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ABSTRACT

Motivation: Haplotypes, defined as the sequence of alleles on one

chromosome, are crucial for many genetic analyses. As experimental

determination of haplotypes is extremely expensive, haplotypes are

traditionally inferred using computational approaches from genotype

data, i.e. the mixture of the genetic information from both haplotypes.

Best performing approaches for haplotype inference rely on Hidden

Markov Models, with the underlying assumption that the haplotypes of

a given individual can be represented as a mosaic of segments from

other haplotypes in the same population. Such algorithms use this

model to predict the most likely haplotypes that explain the observed

genotype data conditional on reference panel of haplotypes. With

rapid advances in short read sequencing technologies, sequencing

is quickly establishing as a powerful approach for collecting genetic

variation information. As opposed to traditional genotyping-array tech-

nologies that independently call genotypes at polymorphic sites, short

read sequencing often collects haplotypic information; a read span-

ning more than one polymorphic locus (multi-single nucleotide poly-

morphic read) contains information on the haplotype from which the

read originates. However, this information is generally ignored in exist-

ing approaches for haplotype phasing and genotype-calling from short

read data.

Results: In this article, we propose a novel framework for haplotype

inference from short read sequencing that leverages multi-single nu-

cleotide polymorphic reads together with a reference panel of haplo-

types. The basis of our approach is a new probabilistic model that

finds the most likely haplotype segments from the reference panel to

explain the short read sequencing data for a given individual. We

devised an efficient sampling method within a probabilistic model to

achieve superior performance than existing methods. Using simulated

sequencing reads from real individual genotypes in the HapMap data

and the 1000 Genomes projects, we show that our method is highly

accurate and computationally efficient. Our haplotype predictions

improve accuracy over the basic haplotype copying model by

�20% with comparable computational time, and over another recently

proposed approach Hap-SeqX by �10% with significantly reduced

computational time and memory usage.
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1 INTRODUCTION

Humans are diploid organisms with two copies of each chromo-

some, one inherited from the father and the other from the

mother. The two copies are similar to each other and only

differ at a small fraction (� 0:1%) of sites. Most of the variation

is contained at single nucleotide polymorphic (SNP) sites. The

sequence of alleles on each chromosome is referred to as the

haplotype. Haplotype information is centrally important for a

wide variety of applications, including association studies and

ancestry inference (Fearnhead and Donnelly, 2001; Hugot

et al., 2001; Lazzeroni, 2001; Myers and Griffiths, 2003; Rioux

et al., 2001; Sabeti et al., 2002). Unfortunately, standard methods

for probing genetic variation are able to collect only genotype

information but not haplotypes. A large number of computa-

tional methods, referred to as haplotype phasing approaches,

have been proposed to infer haplotypes from genotypes. The

most successful methods use a set of reference haplotypes to

build a probabilistic model of the haplotypes in the population

(Howie et al., 2009; Howie et al., 2011; Kang et al., 2010; Li

et al., 2010; Long et al., 2009). Using a population genetics

model for the haplotype distribution, these models predict the

most likely haplotype data that can explain the observed

genotypes.
Rapid advances in high-throughput sequencing (HTS) tech-

nologies provide new opportunities for haplotype phasing meth-

ods. HTS yields short segments of the DNA (reads) where each

read originates from one of the pair of chromosomes. Therefore,

all the alleles in this read are from the same haplotype. Although

reads that cover multiple SNPs (multi-SNP reads) could be used

to improve haplotype inference, existing methods generally

ignore this information, partially owing to computational diffi-

culty associated with modeling such reads.
Several methods have been proposed to predict haplotypes

directly from the reads. These methods, referred to as haplotype

assembly methods, use overlapping reads to construct the haplo-

type (Aguiar and Istrail, 2012; Bansal and Bafna, 2008; Bansal

et al., 2008; Duitama et al., 2010, 2012; He et al., 2010; Xie et al.,

2012). The most commonly used objective function for haplotype*To whom correspondence should be addressed.
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assembly is the minimum error correction (MEC). The MEC

objective function aims at finding the minimum number of

edits such that the reads can be partitioned into two disjoint

sets, and each set of reads originates from one of the haplotypes.

However, as these methods do not use the information in the

reference haplotype panel, they significantly underperform

standard phasing methods that ignore read information but

use reference panel (He et al., 2010). Recently, one of these

methods has been extended to use the reference (He and Eskin,

2013; He et al., 2012). Unfortunately, this method has prohibitive

memory and time requirements, thus making it unfeasible for

moderate to large datasets.
Here, we propose a novel approach called Haplotyping with

Reference and Sequencing technology (HARSH) for haplotype

phasing. We use a probabilistic model to incorporate the multi-

SNP read information together with a reference panel of haplo-

types. We use an efficient Gibbs sampling method to find sample

from the posterior distribution. This algorithm has the advan-

tages of being computationally efficient, scalable in memory

usage and accurate in genotyping and phasing prediction. We

evaluate our method on simulations from real haplotypes from

the HapMap project. At 1� coverage, HARSH gives �10%

improvement in terms of total error rate compared with standard

phasing approaches that do not use the multi-SNP read infor-

mation, thus showing the benefits of modeling multi-SNP reads.

