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ABSTRACT

Motivation: Logic modeling is a useful tool to study signal transduc-

tion across multiple pathways. Logic models can be generated by

training a network containing the prior knowledge to phospho-prote-

omics data. The training can be performed using stochastic optimiza-

tion procedures, but these are unable to guarantee a global optima or

to report the complete family of feasible models. This, however, is

essential to provide precise insight in the mechanisms underlaying

signal transduction and generate reliable predictions.

Results: We propose the use of Answer Set Programming to explore

exhaustively the space of feasible logic models. Toward this end, we

have developed caspo, an open-source Python package that provides

a powerful platform to learn and characterize logic models by lever-

aging the rich modeling language and solving technologies of Answer

Set Programming. We illustrate the usefulness of caspo by revisiting a

model of pro-growth and inflammatory pathways in liver cells. We

show that, if experimental error is taken into account, there are thou-

sands (11 700) of models compatible with the data. Despite the large

number, we can extract structural features from the models, such as

links that are always (or never) present or modules that appear in a

mutual exclusive fashion. To further characterize this family of models,

we investigate the input–output behavior of the models. We find 91

behaviors across the 11 700 models and we suggest new experiments

to discriminate among them. Our results underscore the importance of

characterizing in a global and exhaustive manner the family of feasible

models, with important implications for experimental design.
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1 INTRODUCTION

Predictive models of biological networks are a main component
of systems biology. For a certain system of interest, if enough

information is available about the biomolecules that constitute it

and their interactions, one can convert this prior knowledge into

a mathematical model (e.g. a set of differential equations or logic

rules) that can be simulated. If experimental data are available,

the model can be fitted (trained) to the data. That is, one deter-

mines the model parameters (for example, kinetic constants in a

biochemical model) to obtain the most plausible model given the

data. This is normally achieved by defining an objective function

that describes the goodness of the model based on the data that is

subsequently optimized (Banga, 2008).

This training process is not a trivial task owing to factors

including experimental error, limitations in the amount of data

available, incompleteness of our prior knowledge and inherent

mathematical properties of the models. Thus, in general, there is

no single solution but rather multiple models that describe the

data equally (or similarly) well. In those cases, the model is said

to be non-identifiable (Kreutz and Timmer, 2009; Walter and

Pronzato, 1996).
In some cases, deterministic methods that guarantee the iden-

tification of the optimal models can be applied, but these meth-

ods are often limited by the exponential growth of the search

space. Thus, usually one needs to use stochastic methods that

may identify the optimum or at least exhibit suboptimal models

(Banga, 2008). However, an incomplete characterization of the

set of plausible models limits significantly the insight that can be

gained about the underlying molecular mechanisms.
In this article, we investigate this issue in the context of logic

modeling of signaling networks. These models have been applied

recently to analyze signal transduction in a variety of contexts

(Calzone et al., 2010; Wang et al., 2012). In particular, given a

network encoding our knowledge of signal transduction and a

dataset measuring the activation of proteins in this network on

various perturbations, one can derive from the network

(Boolean) logic models fitted to the data. Models are simulated

assuming that the network reaches a pseudo steady state at a

certain time on stimulation, and the identification of the network

that best fits the data is posed as an optimization problem. This

problem can be solved using meta-heuristics (e.g. a genetic algo-

rithm), and their application suggests that there are multiple al-

ternative models that explain the data (Saez-Rodriguez et al.,

2009). However, stochastic search methods cannot characterize

the models precisely: they are intrinsically unable not just to
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provide a complete set of solutions, but also to guarantee that an

optimal solution is found. To overcome this limitation,

approaches based on Integer Linear Programming (ILP)

(Mitsos et al., 2009; Sharan and Karp, 2012) and Answer Set

Programming (ASP) (Videla et al., 2012) have been applied,

providing a proof of concept that a global optimum can be

identified.

