bagging (Breiman, 1996)
were each tested as classifiers. Both SVM implementations used a linear kernel and all of
the classifiers were derived from implementations in Weka (Hall et al., 2009). The Majority
classifier was considered the baseline against which the performance of all others was
measured.

Validating Preprocessing
A leave-one-out analysis of various combinations of preprocessing steps was performed on
the training set. These permutations included combining only audiograms taken from
different ears at the same age, combining and filling in missing (frequency) values, and
adding the coefficients of fitted second- and third-order polynomials.

Noise Model and Robustness to Noise
A noise model was developed by representing real-world noise associated with the
measurement and recording of audiometric data (Figure 2). This model was then used to
perform a simulation to determine the robustness of our method in the presence of noise.
The noise model takes into consideration a mis-calibrated audiometer and test-retest
variability (Schmuziger et al., 2004). According to our model, a mis-calibrated audiometer
could result in an additive (+/−) shift across an entire audiogram, and the test-retest
variability may introduce up to a 10 dB difference between measurements taken at two
different times for the same patient. The noise model adds noise in the frequency domain. In
other words, the added noise is based on treating the frequency values as values in the
domain (x-axis) and the dB loss/gain as values along the range (y-axis). The Discrete Cosine
Transform (DCT) (Ahmed and Natarajan, 1974) was used to transform the audiogram
curves into the frequency domain. The DCT was chosen over the Fourier transform for
simplicity, because all DCT components are all real-valued. The DCT transform function F
is shown in Equation 1.

Once in the frequency domain, noise is added in two parts. First, a random magnitude of
noise is added to F0 (the DC component) in order to shift the entire audiogram. This mimics
the case where the calibration of the audiometer results in uniform inaccuracy for the entire
measurement of the audiogram. Next, Gaussian noise is added to the other coefficients with
a magnitude scaled by an exponential decay function. This simulates the test-retest
variability discussed above. The exponential decay function effectively concentrates the
noise in lower frequency components of the DCT and results in noisy audiograms that still
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retain their overall characteristic shape. With the addition of this noise, an inverse DCT was
performed to recreate a time-domain audiogram. A few examples of the noise added to an
audiogram are shown in Figure 2, with ShiftScale at 10 and Scale at 5. We define ShiftScale
as a scalar value that controls the magnitude with which the audiogram can be shifted, and
Scale as a variable used to control the degree with which overall curve shape is changed.
Lower values of both of these variables mean lower noise, and vice versa. To determine the
robustness of our prioritization method to noise, 5% of the patients were selected at random
and removed from the training set.

Noise was added to the removed audiograms using our noise model, with the value of
ShiftScale always twice as large as the value of Scale. For a given level of noise x,
ShiftScale and Scale are typically 5x and 2.5x, respectively. The prioritization method was
then trained on the remaining 95% of patients, and the 5% withheld subset was classified.
This process was repeated 200 times with a different random sampling of patients on each
repetition. The final accuracy for a given ranking requirement (N) is the sum of all the
patients that were correct across all iterations divided by the total number of patients that
were withheld over all 200 iterations. The value of N specifies that the locus/gene must be
ranked amongst the top N loci/genes given by the prioritization method described in the
Prioritization section.

Identifying Outliers
A variant of the leave-one-out analysis was used to identify patients who are outliers to the
classifier and are often misclassified. Each patient was removed and the classifier was
retrained on the remaining patients. The noise model described in the previous section was
used to add noise to the removed patient's audiograms, with a noise Scale of 5. The patient
was then classified with the retrained classifier, and the predicted locus was recorded. The
classification was repeated 100 times with the noise model applied each time to the patient's
original audiograms. If the correct locus was never predicted for any of the 100 iterations,
the patient was considered an outlier.

Web Interface
AudioGene is accessible via a web interface (http://audiogene.eng.uiowa.edu) and all
analyses are performed on secure servers managed by the Center for Bioinformatics and
Computational Biology (CBCB) at the University of Iowa. Audiometric data may be
uploaded via a web-based spreadsheet form or by using a downloadable Excel™ spreadsheet
provided on the website. After uploading data, audiograms are displayed as images to
validate data entry. Once verified, the analysis can be completed using all available loci or a
user-selected subset of these loci, an option that can be chosen when specific loci have
already been excluded. Uploaded and verified data are submitted to a local computational
cluster in the CBCB for analysis. When predictions are complete, results are made available
to users online and by e-mail. Successful application of this website to genetic hearing loss
has been demonstrated by the authors and others (de Heer et al., 2011).