We also evaluate HARSH and the basic model for varying

coverage and read length, showing the benefits of our approach

in higher coverage and longer read length. Additionally, we test

our method on simulations starting from real sequencing data of

1000 Genomes project, where the density of SNPs is much higher

than that in HapMap data. Through extensive simulations we

show that the gain in performance of our approach over existing

models extends to realistic read lengths (e.g. 100–400bp), making

our approach readily applicable to existing sequencing datasets.

With recent works showing that short read sequencing can dra-

matically increase association power in genome-wide association

study over genotyping arrays (Pasaniuc et al., 2012), we expect

our approaches to further increase power in genome-wide asso-

ciation study by increasing accuracy in genotype calling and

phasing from short read data.

2 METHODS

The best performing approaches for haplotype inference rely on Hidden

Markov Models (HMMs) for describing the distribution of haplotypes in

the population. These approaches generally ignore multi-SNP informa-

tion in the reads, thus implementing the model as a linear chain graph.

The model structure becomes complicated when we are considering multi-

SNP information, as it is not trivial to perform standard operations (e.g.

Viterbi decoding) to a non-linear chain graph. Previous methods [e.g.

Hap-SeqX (He and Eskin, 2013)] have attempted to extend the Viterbi

algorithm to the complex graph induced by multi-SNP reads and refer-

ence haplotypes, but the approach is expensive in both time and memory

usage. As opposed to previous approaches, in this work, we use a Gibbs

sampler–based method for fast inference. The main advantage of this

approach is that the computations are efficient and it can achieve the

optimal or close to optimal solution in a feasible amount of time.

However, all other current methods are either not optimal or not

practical in terms of computational time or memory usage.

2.1 Gibbs sampler preliminaries

A Gibbs sampler serves as the basis for our method. We first introduce

the general idea of Gibbs sampling before we use it to solve the haplotype

problem. Consider the following distribution typically used to perform

optimization in graphical models:

PðXÞ ¼
1

Z
exp �

X
i¼1

X
j¼1

�ij ðxi,xjÞ

 !

where X ¼ ðx1, x2, � sxdÞ is a d-dimensional vector and Z is a normaliza-

tion factor. The function � specifies the edge potential for two variables

with an edge between them. We would like to collect samples of X based

on this distribution P(X).

Gibbs sampler is a special case of Monte Carlo Markov Chain method

(Geman and Geman, 1984), which is guaranteed to converge to the

equilibrium distribution after sufficient burn-in rounds. In each round,

it randomly samples one variable xi based on the conditional probability

Pðxijx½�i�Þ when all other variables x½�i� ¼ ðx1, . . . , xi�1,xiþ1, . . . , xdÞ

are fixed. Formally, this conditional probability can be written as

follows:

Pðxi ¼ tjx½�i�Þ ¼
Pðxi ¼ t,x½�i�ÞP
t0 Pðxi ¼ t0,x½�i�Þ

: ð1Þ

Amore complete treatment of Monte Carlo Markov Chain is available in

(Liu, 2008).

2.2 Haplotype assembly with sequencing data

Sequencing technologies provide us with a set of reads, each of which is a

short fragment from one of the chromosomes. Haplotype assembly aims

to assemble the entire haplotype based on only read information. An

illustrative example is given in Figure 1.

We can formalize this problem as follows. Suppose that we only

consider L biallelic SNPs and M reads. Each read is represented

by Xj ¼ f�1, 1, 0g
L, where 0 stands for unobserved SNP in jth

read, �1 and 1 stand for observed minor and major alleles, respectively.

Fig. 1. An illustration of haplotype inference problems. The two chromo-

somes for an individual are unknown to us at first. Sequencing technol-

ogy produces a set of reads, each of which originates from one of the two

chromosomes. We also have a set of reference haplotypes, which are from

the same population as the donor. Haplotype assembly aims to assemble

the two donor haplotypes by only using the read information. Haplotype

phasing problem aims to phase the two haplotypes by mosaic copies from

the reference haplotypes. However, our approach HARSH takes into

account both read information and reference panel for more accurate

haplotype inference
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Because the homozygous site does not affect the haplotype phasing, we

only consider heterozygous sites. Therefore, the objective is to find a

sequence of haplotype and its complementary fh, �hg where

h ¼ � �h 2 f�1, 1gL, to minimize the total number of flipped loci within

reads, such that every read can be perfectly assigned to one of the haplo-

types. Another necessary variable for the model is the read origin indi-

cator rj 2 f�1, 1g. If rj ¼ 1, the jth read is assumed to have been

generated from haplotype h, and if rj ¼ �1, the jth read is from the

complementary haplotype �h. We assume the read generation process is

as follows. First, we randomly pick one of the haplotypes (h, �h) with equal

probability, and then sample the read starting position from one of the

L possible positions in the genome. If we consider the read generation

processing is error free, then we have xij ¼ hirj. However, if the read

generation process is error-prone and " indicates the rate of sequencing

error then with probability 1� ", we have xij ¼ �hirj, and with probabil-

ity ", we have xij ¼ �hirj. An illustrative example is given in Figure 2.

