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ABSTRACT

Motivation: Deep metagenomic sequencing of biological samples has

the potential to recover otherwise difficult-to-detect microorganisms

and accurately characterize biological samples with limited prior

knowledge of sample contents. Existing metagenomic taxonomic

classification algorithms, however, do not scale well to analyze large

metagenomic datasets, and balancing classification accuracy with

computational efficiency presents a fundamental challenge.

Results: A method is presented to shift computational costs to an off-

line computation by creating a taxonomy/genome index that supports

scalable metagenomic classification. Scalable performance is demon-

strated on real and simulated data to show accurate classification in

the presence of novel organisms on samples that include viruses,

prokaryotes, fungi and protists. Taxonomic classification of the previ-

ously published 150 giga-base Tyrolean Iceman dataset was found to

take520 h on a single node 40 core large memory machine and pro-

vide new insights on the metagenomic contents of the sample.

Availability: Software was implemented in Cþþ and is freely available

at http://sourceforge.net/projects/lmat

Contact: allen99@llnl.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Metagenomics is a powerful tool for assessing the functional and

taxonomic contents in biological samples. Early shotgun meta-

genomics projects used giga-bases of genetic data (Venter et al.,

2004) to demonstrate accurate sample surveys with less bias than

previous methods. The potential to detect even lower abundance

organisms and provide more accurate surveys across a broad

spectrum of biological environments is being advanced now by

sequencers reported to generate up to 1.3 mega-bases per second

(Knight et al., 2012) (Calculated by dividing total base output by

total number of sequencer hours run for the HiSeq 2500 rapid-

run mode. Excludes library and sample preparation time).

Increased sequencing throughput presents a major scaling

challenge to existing shotgun metagenomic classification

algorithms (Drge and McHardy, 2012). The ability for an algo-

rithm to scale can be measured by the difference between sample

classification run time and sequencer run time and assumes suf-

ficient computing resources for each sequencer run. Scaling is

being addressed through the use of larger compute clusters,

which can be managed by a third party service (Cloud comput-

ing) (Schatz et al., 2010). As sequencer use grows, however,

algorithms that run on a single node and scale with sequencer

output could be paired with individual sequencers and eliminate

the need for high bandwidth network connections, which are not

always available.
In this article, we attempt to meet the scaling goal, running fast

and accurate taxonomic sample classification on a single com-

pute node to match analysis throughput with sequencer output.

Two major design choices were made, which present possible

limitations: (i) a larger than typically used single address space

memory resource is exploited (0.5–1 terabytes) and (ii) larger

search seeds are used than default sensitive BLAST settings for

matching reads to a reference database. Relaxing conventional

memory constraints allows a reference genome database to be

annotated with taxonomic information and indexed to support

fast metagenomic taxonomy classification of every sequencer

read for all microbial taxa, including virus, prokaryotes, fungi

and protists. Decreasing memory costs make this approach

accessible to many practitioners because the cost of a single

large memory compute node remains a fraction of the initial

sequencer cost and need not require specialized system adminis-

tration expertise. Large search seed sizes can potentially limit the

ability to detect novel organisms but nonetheless is proving to be

more effective, as the number of microbes with representative

reference genomes grows for environments like the human

microbiome (Martin et al., 2012).
Our goal is to efficiently assign taxonomic labels to the reads

down to the species level for reads with reference representation

and maintain accuracy in the presence of novel organisms by

avoiding overly specific (e.g. species and strain) taxonomic as-

signments. This alleviates the computational bottleneck by limit-

ing the number of unlabeled reads subjected to additional

computational interrogation. The results show comparable or

better accuracy than existing methods, and even with novel gen-

omes in a sample, accurate and scalable classification is obtained

in the vast majority of cases. The methods are made available as

an open source software package, Livermore Metagenomics

Analysis Toolkit (LMAT).* To whom correspondence should be addressed.
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Existing bioinformatic approaches address scalability in three
ways: query size reduction, reference database size reduction and

faster database search. Query size reduction is achieved with

metagenomic assembly and clustering, which merges overlapping

and redundant reads into longer contiguous genomic segments

(Pell et al., 2012). Metagenomic assembly improves the strength

of the taxonomic signal contained in individual short reads but

careful parameter settings are required to avoid mis-assembly,

and assembly costs could remain high (Mende et al., 2012;
Teeling and Glöckner, 2012). Reference database size reduction

is achieved through the use of genetic markers storing only the

more informative sequences (Berendzen et al., 2012; Liu et al.,

2011; Segata et al., 2012). Marker-based approaches offer effi-

cient summarization of metagenomic contents, but only cover a

portion of the query set, leaving novel and other informative

reads buried within the larger pool of unclassified reads, which

could require additional examination (Mohammed et al., 2011).