Here we present caspo, a free open-source tool to learn

(Boolean) logic models of signal transduction in a complete

and global fashion. caspo uses CellNOpt pre- and post-process-

ing routines [Terfve et al. (2012)]. It can handle feedback loops in

the prior knowledge network (PKN), numerical datasets and

tolerance in the score owing to experimental uncertainty. We

use caspo to exhaustively explore the space of optimal and

suboptimal models for a real case describing pro-growth and

inflammatory pathways in a liver cancer cell. We find that,

even with small tolerance, thousands of models can be compat-

ible with the data and use ASP’s flexibility to further analyze

them: we categorize them according to their input–output behav-

ior and identify subsets of modules that are interchangeable with

respect to the score. The multiple possible combinations of these

modules are responsible for the large number of models found.

2 METHODS

2.1 Learning Boolean logic models

Our prior knowledge about signal transduction can be described as a set

of causal interactions among the biomolecules involved (mostly proteins)

that can be mathematically formulated as a signed and directed graph.

We call this graph the PKN. In such a graph, one can denote as input

nodes those that can be stimulated or inhibited experimentally. When the

system is perturbed by fixing the state of such nodes, one can measure the

activity of each output node being observed. Such measurements are typ-

ically given by phospho-proteomics datasets consisting of measurements

over m proteins under n experimental conditions. With �ij 2 ½0, 1�, we

denote the activity of a protein j under the experimental condition i,

where 0 � i � n and 0 � j � m. In agreement with experimental errors,

we used a discretization procedure so that �ij 2 f0,
1
100 , . . . , 99

100 , 1g.

The state of nodes after a perturbation of the system cannot be pre-

dicted using only graph theory. However, a simple framework is given by

Boolean logic models (Klamt et al., 2006). In a logic model, activation of

nodes is defined by a set of operators. We use the representation known

as sum of products (SOP; also called disjunctive normal form), which uses

only AND (^), OR (_) and NOT (:) operators. A simple form to encode

logic models based on the SOP formalism is using hypergraphs (Klamt

et al., 2006). A directed and signed hypergraph H ¼ ðV,EÞ is a general-

ization of a directed and signed graph G ¼ ðV,AÞ, where V is the set of

nodes and E the set of hyperedges. While edges in A connect pairs of

nodes a, b 2 V, hyperedges in E connect pairs of sets of nodes S,T � V.

To describe a logic model as a hypergraph, each SOP expression is

mapped to a set of hyperedges.

The PKN is first compressed to simplify the structure (Saez-Rodriguez

et al., 2009). Then, because the exact logic gates are often not known, we

perform an expansion to generate all possible gates compatible with the

PKN. Mathematically, we derive a hypergraph H ¼ ðV,EÞ from a graph

G ¼ ðV,AÞ, so that for every signed hyperedge ðS, ftgÞ 2 E and every

s 2 S, there exists an edge ðs, tÞ 2 A having the corresponding sign.

Let H be a hypergraph describing a logic model and ð�ijÞi�n, j�m be a

phospho-proteomics dataset. For each experimental condition i, we can

compute the Boolean prediction �ij 2 f0, 1g of the state of a protein j by

using the logic formulas described by H. This corresponds to computing

the (quasi) steady state of the system. These simulated values at a quasi

steady state are considered an approximation of the state of the cell im-

mediately after a perturbation and can be thus compared with experi-

mental values obtained at early times after stimulation (Klamt et al.,

2006).

Then, the fitness of the logic model to the experimental dataset is ob-

tained by comparing experimental observations, normalized between 0

and 1, with Boolean predictions based on the mean square error (MSE)

as follows: 1
nm

Pn
i¼1

Pm
j¼1 ð�ij � �ijÞ

2.