We can formalize the connection between the haplotypes and read

origin variables into the following probabilistic distribution. For each

possible values of the haplotypes and read origin variables, we can cal-

culate its probability as follows:

PðR,H;XÞ

¼
1

Z
exp �

X
ij:xij¼1

�ijðhi, rjÞ þ
X

ij:xij¼�1

�ijðhi, rjÞ

0
@

1
A

0
@

1
A ð2Þ

where

�ijðhi, rjÞ ¼
lnð1� "Þ hi ¼ rj

ln " hi 6¼ rj

�

�ijðhi, rjÞ ¼
ln " hi ¼ rj

lnð1� "Þ hi 6¼ rj:

�

and the variables R ¼ ðrjÞ
M
j¼1, H ¼ ðhiÞ

L
i¼1 and X ¼ ðxijÞij are vectors and

matrix composed of scalar variables r, h and x. The variable Z is a nor-

malization constant to ensure
P

R,H PðR,H;XÞ ¼ 1. The functions � and

� specify edge potentials that favor h and r to be of equal values and

opposite values, respectively. The model parameter � controls the ‘heat’

of the probabilistic model. Generally speaking, the probability distribu-

tion is smoother when � is small and sharper when � is large.

LEMMA 1. The maximum a posteriori (MAP) assignment of (2) corres-

ponds to the MEC haplotype for any �50:5.

PROOF. We can prove by constructing the MEC haplotype from MAP

assignment. Let H� and R� denote the MAP assignment of our probabil-

istic model, and the corresponding probability calculated from (2) will be

PðH�,R�;XÞ ¼
1

Z
expð�ðn lnð1� "Þ þm ln "ÞÞ

where n is the number of edges getting potential lnð1� �Þ and m is the

number of edges getting potential ln � based on the configuration H� and

R�. As lnð1� "Þ4 ln " for �50:5 and the number of edges is fixed, this

MAP assignment H� and R� is actually minimizing the number of edges

getting potential ln �.We can use this haplotypeH� and flip every read bit

corresponding to the edge getting potential ln ". The resulting MEC score

for H� will be m, which is minimized.

Suppose that there exists another haplotype H0 with MEC score

m05m. It suggests that we can flip only m0 read bit then all the reads

will be perfectly assigned to one of the haplotypes. We keep those assign-

ments into the variable R0. Thus, we should have

PðH0,R0;XÞ ¼
1

Z
expð�ððnþm�m0Þ lnð1� "Þ þm0 ln "ÞÞ:

By definition, m05m; thus, PðH0,R0;XÞ4PðH�,R�;XÞ, which contra-

dicts the fact that H� and R� is the MAP assignment maximizing the

configuration probability. By this contradiction, we can conclude that

there does not exist H0 and R0 with MEC score m05m.

2.3 Haplotype phasing with sequencing data and reference

Current haplotype assembly methods mainly focus on de novo assembly,

which uses short reads as the only information source. This is partially

owing to the complexity of extending the method to the scenario of

assembly using reference. On the other hand, current haplotype phasing

methods only use the reference panel and genotype likelihood in each

SNP but ignore the multi-SNP information in the reads. We aim to use

both the reference panel and sequencing data to perform haplotype phas-

ing as shown in Figure 1. Formally, suppose that we are only considering

L biallelic SNPs, M reads and N reference haplotypes. Each read is rep-

resented by Xj ¼ f�1, 1, 0g
L, where 0 stands for unobserved SNP in jth

read. The objective is to find two haplotypes, H ¼ fh1, h2g, where

h1, h2 2 f�1, 1gL. We want to find the two haplotypes with small

number of inconsistent loci with reads, as well as more consistent with

reference haplotypes. We use another set of variables, S ¼ fs1, s2g, where

s1, s2 2 f1, 2, . . . ,NgL, to stand for the assignment of each loci to refer-

ence haplotypes. We also need a set of variables R ¼ fr1, r2, . . . , rMg,

where ri 2 f�1, 1g stands for the haplotype that each read originates

from. An illustrative example of the graph structure is given in Figure 3.

Similar to the previous section, we can formalize the connection

between the three variables H, R and S into the following probabilistic

distribution. For each possible values of H, R and S, we can calculate its

probability as follows:

PðH,R,S;XÞ ¼
1

Z
exp � �

X
ij:xij¼1

�ðh1i , � rjÞ þ
X

ij:xij¼�1

�ðh1i , � rjÞ

0
@

2
4

þ
XL
i¼1

�ðh1i , s
1
i Þ þ

XL�1
i¼1

�ðs1i , s
1
iþ1, iÞ

þ
X

ij:xij¼1

�ðh2i , rjÞ þ
X

ij:xij¼�1

�ðh2i , rjÞ

þ
XL
i¼1

�ðh2i , s
2
i Þ þ

XL�1
i¼1

�ðs2i , s
2
iþ1, iÞ

!#
ð3Þ

where we have four edge potential functions. The functions � and � are

defined similarly as in (2) except that there would be no penalty if the read

is assigned by r to the other haplotype.