A less lossy approach reduces sequence redundancy by storing
only the genetic differences among reference genomes. This

approach was shown to speed up BLAST and BLAT genome

database searches (Loh et al., 2012). Faster database search

methods apply larger search seeds, and examples include

BLAT (Sharma et al., 2012), BWA (Davenport et al., 2012)

and other read mapping tools (Martin et al., 2012), but analyzing

the search results remains a challenge with some approaches se-

lecting the lowest common ancestor (LCA) of multiple matches
and others using variants of a best match selection procedure to

improve rank specificity of the reported taxonomic label.

Moreover, parameter settings of the search tools can dramatic-

ally alter the outcome of the reported label and must be

considered carefully (Mande et al., 2012).
Our approach uses faster search using larger seeds (k-mers)

with a non-redundant search of taxonomic identifiers associated

with the k-mers found in the reference genome database. Our k-

mer/taxonomy database supports efficient retrieval of detailed

taxonomic information and allows for an exhaustive comparison

between competing taxonomic assignments using a novel rank-

flexible classification procedure. Our new classification algorithm
invokes variants of LCA and best match selection depending on

the context of the search results. The approach differs from com-

positional binning methods (Leung et al., 2011), as it uses larger

values for k (17–20) and, unlike alignment search, each k-mer is

mapped to the individual source genomes minus the genome

position. The method compensates for the lack of positional

information by resolving the multiple k-mer/taxonomy associ-

ations recovered during search to assign each read the most
rank-specific taxonomy identifier possible.

2 MATERIALS AND METHODS

2.1 k-mer/taxonomy database

A reference genome database consists of a collection of genome sequences

with each genome sequence assigned a taxonomic identifier. The first step

is to convert this ‘raw’ reference genome database into a searchable

k-mer/taxonomy database by storing every overlapping k-mer along

with select taxonomic IDs. A reference database was constructed from

complete and partial microbial genome sequences from the NCBI

genome database on October 17, 2011. The ‘raw’ genome database

included 301935 distinct genomic segments (plasmids, chromosomes

and other genomic segments) and contains 67073 viral, 4366 bacterial

and 236 archaea segments. The remaining segments are shared among

draft eukaryotic microbial genomes that were included as assemblies with

many contigs and supplementary mitochondrial genomes from eukary-

otes. The reference set includes 1272 bacterial species, 121 archaeal spe-

cies, 3048 viral species and 335 eukaryotic species. Microbial genome

segments range in length from a small number of single read contigs of

length less than 100 bases up to a 13033 779-base chromosome

(for Sorangium cellulosum).

Taxonomic IDs represent nodes in the taxonomy tree and cover all

ranks from an individual genome or strain up to the highest order do-

mains. Figure 1 shows an example representation for the searchable data-

base. As input, database construction requires (i) an NCBI taxonomy

tree, (ii) a reference genome sequence database and (iii) mappings be-

tween the genome sequence identifiers and taxonomy identifiers from

the taxonomy tree. Then, all overlapping k-mers from the genome data-

base are computed, and the LCA for the taxonomic IDs for each k-mer is

identified. Finally, a post-order tree traversal up to the LCA counts the

number of genomes that contain the k-mer for each taxonomy node in

the traversal. Our initial expectation was to use k-mer counts to weigh

each k-mer’s contribution to a candidate taxonomic label assignment.

However, the weighting procedure was found to be sensitive to genome

representation bias and therefore a binary scoring scheme was chosen

(see Fig. 2).

In our experiments, we use a ‘full’ k-mer/taxonomy database (kFull)

and a smaller database built from a ‘marker library’ (kML). A marker

library contains the most taxonomically informative set of k-mers present

in the raw genome database. The marker library is created by separating

k-mers into disjoint groups. A k-mer is in exactly one group. Each group

has a unique label, which consists of the names of all genomes (or more

generally, sequences including genome, plasmid, segment or chromo-

some) that contain the k-mers in the group. For example, k-mers that

occur in exactly the genomes A, B and C are in one group ‘A, B, C’,

k-mers that occur only in genomes B and C are another group ‘B, C’ and

k-mers in genomes A, C and D are a third group ‘A, C, D’. As a more

concrete example, suppose k-mer1 is present in Yersinia pestis KIM,

Y.pestis CO92 and Yersinia pseudotuberculosis IP32953. k-mer2 is present

in Y.pestis CO92 and Y.pseudotuberculosis IP32953. Both k-mers have the

LCA of Yersinia, but in building the marker library, they are in two

separate groups based on the exact set of genomes that contain the

k-mer: k-mer1’s group is labeled ‘Y.pestis KIM, Y.pestis CO92,

Y.pseudotuberculosis IP32953’, and k-mer2’s group is labeled ‘Y.pestis

CO92,Y.pseudotuberculosis IP32953’. All the k-mers in groups containing

more than 1000k-mers are included in the marker library. So, if there are

Fig. 1. Example k-mer/taxonomy database. Input includes the taxonomy

tree with interior tree nodes n1, :::, n5, and leaf node genomes ðG1, :::,G7Þ,

all of which are labeled with taxonomy IDs. k-mers (k-mer1, k-mer2,

k-mer3) are linked to their source genomes (dotted circles) and their

taxonomy hierarchy up to the LCA

2254

S.K.Ames et al.