Combinatorial optimization problem. The problem of learning Boolean

logic models that we address in this work consists of finding minimal

hypergraphs derived from the PKN that minimize the MSE where the

size of a hypergraph H is the sum of cardinalities of each hyperedge

source (i.e. the sum of the number of inputs):
P
ðS,TÞ2E jSj. Thus, the

problem can be formulated as a lexicographic multi-objective optimiza-

tion where the first objective is to minimize MSE, and the second object-

ive is to minimize size. Our prior assumption that �ij belongs to a finite set

of values implies that this problem is of discrete nature. Further, the

optimization can be relaxed by using different degrees of tolerance over

the optimum for each objective, i.e. MSE and size.

Global Truth Tables. Inspired by truth tables in propositional logics,

we introduce the concept of Global Truth Tables (GTTs) as a way of

describing the input–output behavior of a Boolean logic model. For a

given logic model, we can compute its predictions on observable output

nodes in response to every possible experimental condition on input

nodes. Comparing GTTs allows one to decide whether two logic

models, regardless of their structures, are experimentally distinguishable.

Furthermore, GTTs provide a way of grouping a large number of logic

models according to their input–output behavior to facilitate the analysis.

2.2 Learning Boolean logic models with ASP

ASP is a declarative problem-solving paradigm from the field of

Logic Programming combining several computer science areas (Baral,

2003; Gebser et al., 2013). As a full declarative paradigm, instead

of telling a computer how to solve the problem, with ASP one defines

what the problem is and leaves its solution to the solver. These solvers

are based on Boolean constraint solving technology, and they can solve

hard discrete combinatorial search problems, with comparable results

with ILP.

The distinct feature of ASP is its rich modeling language, making it

popular as a tool for declarative problem solving. Sophisticated pre-pro-

cessing techniques (grounding) are required for dealing with this rich lan-

guage. Thanks to the development of an ASP language standard, its

expressiveness and powerful solvers, ASP has been widely used in

many fields of computer science for a decade. Recently, the capability

of solvers has increased such that ASP started to be applied to solve hard

combinatorial problems arising in bioinformatics and systems biology.

Applications include expanding metabolic networks (Schaub and Thiele,

2009), repairing inconsistencies in gene regulatory networks (Gebser

et al., 2010), modeling the dynamics of regulatory networks (Fayruzov

et al., 2009), inferring functional dependencies from time-series data,

(Durzinsky et al., 2011), integrating gene expression with pathway infor-

mation (Papatheodorou et al., 2012) and analyzing the dynamics of

reactions networks (Ray and Soh, 2012).

We used the freely available ASP grounder gringo and solver clasp,

both included in the Potsdam Answer Set Solving Collection (http://

potassco.sourceforge.net/). Importantly, we relied on the capability

of the solvers to handle multi-criteria optimization to guarantee the

global optimum by reasoning over the complete space of solutions.

Several reasoning modes (enumeration, union and intersection) were

also necessary to complete the combinatorial study of the family of feas-

ible solutions. We refer the reader to the Supplementary Material for

more details.
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2.3 Software: caspo

We have implemented caspo: Cell ASP Optimizer, a Python package that

combines PyASP (http://pypi.python.org/pypi/pyasp) and CellNOpt

(http://www.cellnopt.org/) to provide an easy -to-use software for learn-

ing Boolean logic models (Fig. 1). The software is freely available for

download and also as a web service through the Mobyle framework

(Néron et al., 2009). PyASP encapsulates the main ASP tools, gringo

and clasp, into Python objects. These objects can be fed with logic pro-

grams describing different tasks, be launched with dedicated parameter

settings and return the ASP results for further processing. CellNOpt

[Terfve et al. (2012)] is a software for training logic models using different

formalisms (Boolean, Fuzzy or Ordinary Differential Equations). The

software allows us to import and pre-process a PKN, normalize experi-

mental data, train logic models to data using heuristic methods and post-

process and visualize the resulting models. CellNOpt is written as a set of

R packages available on Bioconductor and as a Cytoscape plugin

(CytoCopter), and it can used within Python using the package

cellnopt.wrapper.