�ðhi, rjÞ ¼

lnð1� "Þ rj ¼ 1, hi ¼ 1

ln " rj ¼ 1, hi ¼ �1

0 rj ¼ �1

,

8><
>:

�ðhi, rjÞ ¼

ln " rj ¼ 1, hi ¼ 1

lnð1� "Þ rj ¼ 1, hi ¼ �1

0 rj ¼ �1

:

8><
>:

The edge potential function � specifies the ‘haplotype copying’, which

is motivated that the predicted haplotype is a mosaic of reference

Fig. 2. A graphical model for haplotype assembly. In this example, two

reads and four heterozygous SNPs are considered. Read 1 covers the

SNPs 1, 2 and 3. Read 2 covers SNPs 2, 3 and 4. The variables

h 2 f1, � 1g stands for the haplotype. The variable r 2 f1, � 1g stands

for whether the read is from haplotype h or the complementary �h
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haplotypes with a small number of differences. In this case, the predicted

haplotypes are similar to reference haplotype s1 and s2 at position i.

�ðh1i , s
1
i Þ ¼

lnð1� !Þ h1i ¼ Gs1
i
, i

ln! h1i 6¼ Gs1
i
, i

(

where Gij stands for the jth allele in ith reference haplotype. Thus, Gs1
i
, i

stands for the ith allele in s1i th reference haplotype. Moreover, we use the

following function to model the transition probability in haplotype copy-

ing model (Li and Stephens, 2003).

�ðsi, siþ1, iÞ ¼
expð� 	i

NÞ þ ð1� expð� 	i
NÞÞ=N si ¼ siþ1

ð1� expð� 	i
NÞÞ=N si 6¼ siþ1

�

where 	i ¼ 4Neri and ri is the per generation genetic distance between site

i and site iþ 1, and Ne is a constant.

This probabilistic model provides us a disciplined way to infer the most

probable haplotype given a set of reads and a set of reference haplotypes.

It extends the haplotype copying model (Li and Stephens, 2003) from

genotype input to sequencing data input. It also extends the haplotype

assembly problem in previous section to a more general case where the

reference panel can be used to improve the phasing. We are then able to

design efficient sampling approach to find the most possible configur-

ations ofH, R and S that maximize the probability given in Equation (3).

2.4 Efficient sampling

Haplotype assembly without reference. The bipartite structure in

Figure 2 suggests an efficient procedure for sampling. For fixed one

layer of the bipartite graph, the variables in the other layer will be inde-

pendent on each other. Thus, the conditional probability in Equation (1)

of Gibbs sampler can be significantly reduced. Formally, following the

standard procedure of Gibbs sampling, we can sample haplotype from

the conditional probability for fixed read origins. The sampling ratio


i ¼ Pðhi ¼ �1jRÞ can be calculated as follows:


i ¼

exp
P

j:Xij¼1

�ð�1, rjÞ þ
P

j:Xij¼�1

�ð�1, rjÞ

 !

exp
P

j:Xij¼1

�ð�1, rjÞ þ
P

j:Xij¼�1

�ð�1, rjÞ

 !

þ exp
P

j:Xij¼1

�ð1, rjÞ þ
P

j:Xij¼�1

�ð1, rjÞ

 !
0
BBBB@

1
CCCCA

: ð4Þ

Similarly, we can also do a similar Gibbs sampling step for read origin for

fixed haplotype. The sampling ratio 	j ¼ Pðrj ¼ �1jHÞ can be calculated

as follows:

	j ¼

exp
P

i:Xij¼1

�ðhi, � 1Þ þ
P

i:Xij¼�1

�ðhi, � 1Þ

 !

exp
P

i:Xij¼1

�ðhi, � 1Þ þ
P

i:Xij¼�1

�ðhi, � 1Þ

 !

þ exp
P

i:Xij¼1

�ðhi, 1Þ þ
P

i:Xij¼�1

�ðhi, 1Þ

 !
0
BBBB@

1
CCCCA

: ð5Þ

The complete sampling algorithm for haplotype assembly is shown in

Algorithm 1. As default, we use 10 000 rounds for sampling.

Haplotype phasing with reference. The sampling for haplotype

phasing with both sequencing data and reference from the graph in

Figure 3 is more challenging. However, we can still take advantages of

the special structure of the graph and perform efficient sampling

procedure. Following the idea of Gibbs sampler, we will alternatively (i)

sample read originR for fixed haplotypeH and reference assignment S; (ii)

sample S for fixedR andH; (iii) sampleH for fixedR and S. The step (i) is

similar with that in haplotype assembly. Formally, the sampling ratio

Pðrj ¼ �1jH,SÞ for read origin can be calculated by

	j ¼

exp
P

i:Xij¼1

�ðh1i , 1Þ þ
P

i:Xij¼�1

�ðh1i , 1Þ

 !

exp
P

i:Xij¼1

�ðh1i , 1Þ þ
P

i:Xij¼�1

�ðh1i , 1Þ

 !

þ exp
P

i:Xij¼1

�ðh2i , 1Þ þ
P

i:Xij¼�1

�ðh2i , 1Þ

 !
0
BBBB@

1
CCCCA

: ð6Þ

Algorithm 1 Sampling Algorithm for Haplotype Assembly

1: Randomly initialize haplotype H.

2: For fixed haplotype H, sample read origin R. For probability 	j,

we get rj ¼ �1, and for probability 1� 	j, we get rj ¼ 1, where the

ratio 	 can be calculated as in (5).