;
Mende et
al.,
2012
Marker 
employs
lowest common ancestor
-
rank 
'
'
,
,
,
,
,
,
,
,
D
 as input
1
2
,
3
lowest common ancestor (
)
which 
``
''
``
''
,
,
``
,
''
``
,
''
,
``
.
''
 and
Yersinia 
Yersinia 
Yersinia 
``
Yersinia 
Yersinia 
Yersinia 
''
``
Yersinia 
Yersinia 
.
''


1000k-mers in k-mer1’s group, then all those k-mers go into the marker

library. If there are 999k-mers in k-mer2’s group, then none of those k-

mers go into the marker library. k-mers whose LCA is above the taxo-

nomic rank of family are not included in the marker library. A k-mer/

taxonomy database is created from the marker library’s set of k-mers.

2.2 Scoring a read’s taxonomic IDs

In the k-mer/taxonomy database, each k-mer of length k is associated

with a list of taxonomic IDs as outlined in Section 2.1. The first step of

determining a taxonomy ID for a read from the query set is to assign a

score to each taxonomy ID of each k-mer in the read. The score is derived

from the proportion of k-mers of the read that occurs under that tax-

onomy node normalized by the proportion of k-mers of a random read

that also appears under that taxonomy node.

To illustrate the details of the scoring algorithm, the example in

Figure 2 shows a query read with three k-mers. The tax IDs of the

read’s constituent k-mers are retrieved from the k-mer/taxonomy data-

base. For each read s of length l, a binary classification table C of size

K� T is constructed, in which the K rows represent the k-mers retrieved

from the read and the T columns represent candidate taxonomic IDs

(k-mers are stored in the database in canonical order removing strand

specificity. Only canonically ordered k-mers are used to query the data-

base.). A ‘1’ entry indicates the tax ID (column) belongs to the associated

k-mer (row). For each tax ID j, the proportion of k-mers having that tax

ID is computed (shown in Fig. 2 in the last row): Pj ¼
PK

i¼0 Ci, j=K. In the

example, P2 ¼ 0:67 for genome G2.

The scoring method uses a random model to limit genome represen-

tation bias in the database and avoid assigning taxonomic labels by

random chance when a novel organism is not represented in the reference

database. The score Sj of read s for a taxonomic ID j is defined as

Sj ¼ logðPj=PRjÞ, where PRj represents the proportion of k-mers asso-

ciated with taxonomy ID j in the random model. The random model

estimates PRj, the chance of assigning a read of length l to taxonomy

ID j owing to random chance (for simplicity the random score is not

shown in Fig. 2). The randommodel is precomputed for read length l and

assumes a random nucleotide composition, which can optionally sample

explicitly from a range of GC content values. Reads are randomly gen-

erated, and then are searched against the database to calculate a Pj value

for each random read r and observed taxonomy ID j. PRj is set to the

maximum observed value PRj ¼ maxrðP
ðrÞ
j Þ. Further details of random

model construction are included in the Supplementary Material.

2.3 Rank-flexible read classification

Taxonomy classification combines LCA selection with the read label

score evaluation. Candidate labels are examined in order by decreasing

read label score as shown in Figure 3 (for illustration, the numerator of

the read label score Pj is shown). The most specific taxonomic label is

selected such that no other taxonomic label from a conflicting lineage has

a comparable read label score. Comparable is defined as a score within

one standard deviation of the best candidate using the read label score

distribution for the read. The best candidate is found using the taxonomic

lineage from the highest scoring taxonomy label. The path from the high-

est scoring node to the LCA is created (LCAs for individual k-mers

identified off-line are used as a starting point to find the LCA for all

retrieved k-mers online, which in some cases can reduce run time costs)

and each subsequent label is evaluated for consistency with the lineage.

When conflicting labels are encountered, the lineage is pruned further up

the tree to resolve the conflict. In the example shown in Figure 3, the

lineage from G1 to the LCA n5 is constructed first. When G3 is examined,

it is identified as conflicting with G1 and the candidate lineage is pruned

to node n1. The process continues until the ninth label is encountered

(G7, 0:33), which for the purpose of illustration has a score below the

threshold of comparable scores. The classification procedure terminates

with the read assigned label n3.