3 RESULTS

To illustrate the use of caspo, we use a model of pro-growth and

pro-inflammatory model in liver cells. The model is trained to

phospho-proteomics data generated in the liver cancer cell line

HepG2. Data are generated on perturbation with combination of

ligands and small-molecule inhibitors blocking the activities of

specific kinases (Alexopoulos et al., 2010). The dataset contains

measurements using the Luminex technology of 15 species under

64 experimental conditions. This model was introduced in (Saez-

Rodriguez et al., 2009) and here we use a variation from (Morris

et al., 2011). In this case, there are 130 possible hyperedges and

thus, the number of possible logic models (i.e. search space of the

combinatorial optimization) is given by 2130.

3.1 Family of optimal models

We first used caspo to compute all global optimum solutions to

the optimization over our case study. We found 16 Boolean logic

models (Supplementary Fig. S1) with minimal score (0.36 s), all

models having the same fitness to data (MSE¼ 0.0499) and size

(28). Moreover, the same 16 logic models were found (0.5 s) using

an extended PKN with feedback loops from Terfve et al. (2012).

Cross validation analysis showed no significant difference in

the optimum MSE with respect to the complete dataset

(Supplementary Fig. S2).
The 16 different models arise owing to four pairs of submodels

(modules) equivalent in terms of score. These modules represent

alternative ways to activate specific nodes and are independent

from each other. For each pair, only one of the modules appears

in a given model; that is, they are mutually exclusive. Thus, se-

lecting either member of each pair provides an optimal model

and all possible combinations give rise to the 24¼ 16 models. To

elucidate the differences between the 16 models from their re-

sponses to all possible experimental conditions, we computed

and compared their GTTs (Section 2.1). Interestingly, they all

have the same GTT. That is, for any combination of input nodes

(stimuli and inhibitors), the same values are predicted for all the

readouts by the 16 models. Therefore, the optimization reports a

single solution in terms of input–output behavior, despite the fact

that this solution can take the form of any of the 16 models. To

distinguish among these models (and thus determine which of the

mutually exclusive modules are functional), we would require a

different experimental setup, i.e. new species have to be either

perturbed or measured.

3.2 Suboptimal Models: Enumeration and Structure

Experimental error is inherent in biochemical data. Therefore,

one needs to consider models whose predictions deviate from

those of the optimal one by an amount within the experimental

error (Saez-Rodriguez et al., 2009). Considering that the opti-

mization minimize MSE and size, we defined as suboptimal

models those solutions having MSE within a 10% of tolerance

with respect to the MSE of optimal models (a conservative ap-

proximation to the real experimental error), and maximal size of

28 (the size of the optimal models; Section 3.1). From these

settings, caspo found 11 700 suboptimal models (Fig. 2) with

sizes 28, 27, 26 and 25 whose MSE spanned from 0.0499 to

0.0546. We observed that the number of models decreases expo-

nentially with the tolerance over the MSE (e.g. 8%—7378

models, 6%—6048 models, 2%—192 models). Allowing also a

tolerance over the size would generate a much larger number of

models by the addition of spurious links to those of size 28 (e.g.

size 29–51 480 models, size 30–189364 models). We therefore

limited, for simplicity of this study, the size to 28.
The complete computation of suboptimal models allows a pre-

cise characterization of the distribution of hyperedges, and,

therefore, of logical gates in the potential models. When we

evaluated the distribution of the 130 possible hyperedges (i.e.