Results
Comparison of Classifiers and Performance

Bagging, Random Forest (RF), and Multi-Instance SVM (MI-SVM) had very comparable
performance (Table 1), and ROC curves for each class for these classifiers are shown in
Supp. Figure S2. However, their performance differs when measuring accuracy over various
values of N. At higher values of N, when plotting accuracy versus the number of guesses,
MI-SVM and Single-Instance SVM (SI-SVM) outperform all other classifiers (Figure 3).
The MI-SVM and SI-SVM have approximately equal accuracies at higher values of N but
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for lower values, the MI-SVM performs better. Both the Random Forest classifier (RF) and
Bagging classifier perform as well as the MI and SI-SVMs at lower values of N, but at
higher values of N, their accuracy reaches a maximum of approximately 91%, whereas the
MI- and SI-SVMs approach 100%. This difference is due to limitations in the training
methods, since loci for which there are only a few audiograms are never predicted. Based on
this analysis, we chose to use the MI-SVM as the classifier for AudioGene. It has an
estimated accuracy of 68% of including the correct locus/gene in the top 3 predictions. In
contrast, the Majority classifier has an accuracy of only 47%. This measurement of
performance is a good metric because it is similar to the intended use of AudioGene, where
clinicians would sequence the predicted genes in an iterative fashion, often-times quite
rapidly (days). This approach allows us to determine our accuracy in the event that multiple
predictions are required before identifying the correct locus.

Preprocessing Validation
Raw data without any preprocessing outperform any of the other preprocessing steps at
higher values of N. We hypothesized that this was due to a bias in which frequency
measurements are not randomly missing, but rather are dependent upon their constitutive
loci (Figure 4). This hypothesis was evaluated by converting audiograms into binary vectors
in which each frequency value was coded as 1 if a threshold measurement is available or 0 if
there is no measurement. A10-fold cross-validation was then run with an SVM and its
accuracy was compared against a Majority classifier. Accuracies should be similar if no
information is contained in the missing frequency values, but the MI-SVM produced an
accuracy of 33% while the Majority classifier had an accuracy of 20%. Therefore, filling the
missing values must be done to eliminate this bias.

On the basis of this analysis, we did not include a comparison of the effect of adding only
the polynomial coefficients. As Figure 4 shows, adding the coefficients has only a marginal
effect on the accuracy. To prove statistical significance, 10-fold cross-validation
experiments were performed as a follow-up to compare the addition of the coefficients. The
accuracy of identifying the correct gene/locus within the first three predictions was 66.05%
with the coefficient added, versus 65.22% without. This small gain improves performance
and is computationally inexpensive to compute. We therefore included a preprocessing step
that consists of adding the coefficients of fitted second and third order polynomials and
filling in missing values.

Robustness to Noise
AudioGene suffers minor performance degradation from its baseline performance over
modest amounts of noise (～3% at noise levels between 1 and 3, as defined previously), as
shown in Figure 5. It is only with higher levels of noise that there is a significant loss of
performance (～10%). This amount of noise would equate to a shift of the audiogram
between 20 and 25 dB and substantial distortion to the original audiogram's shape.

Outlier Identification
A patient's audiogram was considered an outlier if the correct gene/locus was never
predicted during any of 100 repetitions with the addition of high amounts of noise. The plot
of outliers by loci is shown in Supp. Figure S3. We can infer that, to the classifier, patients
who are outliers never appear similar to other patients from that locus.

As a general rule, smaller loci (in terms of the number of patients per locus) should contain a
larger percentage of outlier patients and conversely, larger loci should contain fewer
outliers. However, there exist some loci that have a larger number of outliers than expected.
DFNA10 is an example in which 34 of 56 patients are labeled as outliers. Further
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investigation of these outliers is necessary to determine if they are truly outliers or are
representative of the inherent variability of the audiograms for a particular locus.

Discussion
In this paper, we present a method for predicting genotypes based on phenotypes in patients
segregating ADNHSL, and our complete pipeline can be seen in Figure 6. We show that the
most robust performance was achieved using MI-SVM, and that this approach has an
accuracy of ～68% as compared to a Majority classifier, which has an accuracy of ～44%.
Missing threshold values must be interpolated to guarantee an unbiased classifier that
generalizes effectively to unknown data.

In some settings, missing data can serve as informative features. For example, a missing
value from a “date of death” field implies that the patient is not deceased. In the case of an
audiogram, missing frequency thresholds imply nothing about the phenotype of the patient,
but rather are normal variations in clinical practice between sites. Therefore, missing
thresholds must be interpolated to guarantee an unbiased classifier, otherwise the classifier
cannot generalize effectively to data collected at different clinics.