Classifications are divided into categories. The ‘LCA Match’ category

means the LCA has a lower read label score but there are multiple con-

flicting labels with higher comparable read label score. This is the trad-

itional LCA assignment algorithm (Huson et al., 2007) where multiple

significant matches from competing lineages are found. The ‘Direct

Match’ category means the classification reflects matches to the tax-

onomy without a conflicting lineage but the classification could be

from any rank, including strain, species, genus or higher. Higher order

Fig. 2. Example scoring procedure. The query read is converted to

k-mers (k-mer1, k-mer2, k-mer3), and their associated taxonomy infor-

mation retrieved from the database. A classification table is created with

columns for candidate taxonomic IDs and rows representing a specific

k-mer, with a binary entry reporting the presence or absence of the k-mer

in some genome associated with the taxonomic node. The last row shows

k-mer row sum divided by the total number of k-mer rows. The under-

lined entries highlight nodes that are created at run time

Fig. 3. Label selection process. The list of candidate taxonomic labels

ordered 1 through 9 is sorted by label score (G1,1.0), . . . ,(G7,0.33).

Steps 1, 2, 6 and 9 where an action is performed are shown. At step 1,

the taxonomy lineage is constructed from the best first label G1. Step 2,

G3 conflicts with G1 and the lineage is pruned to n1. Step 6, G4 conflicts

with n1 and the lineage is pruned to n3. For demonstration at step 9,

score 0.33 for the G7 label is below threshold and the procedure termin-

ates and returns n3 as the classification
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rank assignments in the Direct Match category imply that the read label

score for lower rank assignments were below the comparable score

threshold and suggest sequence novelty in the classified sequence.

‘Novel Match’ is reported when multiple child nodes from competing

lineages have comparable read label scores above the threshold but the

LCA has a higher read label score. This indicates novelty in the query

read and could occur when a substantial subset of the read’s k-mers are

found in competing lineages, but the combination of k-mers observed at

the LCA node is more significant.

2.4 Database ingest

A key feature of our approach is to store the k-mer/taxonomy database in

a file rather than build it anew for each query run; this permits shifting

computational costs to the off-line taxonomy/genome ingest phase. The

database is created once, and then is used repeatedly during classification.

To enable database search during classification, the file is mapped into

the memory address space of the classification program, allowing k-mers

and associated taxonomy IDs to be accessed directly. Previous work at

Lawrence Livermore National Laboratory (LLNL) has modified the

Jemalloc memory management library (Evans, 2006) to enable memory

allocation from an address range memory-mapped to a file residing on a

storage device. Jemalloc is a drop-in replacement for regular malloc rou-

tines for allocating memory. Our modification to Jemalloc allows for an

additional step to specify the database filename (Jemalloc memory-maps

to temporary files). We have chosen to use the memory-map file ap-

proach rather than implementing an out-of-core indexing algorithm be-

cause of the ease of programming using the memory-map abstraction for

the persistent storage of data structures. We place the memory-mapped

files onto a ramdisk for in-memory performance. An ingest utility creates

the database, which includes a hash table whose keys are k-mers and

values are sets of taxonomy identifiers.

Supplementary Table S2 shows numbers of k-mers present and the

total storage required for several of the databases. The current default

settings use 619 GB (kFull) and 39 GB (kML). The databases use 6 bytes

per taxon, including genome counts information. We found that these

counts are extraneous information and only 2 bytes per taxon identifier

are required. Using 2 bytes per taxon allows for 65 566 distinct taxa

(the current database has 18 498 distinct taxa). Future work is expected

to reduce the database size to 413 GB (kFull) and 26 GB (kML). The

ingest pipeline for the full database took �17 h using up to 256 2.3 GHz

Advanced Micro Devices (AMD) compute nodes each with 32 GB run-

ning single-threaded tasks that dumped intermediate results to files in the

parallel file system.

2.5 Test data

To compare performance with existing state-of-the-art published tools,

accuracy was compared with PhymmBL (Brady and Salzberg, 2011),

MetaPhlAn (Segata et al., 2012) and Genometa (Davenport et al.,

2012). PhymmBL balances classifying known species with classifying

novel organisms but uses BLAST, which does not scale well with sequen-

cer output (Angiuoli et al., 2011). MetaPhlAn uses a small marker library

making it scalable but it does not attempt to label every read. It is also

optimized to do relative abundance estimation, which LMAT currently

does not do. Genometa replaces BLAST with a potentially faster search

algorithm (Bowtie2 or BWA) and attempts to assign a taxonomic label to

every read. Ideally, the same reference database would be used for all

programs. However, adapting our database to work with Genometa and

PhymmBL required significant customization and was not technically

feasible with MetaPhlAn. Therefore, the existing reference database of

each tool was used. The Genometa database is the oldest database

created in 2010, our reference database was created in fall 2011, and

PhymmBL and MetaPhlAn use databases created in mid 2012. The pub-

lished PhymmBL dataset that uses a read length of 100 was chosen as the

test query dataset. As the test data were created before each reference

database was created, the query species should be present in each refer-

ence database.