those that are included in the hypergraph derived from the ori-

ginal PKN) across the 11 700 models, we found that 14 hyper-

edges are present in all suboptimal models, and we thus expect

them to be functional in HepG2 cells. Fifty-nine hyperedges are

absent from all models, thus suggesting that they are not func-

tional in these cells. Finally, 57 hyperedges are present in only a

subset of the models; their frequency ranges from 0.99 to 0.0003,

showing a large variability (Fig. 3). Therefore, for the given ex-

perimental data, these hyperedges are not identifiable, as it is not

possible to determine whether they are functional in HepG2 cells.
Analogously to the set of optimal models, we investigated the

combinatorics within the family of suboptimal models. We found

four mutually exclusive pairs of modules (Fig. 2B). Replacing a

Fig. 1. High-level design of caspo. (1) Input files are a PKN in

Cytoscape’s SIF format, and a dataset as a CSV file in the MIDAS

format (Supplementary Material). (2) Pre-processing routines by

CellNOpt. (3) Finds an optimum model. (4) Finds all models within

the tolerance. (5) Outputs all models found
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module of each pair by the other has no effect on the MSE for

two of the pairs (1, 2 in Fig. 2B). However, for the pairs 3 and 4

there is a difference; 32 and 26.8%, respectively, of the subopti-

mal models differ in the output for a range from 8 to 15% of the

experimental conditions. All modules were constituted by a

single hyperedge, except 1A, which is set by two hyperedges:

fðras ^ :akt! mekÞ, ðras ^ pi3k! mekÞg (Fig. 2, module 1A).

These two hyperedges were therefore always either both present

or both absent (mutually inclusive). As expected, there is a clear

difference between the frequencies in each pair of exclusive pat-

terns where smaller or simpler hyperedges are always more abun-

dant. Importantly, the mutually exclusive modules for the family

of suboptimal models are not the same as those present when

only optimal models are considered. This indicates that the

combinatorics exhibited within optimal models are not so im-

portant when considering experimental error, probably owing to

the larger variability among suboptimal models.

3.3 Input–output behavior

To further characterize the family of suboptimal models, we next

studied its input–output behavior as expressed by its GTTs.

Using caspo, we found that the 11 700 suboptimal models cor-

respond to 91 different GTTs. In these 91 GTTs, the predicted

values are the same for 30% (4915 out of 16 384) of all the pos-

sible experimental conditions (i.e. 214 combinations of the 14

inputs of the model). Therefore, such predictions can be seen

as the ‘core’ predictions of the system behavior independently

from experimental noise. Considering the remaining 70% of ex-

perimental conditions, we found that at least seven experiments

are needed to discriminate among all GTTs (Table S4). By per-

forming such experiments, one would be able to generate at least

one different output prediction between every pair of GTTs.
Among the 11700 suboptimal models, there are only 13 dif-

ferent MSEs. The distribution of such MSEs is inhomogeneous,

and two MSEs (0.0519 and 0.0542) gather 71% of suboptimal

models (Fig. 4). For both most frequent MSEs, a GTT is much

more common than all the others: the first GTT, at MSE 0.0519,

is shared by 3126 (27%) suboptimal models, while the second

most common GTT, at MSE 0.0542, is shared by 2090 (18%)

models. In contrast, the minimal GTT, at MSE 0.0499, was

shared by only the 16 minimal models. This analysis suggests

that the single optimal GTT at MSE 0.0499 is far from being

representative over the 11700 suboptimal models (0.1%). The

two most common GTTs are arguably much more relevant.

Interestingly, a hierarchical clustering reveals that these two

Fig. 2. Suboptimal models generated with caspo with 10% error tolerance. (A) Network of the union of 11 700 suboptimal models. Green nodes

represent ligands that are experimentally stimulated. Red (or red-bordered) nodes represent those species that are inhibited with a small molecule

inhibitor (drug). Blue nodes represent species that were measured using the Luminex technology. White nodes are neither measured nor perturbed. AND

gates in the models are represented by empty boxes. The thickness of the hyperedges correspond to their frequencies among the 11 700 submodels.