3: For fixed read origin R, sample haplotype H. For probability 
i,

we get hi ¼ �1, and for probability 1� 
i, we get hi ¼ 1, where the

ratio 
 can be calculated as in (4).

4: Repeat steps 2 and 3 for sufficient rounds until equilibrium.

5: Collect samples by repeating steps 2 and 3, and output the one

with highest probability.

The step (iii), sampling of haplotypeH for fixed read originR and refer-

ence assignment S is a straightforward extension from Equation (4). The

modification is based on the extra edge between reference penal variables S

and haplotype H. Formally, the sampling ratio Pðh1i ¼ �1jR,SÞ for the

first haplotype can be calculated by


1i ¼
�ð�1Þ

�ð�1Þ þ �ð1Þ
ð7Þ

where

�ðhÞ ¼ exp
X
j:Xij¼1

�ðh, � rjÞ þ
X

j:Xij¼�1

�ðh, � rjÞ þ �ðh, s
1
i Þ

0
@

1
A:

The sampling ratio Pðh2i ¼ �1jR,SÞ is similar with Pðh1i ¼ �1jR,SÞ.

Similarly, we can obtain the sampling ratio for the second haplotype as

follows:


2i ¼
�ð�1Þ

�ð�1Þ þ �ð1Þ
ð8Þ

Fig. 3. A graphical model for haplotype phasing with reference. The

variables h1 and h2 stand for the first and second haplotypes. The vari-

ables ri ¼ f�1, 1g specify whether the read comes from the first haplotype

or second haplotype. The variable s1 and s2 specify which haplotype in the

reference is generating the haplotype h1 and h2, respectively
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where

�ðhÞ ¼ exp
X
j:Xij¼1

�ðh, rjÞ þ
X

j:Xij¼�1

�ðh, rjÞ þ �ðh, s
2
i Þ

0
@

1
A:

The step (ii), sampling for the haplotype reference panel variables S for

fixed read origin R and haplotype H is challenging. The difficulty comes

from the dependency between the variables si and siþ1, and the large

number of possible values for each si. Note that unlike the binary vari-

ables h and r, the variable si 2 f1, 2, . . . ,Ng, where N is the number of

reference haplotypes. Thus, straightforward Gibbs sampler would be in-

efficient in this case. To tackle this computational challenge, we resort to

the following Markov chain sampling procedure (Liu, 2008). The joint

distribution over all variables in S can be written as follows:

PðSjHÞ ¼
1

Z
exp �0ðs1Þ þ

XL�1
i¼1

�iðsi, siþ1Þ

 !
ð9Þ

where
�0ðs1Þ ¼ �ðh1, s1Þ

�iðsi, siþ1Þ ¼ �ðsi, siþ1, iÞ þ �ðhiþ1, siþ1Þ:

Sampling directly from PðSjHÞ is still tedious. However, we can convert

the PðSjHÞ to multiplication series of probability functions as follows:

Pðs1js2,HÞPðs2js3,HÞ � sPðsL�1jsL,HÞPðsL,HÞ. Then sampling from

PðsLÞ and sampling backward using those conditional probabilities

becomes trivial. We can use dynamic programming to convert the

PðSjHÞ distribution to the alternative form. We define

V1ðs2Þ ¼
X
s2S

exp
�
�0 ðsÞ�1 ðs, s2Þ

�
and

Viðsiþ1Þ ¼
X
y2S

Vi�1ðyÞ exp ð�i ðy, siþ1ÞÞ for i ¼ 2, � � � ,L:

Thus, we can compute the normalization factor Z ¼
P

sL2S
VL�1ðsLÞ

efficiently using dynamic programming, and then we can compute the

marginal probability PðsL,HÞ ¼ ðVL�1ðsLÞÞ=Z. Moreover, we can back-

ward compute Pðsijsiþ1,HÞ similarly. Note that a naive implementation

of this step would result in a complexity of quadratic in the number of

reference haplotypes. We take advantage of the symmetry in the haplo-

type coping model to reuse computation to achieve runtime linear in the

number of reference haplotypes.

An outline of the sampling algorithm for haplotype phasing with

sequencing data and a reference panel is given in Algorithm 2. As default,

we use 10000 rounds of sampling.

Algorithm 2 Sampling Algorithm for Haplotype Phasing

1: Randomly initialize haplotype H

2: For fixed haplotype H, sample read origin R using sampling ratio

	j in (6).

3: For fixed haplotype H sample haplotype reference S following

Markov chain sampling procedure described after (9).

4: For fixed read origin R, and haplotype reference S, sample

haplotype H using sampling ratio 
i in (7).

5: Repeat steps 2, 3 and 4 for sufficient rounds until equilibrium.

6: Collect samples by repeating steps 2, 3 and 4. Output samples with

highest probability.

3 EXPERIMENTAL RESULTS

3.1 Datasets and experimental settings

We performed simulation experiments using HapMap Phase II

data (International HapMap Consortium, 2005) and 1000

Genomes data (Durbin, R. et al., 2010). For our simulations,

we used the 60 parental individuals of CEU populations from

HapMap Phase II as well as 60 individuals randomly chosen

from the European populations for 1000 Genomes data.