Three additional simulated test query sets were used to evaluate the

accuracy of our method in the presence of query sequences absent from

the reference database for viruses, prokaryotes and eukaryotes (fungi and

protists). MetaSim was used with a 100 bp (Barthelson et al., 2011) and

80 bp (Richter et al., 2008) Illumina error model to generate the novel

bacterial and viral dataset, respectively. Eukaryotes were taken from

single species sequencing data deposited in the Short Read Archive

(SRA) and include Trypanosoma evansi, Candida albicans, Coccidioides

immitis, Aspergillus fumigatus and Entamoeba histolytica (read lengths

ranged from 36 to 200). For the bacterial dataset, 100 sequences not

found in the reference database (determined by GenBank Identifier and

header comparison) were selected at random to serve as the candidate test

set with 1 000 000 simulated reads and equal concentrations of the 100

bacteria. The 100 strains were made up of 75 distinct species, 14 of which

were species not found in our reference database. For the viral case, 6921

reads were generated, assuming equal concentrations of 25 viral genomes,

which made up 25 distinct species, 10 of which were not found in the

reference database. Not every test sequence in the ‘novel’ datasets proved

to be divergent from the reference database. A detailed description of the

test data is given in the Supplementary Material. To measure run time,

three non-synthetic metagenomic samples representing a viral metagen-

ome (SRX022172), a human microbiome metagenome (ERR011121) and

a single species raw read ‘metagenome’ (DRR000184) were taken from

the SRA.

3 RESULTS

3.1 Classification accuracy

Read accuracy is reported by counting the number of reads cor-

rectly assigned to a taxonomic label consistent with its true

origin. For example, a read originating from Bacillus anthracis,

but assigned to Bacillus would be counted as correct at the genus

rank. Read accuracy is tracked for each taxonomy rank to com-

pare accuracy with rank specificity. Sample accuracy is reported

for true-positive and false-positive counts on species calls. This

introduces one free parameter, which is not automatically

selected—minimum number of reads needed to make a species

call (or minimum species abundance for MetaPhlAn). Results

for all programs are reported as performance curves to iden-

tify the trade-offs of reducing the false-positive count with

increased thresholds while potentially reducing the true-positive

count.
Figure 4 shows the true-positive/false-positive performance

curve for different minimum read thresholds compared with

the other contemporary methods and our own reduced size

marker library (kML) and full-sized library (kFull). Values for

k¼ 20 (kFull) and k¼ 18 (kML) were used as default values

(accuracy comparisons for different values for k are shown in

Supplementary Figure S1). LMAT-kFull and LMAT-kML

showed near identical accuracy, with the full-sized database cor-

rectly detecting a small number of additional species.

Genometa’s advantage over PhymmBL could be explained by

its stricter read mapping criteria, which favors detection of

known genomes. Although we were able to recreate higher per-

formance runs for MetaPhlAn on their previously published test

sets, MetaPhlAn’s lower performance on the PhymmBL test sug-

gests that it may be more difficult to do both taxonomic
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identification and relative abundance estimation when microbial

content consists exclusively of exceptionally low per genome

coverage. (The PhymmBL test set contains just 50 reads per

genome and includes multiple closely related strains.)
Table 1 shows the percentage of PhymmBL input set reads

correctly labeled for select ranks and reads that were incorrectly

labeled or failed to be assigned a label. The table shows that the

majority of reads labeled by LMAT using the kFull database are

identified by species (74.2% for the full database) with high ac-

curacy (499%). When LMAT used our marker library (LMAT-

kML), fewer reads (40%) were classified but the assignments

were highly accurate (499%). Although PhymmBL can poten-

tially make rank flexible selections using the confidence scores

assigned to different rank levels, we were not able to implement

an automated threshold that demonstrated good results.

Therefore, we report observed species accuracy calls as well as

PhymmBL’s published results, which are slightly higher.