(B) Four pairs of mutually exclusive modules (blue hyperedges in A) and their corresponding frequencies on top. These modules determine the behavior

of three nodes in the network: mek12, mkk4 and p38

Fig. 3. Frequencies of hyperedges over 11700 suboptimal models within

10% tolerance. Among the 130 possible hyperedges, 14 were always pre-

sent, 59 were always absent and 57 were present in some but not all

models
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most common GTTs cluster separately and that the GTT repre-

senting 27% of all suboptimal models is close to the optimal one

(Fig. 5).
Finally, we have investigated the space of experiments to iden-

tify the simplest ones (i.e. minimal number of stimulations and

inhibitions), which maximize the pairwise differences between the

optimal and the two most common GTTs. These three GTTs

differ pairwise in either one or two readouts among

p70s6, creb, p53, and only 192 experiments generate two differ-

ences. Out of these 192 experiments, we identified eight experi-

ments with minimal number of stimulations, and among them,

we selected the ones with minimal number of inhibitions (Fig. 6).

We noted that the two experiments found generate the same

output over the readouts. Thus, in contrast to the seven experi-

ments needed to discriminate among all GTTs, only one experi-

ment is required to discriminate between the optimal and the two

most common GTTs.

3.4 Comparison with an stochastic optimization

We compared caspo with CellNOpt (Terfve et al., 2012), the

existing tool to solve the same problem, but using a genetic al-

gorithm. Stochastic search methods, such as genetic algorithms,

are intrinsically unable not just to provide a complete set of so-

lutions, but also to guarantee that an optimal solution is found.

Typically, one needs to combine solutions from multiple runs to

increase the confidence. Thus, to illustrate the value of caspo in

comparison with CellNOpt, we have performed multiple runs of

it over the same case study.
From multiple independent runs of CellNOpt (1000 runs with

an average of 1000 s per run), we found 4706 suboptimal models

out of the 11 700 models found using caspo (70 s). The MSEs of

models found with CellNOpt spanned from 0.0499 to 0.0543

(Supplementary Fig. S3). This family of models was found com-

bining 20% of the runs, whereas in the other 80% all models

found were out of the allowed tolerance range. Notably, the 16

optimal models (MSE¼ 0.0499) were found by CellNOpt.

Concerning GTTs, the 4706 models exhibit 51 input–output be-

haviors out of the 91 we found with caspo (Supplementary

Fig. S4). The genetic algorithm retrieved all the GTTs in both

extremes of the hierarchical cluster, while the rest of the cluster

was not completely explored (Supplementary Fig. S5). Thus,

plausible behaviors away from the most common ones appear

less likely to be found. These results show the relevance of a

software tool like caspo, which allows us to explore exhaustively

the space of feasible solutions in short time.

4 CONCLUSION

A useful approach to model large-scale signaling networks con-

sists on training Boolean logic models from prior knowledge and

dedicated experimental data. The problem of training these

models is an optimization task that can be solved with stochastic

search methods (Saez-Rodriguez et al., 2009), which have the

important limitation that they do not guarantee global optimal-

ity nor an exhaustive solution. In this article, we show how re-

casting this problem in a highly declarative language allows us to

Fig. 5. Hierarchical clustering of GTTs. Hierarchical clustering of the 91 GTTs based on their predictions for the readouts across all experimental

conditions. Bars length on the leafs represents the corresponding MSE value for each GTT. The optimal GTT (61) is highlighted, as well as the two most

common ones (85 and 77). The most common GTT is close to the optimal one, whereas the second most common GTT has a different behavior

Fig. 4. Distribution of suboptimal models. The suboptimal models are

ordered (from left to right) first according to their MSEs, and then ac-

cording to their 91 GTTs. The number of different models leading to the

same GTT is plotted in vertical bars. GTTs are ordered and colored by

their MSE. The 16 optimal models correspond to MSE 0.0499. The two

most common GTTs describe the response of 3126 and 2090 models
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identify the complete family of feasible models and query them to

obtain insight into model degeneracy.
In a real-case study, we have seen that there is a family of

feasible models with a deep combinatorial structure: several com-

binations of internal submodules, with equal or similar scores,

can equivalently explain the observed behavior of the system.