Although our method is scalable to the entire genome, for the

purpose of demonstration, we use only chromosome 22 as rep-

resentative of the rest of the genome, as it is the shortest chromo-

some. Because we are performing many simulations, we restrict

our results to the 35421 SNPs in chromosome 22 of the HapMap

data, and the first 30000 SNPs in chromosome 22 of 1000

Genomes data, which span �3Mb. The datasets are publicly

available at http://mathgen.stats.ox.ac.uk/impute/ and http://

hapmap.ncbi.nlm.nih.gov/.
We evaluate our method using a leave-one-out procedure. In

each round, we infer the haplotype for one individual using

simulated sequencing data and the haplotypes of the other 59

individuals as reference panel. This procedure is repeated 60

times and all the evaluation metrics are averaged. The reads

are simulated uniformly across chromosome 22 for a given

coverage. The read length in each end of a pair-end read is

fixed but the gap between the two ends follow a normal distri-

bution with fixed mean and standard deviation. Errors are in-

serted in the read at a rate ".
We evaluate our method HARSH using the standard metric

for genotyping and phasing accuracy: genotyping error rate and

switching error rate. The genotyping error rate is the proportion

of wrongly predicted genotypes, and the switching error is the

proportion of switches in the inferred haplotypes to recover the

correct phase in an individual. The total error rate is the sum of

genotyping error rate and switching error rate. We also use per-

centage improvement when comparing two methods. The per-

centage improvement is computed as the error rate difference

between two methods normalized by the error rate of baseline

method. For example, suppose that HARSH has error rate x and

baseline method has error rate y, the improvement of HARSH

over the baseline method would be ðy� xÞ=y.
We fixed the parameters � ¼ 1, ! ¼ 0:002 and � ¼ 0:01 for all

our experiments. From our experience, the performance of the

proposed method is not sensitive to parameter tuning. Using �
from 1 to 10 and ! from 0.001 to 0.005 does not affect the

performance significantly. The sequencing error � ¼ 0:01 is

standard sequencing error rate.
All experiments are performed in a cluster machine where each

node has 8–16 cores 3.0GHz CPU and 1–16 GB memory. Jobs

are submitted in a parallel manner but each job uses only one

node.

3.2 HapMap simulations

We use HapMap dataset to evaluate our method HARSH. We

compare our method with three other state-of-the-art methods:

the HMM at the core of the IMPUTE method (Howie et al.,

2009), BEAGLE (Browning and Browning, 2009) and Hap-

SeqX (He and Eskin, 2013). Because IMPUTE does not support

haplotype phasing for uncovered SNPs, for a fair comparison,

we re-implemented the basic HMM model of the IMPUTE v1.0,

which uses the pre-defined genetic map information for transi-

tion probability. We will refer to our implementation of the

HMM model in IMPUTE method as IMPUTE*. In our
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modified version, we use the read count for each SNP as input to

IMPUTE* method. The likelihood of read count from genotype

is used as the emission probability for the HMM model. Then

the Viterbi algorithm is used to decode two paths from the ref-

erence panel, which are most likely to generate the read counts in

each SNP. The two paths in reference panel also give the two

predicted haplotypes. Because the latest implementation of

IMPUTE (Howie et al., 2009) is not able to phase, we also

compared our approach with BEAGLE 3.3.2 (Browning and

Browning, 2009), a widely used approach for haplotype phasing

and imputation.
We first use the HapMap dataset to show that haplotype as-

sembly without a reference panel will underperform haplotype

phasing with a reference panel. The main reason is that there are

not enough long reads covering all continuous heterozygous

SNPs. Thus, haplotype assembly cannot do more than random

guess between two continuous heterozygous SNPs if there is no

read spanning them. We can compute a lower bound of the

number of switches for haplotype assembly as K=2 where K is

the number of those gaps, assuming the MEC score to be zero.

For pair-end reads with fixed length 1000bp mean and 100bp

standard deviation, we evaluate our method using six levels of

sequencing coverages: 1�, 2�, 4�, 6�, 8� and 10�. As shown

in Figure 4a, higher coverage does not help haplotype assembly

to achieve similar performance than haplotype phasing methods.

At fixed coverage 4�, we simulated pair-end reads with 1000,

2000, 3000 and 4000bp in each end. As shown in Figure 4b, we

can observe that the lower bound of haplotype assembly achieves

similar performance as haplotype phasing only under the unreal-

istic read length 4000bp. Also, at 4� coverage, we can observe

that our method can improve �44% over BEAGLE and �37%

over IMPUTE in terms of numbers of switches.
For simulated pair-end reads with 1000 bp for each end at 1�

coverage, only 32% reads contain one SNP and �26% of the

reads contain more than three SNPs. On average, every read

contains around 2.8 SNPs. Following the procedure similar to

that of He and Eskin (2013), we divide the chromosome into

overlapping chunks containing 1200 SNPs each and run our

method on each chunk independently. The final haplotypes are

then constructed by stitching together the haplotypes from each

chunk. Chromosome 22 is divided into 36 chunks. The total

error rate for both IMPUTE* and HARSH are shown in

Figure 5. We can observe from the figure that HARSH consist-

ently performs better than IMPUTE* across all 36 chunks. The

average improvement over IMPUTE* is 7.6%. We then conca-

tenated those haplotype chunks by minimizing the mismatches in

the overlap region between two adjacent chunks. After concat-

enation, the overall error rate for HARSH is 4.01% for chromo-

some 22, compared with 4.42% for IMPUTE*. The overall

improvement is 9.3% over IMPUTE*.
We compare HARSH with a previous method for combining

multi-SNP reads with a reference panel, Hap-SeqX (He and

Eskin, 2013). Hap-SeqX is an approximation to the dynamic

programming approach of the Hap-Seq method (He et al.,

2012), which optimizes a similar objective function to HARSH.