Genometa’s accuracy was lower than other methods with fewer

reads assigned species labels. This is likely because of its use of a

best hit approach instead of rank-flexible selection. (MetaPhlAn

does not report read-specific labels, thus it is excluded from the

table.) Our method using the full database could not assign spe-

cies-specific labels to 25.8% of the reads; 8.5% of the reads were

assigned labels with ranks at the genus, family and order levels;

6.9% and 3.1% of the reads not listed in Table 1 were correctly

assigned labels at other ranks (e.g. kingdom, sub-species, class

etc.) for the kFull and kML databases, respectively. The high

overall LMAT accuracy is explained by the rank-flexible selec-

tion, where low rank assignments are only made in the absence of

conflicting evidence, with the read label score filtering out an

additional 10% of the reads, thus leaving just 0.3% of the

reads with an incorrect assignment.
One key challenge is to maintain accuracy in the presence of

novel genomes by preventing overly specific rank calls. Because it

proved to be challenging to manipulate the other publicly avail-

able software tools to use our reference database particularly in

the case of the viral and eukaryote test sets, it was not possible to

directly compare results. Instead, we evaluate our two data-

bases—kFull and kML. Figure 5 shows the species sample

accuracy curve for our method on the three datasets (virus, bac-

teria and eukaryotes), which include novel organisms. The

number of test species that are also represented in our reference

database were 15, 61 and 4 for the viruses, prokaryotes and eu-

karyotes, respectively, and indicate the practical upper bound on

the number of correctly identifiable species. For the novel viral

case, approximately 1� coverage was used for each viral genome.

With this relatively good coverage level, although only 14 of the

15 known viral species were correctly called, no false species calls

were made. For the bacteria case, 0.35� coverage was used, and

the eukaryote case used 470 779 reads chosen at random to simu-

late low coverage.
In eukaryote and prokaryote cases, the false-positive count

was extremely low but not perfect. In the eukaryote case, the

T.evansi not in our reference database was classified

Trypanosoma brucei and it appears that significant portions of

these two genomes are highly similar, making the distinction

difficult. The kML eukaryotic results are expected to improve

as more microbial eukaryotic genomes are sequenced to allow for

better targeting of markers that discriminate between near neigh-

bors. For bacteria, there were two false-positive species calls,

Mycobacterium abscessus and Rahnella sp. Y9602, which share

significant portions of their genomes with the novel species

Table 1. Per read accuracy for known bacteria shown in percentages

Application Database Species Genus Family Order Wrong No label No hits

LMAT kFull 74.2 (99.7) 6.7 (99.9) 1.4 (100) 0.4 (100) 0.3 10.1 0

LMAT kML 40.4 (99.8) 4.1 (99.9) 0.8 (100) 0.1 (100) 0.2 51.3 17.7

PhymmBL Published – (95.4) – – – 4.6 – –

PhymmBL GenBank 88.3 (92.5) – – – 7.5 11.7 –

Genometa Published 66.7 (92.2) – – – 7.8 33.3 –

Note: Per rank accuracy shows two values—percentage of all reads correctly labeled by rank (species, genus, family or order) or incorrectly labeled (Wrong) or failed to be

assigned a label (No label and No hits). In parentheses shows percentage of reads assigned a label at the specified rank that were correct. No label¼ reads with no

taxonomically informative label assigned and includes No hits, No hits¼ reads with no k-mer matches to the database. –¼ entry not applicable.

Fig. 4. Species-level accuracy comparing reference databases/algorithms’

performance on PhymmBL query set. Classifier performance is shown

using the full database (LMAT-kFull), and a marker database (LMAT-

kML), and is compared with other software, Genometa, PhymmBL and

MetaPhlAn. LMAT-kFULL performance is underneath the LMAT-

kML plot, highlighting similar performance
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coming from the same genus (Ranunculus aquatilis,

Mycobacterium chubuense and Mycobacterium massiliense).

When the species accuracy dropped, the genus calls remained

highly accurate (�99% for eukaryotes and prokaryotes). For

these cases, we hypothesize that future work using relative

counts of genus and species calls compared with no call counts

could automatically differentiate the presence of a novel species

from a known species match. Supplementary Table S1 shows

high accuracy at the individual read level.

3.2 Speed performance

Run time of our classifier is compared with MetaPhlAn as an

existing scalable metagenomic classifier using the marker library
approach. Additional comparisons were made with the search

tool Bowtie2 (Langmead et al., 2009) and blastn. It is noteworthy

that these mapping tools (Bowtie2 and BLAST in Fig. 6) do not

perform classification, and tools such as PhymmBL and

Genometa would have to be run on the mapped reads, which

might increase total run time (considering appropriately balan-

cing run time and accuracy trade-offs). Nonetheless, if our meth-

ods are comparable in speed with raw search times, they should

present a distinct advantage. Measurements were conducted on a

single node large memory machine, a quad-CPU Intel Westmere

(10 core per CPU) with 1 TB of DRAM, running linux kernel

2.6.32.
Figure 6 shows efficiency measured by run time normalized by

the percentage of reads that are mapped to the database.