This leads to a rapid growth of the family of suboptimal

models. Taking into account the inherent noise in data, we

showed that 11 700 different models can be considered as plaus-

ible representations of the PKN and an experimental phospho-

proteomics dataset. Thanks to our exhaustive characterization of

these models, we could determine unambiguously which hyper-

edges (biological links) are functional, based on their distribu-

tions across the models and determine whether groups of

hyperedges are exclusive from each other.
To further characterize this family of models, we introduced

the concept of GTTs and used it to explore their input–output

behavior. Compared with the model topologies, the variability is

much lower; the 11700 models can be grouped in 91 GTTs, and

for 30% of the 16 384 possible perturbations, all models gave the

same predictions. Interestingly, the distribution of models among

GTTs is far from being equidistributed, and two GTTs comprise

almost half of the models, while the GTT corresponding to the

optimal score is specific (0.1% of the models). While the most

common GTT is similar to the GTT with optimal score, the

second most common GTT is different. However, a single

experiment is able to discriminate these models.
These results underscore the importance of exploring exhaust-

ively the family of models and take into account experimental

error to obtain an adequate picture of the feasible model solu-

tions. Our formal approach based on ASP allows a precise char-

acterization of the information that can be inferred from the

confrontation of prior knowledge with experimental observa-

tions over protein signaling networks. It also permits the study

of the internal combinatorics leading to the variability of the

system functioning and provides a tool toward experimental

design. Owing to the complexity of signaling networks and the

limitations of existing experimental technologies (in terms of

which nodes can be measures and/or perturbed), models typically

show an important lack of identifiability. This is a general limi-

tation of models in systems biology (Kreutz and Timmer, 2009).

In the context of Boolean models, we expect that further devel-

opment of experimental design (Sharan and Karp, 2012), in in-

timate coordination with advances in experimental techniques

will allow us to tackle this issue.
This work opens the way to several prospective tracks. First, it

would be useful to evaluate our ASP formulation and those

based on ILP from (Mitsos et al., 2009) and (Sharan and

Karp, 2012) to understand their strengths and complementary

features. In contrast to ILP, ASP is a relatively new tool for

problem solving in biology. ASP, having its roots in knowledge

representation and reasoning, has proven to be well suited to

address highly combinatorial search and discrete optimization

problems, with at least comparable performance with well estab-

lished ILP solvers. On the other hand, ILP as a mathematical

programming framework may be more suitable to study prob-

lems based on calculus over large domains of integer or rational

numbers. Therefore, combining the expressiveness and power of

several solving technologies instead of selecting one of them

seems a promising option for the future (Liu et al., 2012;

Ostrowski and Schaub, 2012).
Second, we plan to study the extension of our approach to

time-series data, although switching from a steady state to a dy-

namical viewpoint implies a growth of the search space. Fitting

models whose steady states evolve between clearly separated

time-scales (Terfve et al., 2012) should be of similar complexity

to the problem studied in this article. Fitting to the actual time-

courses of a Boolean model has a higher level of complexity, as it

requires to adjust the time-step of the Boolean model to the real

time of the measurements.
More generally, we need to develop a rigorous framework to

study models of biological networks as a family of plausible

realizations, not of single networks. A first approximation

could be to compare experimental data (ideally a distribution

across individual cells) with a distribution of simulated results

across a family of single logical models. The comparison of the

distribution of feasible models with single cell data emerges as

longer-term follow-up of this work that should provide deep in-

sight into the cell-to-cell heterogeneity of signal transduction

(Kolitz and Lauffenburger, 2012).
Altogether, we have implemented an open-source tool based

on ASP providing a powerful framework to analyze networks

models in systems biology. Further, several prospective tracks

will certainly lead to future developments to extend and improve

the functionalities of caspo.
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