Hap-SeqX only searches a fraction of the search space compared

with Hap-Seq by only storing the top values at each state.

However, Hap-SeqX is still an expensive method in both time

and memory usage. In this experiment, we use the default par-

ameters of Hap-SeqX, where t ¼ 0:01 specifies that the algorithm
saves the top 1% of values for each state. On addition, Hap-Seq

and Hap-SeqX, unlike HARSH, can only handle up to three

SNPs in a read and split reads containing more SNPs into mul-

tiple reads. The performance comparisons are shown in Table 1.

HARSH and IMPUTE* have similar running time. HARSH

takes �10 min compared with IMPUTE* 5 min on chromosome

22. Both these methods compare favorably with Hap-SeqX,

which takes 5 h for the same dataset. Cross validation of 60 in-

dividuals would be prohibitive for Hap-SeqX. Thus, we compare

all these three methods using only the first individual in HapMap

dataset. The results averaged more than 36 chunks. We can see

that Hap-SeqX improves by �12.53% from the baseline method

IMPUTE*, and HARSH significantly improves by 21.34% from

IMPUTE*. We conducted significance test (paired-sample t-test)

on the improvement of HARSH over Hap-SeqX and IMPUTE*.

The test results show that HARSH significantly outperforms

both Hap-SeqX and IMPUTE* with P51� 10�3 and

P51� 10�7, respectively. Overall, the comparison shows that

HARSH is the most accurate and practical method among exist-

ing methods.

To fully evaluate the performance of our method, we apply

our method to cases with different coverages and read lengths.

For pair-end reads with fixed length 1000bp mean and 100bp

standard deviation, we evaluate our method using six levels of

sequencing coverages: 1�, 2�, 4�, 6�, 8� and 10�. The result is

shown in Figure 6a. As expected, the performance improvement

of HARSH over BEAGLE and IMPUTE* becomes more sig-

nificant when the coverage increases. The reason we expect this is

that the higher the coverage, the larger number of reads that

(a) (b)

Fig. 4. The number of switches within heterozygous SNPs for haplotype

assembly, BEAGLE, IMPUTE* and HARSH. The number of switches

of haplotype assembly is estimated by the lowest bound. (a) Varying

coverage for fixed read length 1000bp. (b) Varying read length for

fixed coverage 4X

Fig. 5. The error rate for IMPUTE* and our method for each chunk of

length 1200 SNPs in chromosome 22. The error rate consists of both

genotyping error for all SNPs and switch error within heterozygous SNPs
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span multiple SNPs. HARSH is able to take advantage of the

multi-SNP information within those reads but BEAGLE and

IMPUTE* can not take advantage of that. In Table 2, we

show the genotyping and switching error rate of HARSH and

IMPUTE* method for different coverages. It can be observed

that both genotyping error and switching error are significantly

reduced by HARSH over BEAGLE and IMPUTE*. It is also

worth mentioning that 4� seems to be the best choice in terms of

the compromise between the cost of coverage and achieved ac-

curacy. The coverage 4� gives 0.28% genotyping error and

0.62% switching error. However, the improvement of higher

coverage than 4� is limited.

We also evaluate HARSH with different read lengths. At fixed

coverage 4�, we simulated pair-end reads with 1000, 2000, 3000

and 4000bp in each end. The results are shown in Figure 6b. It is

not immediately intuitive why the genotyping error rates for

BEAGLE, IMPUTE* and HARSH increase when the read

length increases. A possible reason is that longer reads for a

fixed coverage result in fewer total reads and larger gaps without

any coverage. In other words, longer reads result in less random

read bits across the chromosome. An extreme example is that the

gapwill be half of the genome on average if the read length is equal

to the genome size and coverage is 1�. Sequentially, larger gap

where no reads cover will potentially harm the imputation and

haplotype phasing accuracy. However, we can still see that the

performance gap between BEAGLE or IMPUTE* and HARSH

is enlargedwhile the read length increases. This is attributed to the

ability of HARSH to leverage the multi-SNP information in

longer reads. In Table 3, we show the improvement of HARSH

over BEAGLE and IMPUTE*. The improvement is basically

from the reduced switching error, which is reduced from 0.62 to

0.48% by HARSH but not by IMPUTE*. The genotyping error

for both methods increases at the same pace because of the larger

gaps caused by longer reads. The error rates for BEAGLE,

IMPUTE* and HARSH increase from 0.59 to 0.79%, from

0.56 to 0.85% and from 0.28 to 0.48%, respectively, when the

read length increases from 1000 to 4000bp. But HARSH consist-

ently performs better thanBEAGLEand IMPUTE evenwhile the

genotyping error rate is increasing.