Supplementary Section 3 shows the raw run times and percent-

ages of matched or labeled reads for each search tool. Using the

mapped rate helped identify cases where a method’s speed could

partly be explained by labeling fewer reads. Using the mapped or

labeled rate efficiency metric, the results show that LMAT speed

compares favorably on all datasets to the other tools. The closest

performance to LMAT with the kFull database for mapped or

labeled reads is Bowtie2 using the SRX dataset, in which LMAT

was 30% faster. Across all three sets, LMAT performs on

average 6:8� faster than Bowtie2 and 16:5� faster than

BLAST. Using the kML database and normalized for the per-

centage of reads mapped, LMAT performs on average 24�

faster than Bowtie2 and 72� faster than BLAST. The BLAST

results shown in Figure 6 use a search seed size of 28 (the

current default setting) and are thus tuned for speed.

PhymmBL version 3.2 uses a more sensitive search seed size

of 11, which is more computationally costly. PhymmBL jobs

did not complete within 48 h on the smallest timing dataset

(using 80 threads) underscoring our expectation that BLAST-

based approaches with the smaller search seed size do not

scale for this problem.
Most surprising were the gut metagenome (ERR) observa-

tions, where the full database run with LMAT was faster than

MetaPhlAn, despite the fact that the MetaPhlAn reference data-

base is a reduced set of bacterial genes. This may be explained by

a larger percentage of the k-mers mapping to fewer candidate

taxonomic labels, as this is the primary run time cost associated

with LMAT classification and could provide a speedup

advantage over even fast alignment-based searches using

Bowtie2. The other primary driver of performance is reflected

by the difference in raw run time versus fractions of reads labeled

or mapped.
Although we observe raw search output from Bowtie2 runs at

a slightly higher rate for the ERR sample (see Supplementary

Section 3), it only mapped 34.3% of the reads in contrast with

the LMAT classifier, which assigns a label to 85.6% of the reads

in the sample. For the Bowtie2 parameter settings, both ‘sensi-

tive-local’ and ‘very-sensitive-local’ were considered and the

faster time was reported. A key drawback of this parameter

setting is it reports only the top three hits, which boosts speed

but could result in overly specific species calls. Although LMAT

run time depends on the sample, the observed performance rate

was close to the target rate of 1.3 Mbp/s (1.34 Mbp/s on aver-

age). Thus, LMAT’s classification rate scaled well with sequencer

output.
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Fig. 5. Classification accuracy when novel genomes are included in the input sets. The two database types are considered Full (kFull) and the marker

library (kML). Left panel shows performance for simulated viral metagenomes with 25 total species and 10 novel genomes. Middle panel shows 75 total

species including 14 novel genomes and right panel shows 5 protist/fungi with one 1 novel genome included. x-axis counts the number of species reported

that are not present (False Positives) and the y-axis counts the number of true species present that are reported (True Positives). The performance curve

reflects 300 different threshold values for minimum number of labeled reads required to make a species call
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3.3 Application to a large metagenome

To confirm LMAT’s ability to analyze large (real) metagenomes

and provide new biological insight, we downloaded the Tyrolean

Iceman sequence data (Keller et al., 2012) from the SRA, which

constituted 150 giga-bases of raw genomic data. While 78% of

the sequenced reads were reported to be human, only a small

percentage (0.84%) of the reads was reported to originate from

bacteria based on a sample of 8 million reads. Our hypothesis

was that LMAT could examine all the reads on a single large

memory compute node and efficiently provide a more complete

analysis of the microbial contents. For this application, the

human genome (v19) was added to LMAT’s database to classify

human and microbial reads simultaneously. The analysis on the

raw 150 giga-base dataset (2.3 billion reads) ran in520h on our

single node large memory computer (see SupplementaryMaterial

for additional details). LMAT output agreed with the published

finding that the vast majority of bacteria were from the phylum

Firmicutes and under the class of Clostridia. Similarly, only a

small fraction of reads were reported to be from the

Spirochaetes phylum. LMAT results did not show evidence for

the presence for non-phage, non-retroviral viruses, fungi or pro-

tists after adjusting for previously unidentified human contam-

ination in draft eukaryote genomes present in the LMAT

reference database. The key observed difference was in the

Borrelia species previously reported to be the first documented

case of Lyme disease in humans. Although LMAT’s findings

support the presence of the Borrelia genus with 16180 reads as-

signed a read label score greater than 0, a more complex rela-

tionship is shown between the new Borrelia sequence and

previously sequenced Borrelia genomes. Although Borrelia burg-

dorferi was previously reported to be the likely species present,

LMAT shows that among the reads assigned to the Borrelia

genus, the majority of the reads are assigned to non–species-spe-

cific genomic regions with species-specific reads assigned to

several Borrelia species, including B.burgdorferi, Borrelia garinii

and others. The Borellia reads were compared against all

sequenced Borrelia genomes to compute an SNP-based genetic

distance matrix. The phylogenetic tree given in Supplementary

Figure S10 supports LMAT’s finding that the Borrelia variant is

divergent from B.burgdorferi.