Our data show that AudioGene is robust to modest levels of noise. Although we attempted
to employ a simple linear model to apply random amounts of noise independently at each
frequency, this approach generated physically impossible audiograms and was abandoned.
An example is a saw tooth-patterned audiogram produced by alternating +/−10 dB at each
frequency. By applying noise in the frequency domain with the DCT, we retained the overall
audioprofile but produced audiograms that were shifted and/or stretched but still physically
possible. This model allowed us to tune the noise so that we could test the addition of
varying amounts of noise and also enabled us to identify outliers.

The identification of outliers is particularly interesting, since genetic modifiers of hearing
loss are known to exist. Our method for identifying outliers is equivalent to selecting the
patients who are not predicted correctly, even when allowing for large degrees of error in the
data collection. This could be caused by inadequate training data for a given locus,
inadequate separation between two phenotypically similar loci, an improperly assigned
causative locus, or environmental and genetic modifiers that affect the patient's phenotype.

In summary, we have developed a method for prioritizing genetic loci for ADNSHL
screening based on a patient's phenotype. Using a leave-one-out analysis, AudioGene has an
estimated accuracy of 68% for identifying the correct genetic cause of hearing loss within
the top three predictions using a MI-SVM. The method is robust to noise with a drop in
accuracy only when large amounts of noise are applied. AudioGene is available as a web
service at http://audiogene.eng.uiowa.edu. Originally developed for prioritizing loci for
Sanger sequencing (Hildebrand et al., 2008; Hildebrand et al., 2009), as technologies have
advanced, AudioGene has proven invaluable as a method of evaluating variants of unknown
significance generated by targeted genomic capture and massively parallel sequencing,
effectively linking a person's phenome to their genome (Shearer et al., 2010; Eppsteiner et
al., 2012).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Example Audioprofiles
Sample audioprofiles from the averages of patients from DFNA2A and DFNA9 grouped
into age groups spanning two decades. Average standard deviation across all ages and
frequencies is 18.92 dB and 19.47 dB for DFNA2A and DFNA9, respectively. This same
plot with error bars is shown in Supp. Figure 1. The number of audiograms for each age
group is listed in parentheses in the legend, with the number of audiograms for DFNA2A
listed first and then DFNA9. Both loci exhibit distinctly different shapes of hearing loss
along with different rates of progression over time.
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Figure 2. Audiogram with noise added
An audiogram with three examples of added noise, with a ShiftScale of 10 and Scale of 5.
The overall characteristic shape of the audiogram still remains after noise is applied.

Taylor et al. Page 11

Hum Mutat. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Classifier Performance over various N
A comparative plot of the accuracy of the evaluated classifiers. This plots accuracy against
N, where N represents whether or not the correct locus was ranked among the top N loci.
Both SVMs outperform all other classifiers and the Multi-Instance SVM (MI-SVM)
demonstrates the best accuracy of all.
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Figure 4. Preprocessing Validation
The accuracies of different combinations of preprocessing steps. While preprocessing with
only combining audiograms taken at the same age but from different ears has greater
accuracy as the number of guesses increase, it has been shown that this is due to a collection
bias. Interpolating missing values is therefore necessary in order to remove this bias. Even
though adding the coefficients of fitted second and third order polynomials produces
marginal increase in performance, it has been shown in a follow-up experiment to be
statistically significant.
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Figure 5. Noise Analysis
The result of the noise analysis with varying degrees of noise versus performance of the ‘top
N loci’ selection method compared to the classification performance with no noise (the
original). From this plot, it is shown that AudioGene is robust to the amount of noise
expected from mis-calibration and test-retest variability.
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Figure 6. Final Pipeline
The final analysis pipeline of AudioGene used to make predictions for unknown patients. (1)
The training set is preprocessed by filling in missing values and adding coefficients of fitted
second and third order curves. (2) A Multi-Instance SVM is trained on the preprocessed
training set from step 1. (3) Unknown patients' audiograms are preprocessed in the same
manner as described in Step 1. (4) Probabilities for each locus are generated by the trained
SVM model. (5) Loci are finally ranked by their probabilities, with results being displayed
on the website and emailed to the user.
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Table 1
Classifier Performance

Accuracy, AUC, precision and recall for all classifiers tested. Bold values indicated the highest value, and
multiple bold values indicate that they were statistically the same. AUC, precision, and recall were all
computed as weighted averages based on the size of each locus.

Classifier Accuracy AUC Precision Recall

Bagging 43.86% (3.06) 0.82 (0.02) 0.37 (0.03) 0.44 (0.03)

RF 43.14% (3.16) 0.71 (0.16) 0.37 (0.04) 0.43 (0.03)

MI-SVM 42.95% (2.91) 0.80 (0.16) 0.31 (0.03) 0.43 (0.03)

SVM 40.99% (2.57) 0.79 (0.17) 0.26 (0.02) 0.41 0.03

Majority 19.72% (0.34) 0.50 (0.00) 0.04 (0.00) 0.20 0.00
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