3.3 1000 Genomes simulations

The 1000 Genomes project is an ongoing project that uses HTS

technology to collect the genetic variant data across many indi-

viduals with the goal of characterizing rare variants, which are not

present in HapMap. This provides us the opportunity to evaluate

our method using simulations that will realistically capture the

distributions of rare variants and more accurately reflect a tubal

performance. We simulate realistic paired end reads, which have

100bp for each end, and a gap size following a normal distribution

with 100 bp mean and standard deviation of 10 bp. Only 22%

reads contain only one SNP and �55% reads contain more

than three SNPs. On average, every read covers around 3.1

SNPs. Following the same settings as what we did for HapMap

data, we test HARSH for different coverages and read lengths.

The results for coverage 1�, 2�, 4�, 8�, 16� and 32� are shown

in Figure 7a. We observe that the error rate does not further drop

after coverage 8�. At coverage 8�, the improvement of HARSH

over IMPUTE* is 29% from 0.021 to 0.015 in terms of error rate.

Thus, for fixed coverage 8�, we simulate pair-end reads with 100,

200, 300 and 400bp in each end. The results are shown in Figure

7b. We observe that, HARSH, unlike IMPUTE*, benefits from

using longer reads, as it contains more multi-SNP reads than

shorter reads. Thus, as expected, the performance gap between

IMPUTE* and HARSH increases as the read length increases.

However, in Figure 7b, we do not see that the error rate increases

when the read length increases as inFigure 6b.A possible reason is

that the SNPs are much denser in 1000 Genomes data than

HapMap data, and we simulated much shorter reads for 1000

Genomes data. Thus, the gap caused by 400bp read length

would be much shorter than previous 4000bp read length for

HapMap dataset. The reference haplotype panel could well take

advantage of Linkage Disequilibrium effect to recover those gaps.

Therefore, the error rate for IMPUTE* keeps almost the same for

different read lengths but our method HARSH reduces the error

rate by incorporatingmore multi-SNP read information when the

read length increases.

Table 2. Genotyping and switching errors (%) for varying coverages on

HapMap dataset

Coverage 1� 2� 4� 6� 8� 10�

Genotyping Error

BEAGLE 4.21 1.94 0.59 0.22 0.10 0.04

IMPUTE* 3.59 1.53 0.56 0.30 0.17 0.12

HARSH 3.42 1.28 0.28 0.08 0.04 0.02

Switching Error

BEAGLE 0.97 1.04 1.05 1.11 1.23 1.23

IMPUTE* 0.82 0.87 0.90 0.94 0.97 0.98

HARSH 0.72 0.67 0.62 0.63 0.65 0.65

Note: Read length is fixed to be 1000bp.

(a) (b)

Fig. 6. Performance of BEAGLE, IMPUTE* and HARSH for varying

coverage and read length on HapMap. (a) Varying coverage for fixed

read length 1000bp. (b) Varying read length for fixed coverage 4X

Table 1. Comparison between IMPUTE*, Hap-SeqX and HARSH on a

HapMap dataset with 1 donor individual, 59 reference individuals and

35 421 SNPs

Methods Error rate (switch, genotyping) Time

IMPUTE* 0.04836 (0.00804, 0.04033) �5min

Hap-SeqX 0.04230 (0.00726, 0.03504) �5h

HARSH 0.03804 (0.00664, 0.03140) �10min

Note: Read length of 1000bp and 1� coverage are simulated.
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4 CONCLUSION AND DISCUSSIONS

Haplotype phasing plays an important role in a wide variety of
genetic applications. Although it is possible to determine haplo-

types using laboratory-based experimental techniques, these
approaches are expensive and time-consuming. Recently,
Kitzman et al. (2011) were able to generate the complete

phased sequence of a Gujarati individual using a Fosmid library.
Unfortunately, this method is not easily scalable to phasing more
than one individual. Thus, the need for a practical computational

method for haplotype phasing remains.
We have presented HARSH, an efficient method that com-

bines multi-SNP read information with reference panels of
haplotypes for improved genotype and haplotype inference in

sequencing data. Unlike previous phasing methods that use
read counts at each SNP as input, our method takes into account
the information from reads spanning multiple SNPs. HARSH is

able to efficiently find the likely haplotypes in terms of the mar-
ginal probability over the genotype data. Using simulations from
HapMap and 1000 Genomes data, we show that our method

achieves superior accuracy than existing approaches with
decreased computational requirements. In addition, we evaluate
our method as function of coverage and read length, showing
that our method continues to improve as read length and cover-

age increases.
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Table 3. Genotyping and switching errors (%) for varying read lengths

on HapMap dataset

Read length 1000bp 2000bp 3000bp 4000bp

Genotyping error

BEAGLE 0.59 0.67 0.74 0.79

IMPUTE* 0.56 0.70 0.77 0.85

HARSH 0.28 0.37 0.40 0.48

Switching error

BEAGLE 1.05 1.10 1.07 1.07

IMPUTE* 0.90 0.93 0.94 0.94

HARSH 0.62 0.57 0.49 0.48

Note: Coverage is fixed to be 4�.

(a) (b)

Fig. 7. Performance of IMPUTE* and HARSH for varying coverage

and read length on 1000 genomes. (a) Varying coverage for fixed read

length 1000bp. (b) Varying read length for fixed coverage 4X
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