4 DISCUSSION

LMAT leverages large single address space memory to efficiently

and accurately assign taxonomic labels to individual reads in

large metagenomic datasets even in the presence of novel organ-

isms. Although the classification method is highly automated,

attention to three parameters should be highlighted: minimum

read label score, minimum difference between the best selected

read label score and the competing alternatives and maximum

number of taxonomic labels retrieved per k-mer. Although the

first two parameter settings were preset early in the development

stage, application to the Tyrolean Iceman dataset required re-

visiting these parameters. The data featured especially short

reads (as short as 25 nt), degraded DNA, likely leading to

lower quality scores and higher error rates and substantial

human ‘contamination’ with respect to analyzing the microbial

contents. As a result, the default read label threshold needed to

be lowered from 1 to 0 to avoid ignoring a larger fraction of the

reads. Interestingly, 25 nt length reads classified as human were

assigned a read label score of 0 but could still be classified as

human when no competing alternatives were found. However, if

the sample came from a truly unknown source, the 25 nt reads

with read label scores near 0 would require additional validation.

The minimum difference threshold also needed to be increased

when a large percentage of reads were initially classified as

Toxoplasma gondii. On further examination, the matches identi-

fied human contamination in the genomes from LMAT’s refer-

ence database. Ideally, these reads would be classified as

‘superkingdom Eukaryota’ on the first pass (identified as both

human and T.gondii). The random model, however, led to a

slightly lower score for the human label compared with equiva-

lent T.gondii label. Thus, while default parameter settings should

be acceptable for many analysis cases, there may be conditions

Fig. 6. Run time performance. Tests run on three real metagenomic datasets SRX, DRR and ERR. Run times are shown for the metagenomic classifiers

(LMAT-kFull, LMAT-kML andMetaPhlAn using Bowtie2 for read mapping and its reference database) and simple sequence searches for Bowtie2 and

blastn (BLAST) using the same full reference genomes found in kFull. We report run time normalized to the percentage of mapped or labeled reads.

Note log scale on y-axis; values given within each bar
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where awareness of these parameter settings is needed. The final
user-defined parameter setting limits the number of candidate
taxonomy identifier considered and was set to 50 early on to
ensure efficient run times with the understanding that accuracy

costs are incurred for genetic fragments associated with a com-
plex taxonomic hierarchy. LMAT’s fast run times allow the soft-
ware to be run initially with default settings and quickly rerun on

targeted subsets of reads as needed.
The reported LMAT tests focus on identifying known

organisms in complex samples, which the results show still

presents a major challenge. The use of relatively short reads
(25–100 bases) indicate that even known sequences can be diffi-
cult to taxonomically classify when they represent short genetic

elements conserved among multiple taxa. LMAT analysis on
human clinical samples exhibits a high read label rate allowing
the much smaller pool of unlabeled reads to be interrogated for
more distant evolutionary relationships with other tools. For

some environmental samples, more of the microbial contents
are expected to be highly divergent from the reference database
and populated with greater amounts of non-microbial eukaryotic

DNA. In these cases lower, rates of read labeling are obtained.
The Supplementary Material shows the high scoring read label
rates (score �1) for four different environmental samples range

from 10 to 60%, but relaxing the default minimum read label
score threshold increases the read label rate to450% in all cases.
We find that the species identified by reads with low scores are
frequently the same as those identified by high confidence, high

scoring reads. One can pull out additional lower scoring reads for
taxa that are likely present as indicated by the higher scoring
reads, thus diminishing the fraction of unclassified reads. The

flexibility of adjusting the score threshold without rerunning
the whole analysis enables LMAT to rapidly screen large
environmental datasets and obtain a large fraction of labeled

reads.
Although the full library should be fast enough to run on large

metagenomes, marker libraries still have a speed advantage.

Recently published marker library approaches like MetaPhlAn
rely on bacterial marker genes, which cannot be applied directly
to other microbial contents. Other marker libraries like Sequedex
(Berendzen et al., 2012) rely on an individual marker sequence to

contain the taxonomic signal in a single contiguous genetic elem-
ent. By contrast, our method resolves the taxonomic signal
across the entire read with a scoring procedure. Individual

k-mers may contain part of the signal with the intersection of
taxonomic labels from multiple k-mers yielding a stronger signal,
and thus accuracy should improve with sequencer read length.

The reference database size is a function of genetic and taxo-
nomic diversity allowing near neighbors to be added with only
a limited increase in the database size. As the number of neighbor
strains increase, strain level discrimination run time costs grow.

Although our method reports strain level discrimination, accur-
acy was measured at the species level because minimum genome
coverage affects accuracy and the available synthetic test sets

focus on species discrimination. Future work will include design-
ing better strain discrimination tests and expand the database to
include functional annotation.
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