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ABSTRACT

Motivation: Alternative splicing and other processes that allow for

different transcripts to be derived from the same gene are significant

forces in the eukaryotic cell. RNA-Seq is a promising technology for

analyzing alternative transcripts, as it does not require prior knowledge

of transcript structures or genome sequences. However, analysis of

RNA-Seq data in the presence of genes with large numbers of alter-

native transcripts is currently challenging due to efficiency, identifia-

bility and representation issues.

Results: We present RNA-Seq models and associated inference

algorithms based on the concept of probabilistic splice graphs,

which alleviate these issues. We prove that our models are often iden-

tifiable and demonstrate that our inference methods for quantification

and differential processing detection are efficient and accurate.

Availability: Software implementing our methods is available at http://

deweylab.biostat.wisc.edu/psginfer.
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1 INTRODUCTION

An important aspect of eukaryotic molecular biology is the fact
that a single gene can give rise to a wide variety of transcripts as a

result of pre-mRNA alternative processing (AP) events. AP

events result from the phenomena of alternative splicing and

alternative polyadenylation sites, which can give rise to different

mRNAs from the same pre-mRNA, and alternative transcription
start sites, which can lead to different pre-mRNAs produced

from the same gene locus. The alternative transcripts resulting

from these processes are important for development and have

also been implicated in disease (Matlin et al., 2005). Recent stu-

dies have shown that490% of human genes (Wang et al., 2008)
and 60% of Drosophila genes (Graveley et al., 2011) are alterna-

tively spliced, indicating that this phenomenon is the rule rather

than the exception.
The relatively recent technology of RNA-Seq is revolutioniz-

ing the way alternative transcripts are identified and quantified

(Wang et al., 2009). Unlike microarrays, which can only measure

what their probes are designed to detect, RNA-Seq allows for the
detection of novel splice junctions and exonic sequences [e.g.

Trapnell et al. (2009)]. In fact, RNA-Seq is now commonly

being used to perform de novo transcriptome assembly

(Grabherr et al., 2011; Robertson et al., 2010), a powerful
approach for studying gene expression in species without

sequenced genomes.
In this article, we present a novel approach to the tasks of

alternative transcript quantification and differential processing
(DP) detection given RNA-Seq data and fixed gene structures,

which may be provided by an existing genome annotation or

predicted from the data via transcriptome assembly. Our
approach is based on a class of models that were first independ-

ently described in the context of expressed sequence tag (EST)
analysis (Chang et al., 2005; Jenkins et al., 2006). We refer to

these models as probabilistic splice graphs (PSGs). PSGs build on

the concept of splice graphs (Heber et al., 2002), structures that
compactly represent the possible isoforms of a gene, given a set

of known exon boundaries and splice junctions. The primary
contribution of this work is efficient methodology for applying

PSGs to RNA-Seq data, which are more powerful than ESTs for

quantifying alternative splicing owing to larger numbers of reads,
but more challenging to analyze owing to shorter read lengths.

In general, PSGs provide a statistical framework for represent-
ing dependencies between AP events. The existence of dependen-

cies, or lack thereof, between AP events is currently an active
area of research. Several genes have been found to have inde-

pendent splicing events (Emerick et al., 2006; Neves et al., 2004),

whereas others suggest that dependencies exist (Emerick et al.,
2006; Fededa et al., 2005). However, there is currently not

enough full-length cDNA sequence data to determine if there

are widespread dependencies between AP events. As we will dis-
cuss, our PSG-based RNA-Seq analysis methods can be config-

ured to model and detect such dependencies, when they exist.
When processing events are largely independent of each other,

a PSG allows for a compact statistical model of the frequencies
of a gene’s isoforms. Our RNA-Seq analysis methods take

advantage of this strength of PSGs to address a number of chal-

lenges posed by alternative splicing that are not thoroughly dealt
with by previous methods. All of these challenges are rooted by

the facts that (i) RNA-Seq reads identify only a small fraction of
the transcript from which they are derived and (ii) alternative

transcripts from the same gene typically share a large amount of

sequence.
A first challenge is that a gene may have an exponential

number of alternative splice forms, which makes quantification
of individual isoforms extremely difficult. An exponential

blowup in the number of possible isoforms occurs when multiple*To whom correspondence should be addressed.
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domains of a gene are subject to alternative splicing, each of

which is spliced independently of the others. For example, the

Drosophila gene Dscam is famous for having four alternatively

spliced domains that result in over 38000 possible isoforms

(Schmucker et al., 2000).
Second, models for quantifying full-length isoforms with

single-end RNA-Seq data are often not identifiable for genes

with many alternative splice forms (Hiller et al., 2009; Lacroix

et al., 2008). For a model to be identifiable, different parameter

values for the model must give rise to distinct probability distri-

butions over possible datasets. The practical disadvantage of

having a non-identifiable model is that for a given dataset (e.g.

RNA-Seq reads), there may be multiple possible parameter

settings (e.g. transcript abundances) that explain the data equally

well. Figure 1 provides a simple example of a gene for which the

frequencies of its four possible isoforms are not identifiable given

typical RNA-Seq data. In theory, paired-end data can eliminate

this issue (Lacroix et al., 2008); however, in practice, paired-end

data are derived from short size-selected fragments that provide

local information similar to that of longer single-end data.

A third challenge for the analysis of RNA-Seq data in the

presence of alternative splicing is that both de novo and

genome-guided transcriptome assemblers often do not have

enough information to output full-length transcripts for genes

that have splice variants. For example, if a gene has two

alternatively spliced domains spaced sufficiently far apart such

that no reads (or paired-end reads) span both domains (as is the

case in Fig. 1), then it may be impossible to determine which

combinations of splice events are found in that gene’s isoforms.

Faced with this challenge, current assemblers are either choosing

a minimal set of isoforms (Li et al., 2011a, b; Trapnell et al.,

2010; Xia et al., 2011) or reporting all possible isoforms that are

compatible with the data (Grabherr et al., 2011; Guttman et al.,

2010). The former strategy risks underestimating the number of

true isoforms, particularly when non-identifiability is an issue.

The latter strategy is unlikely to omit true isoforms, but may

result in the reporting of exponential numbers of isoforms, the

abundances of which are likely not identifiable. Both strategies

may result in the reporting of isoform structures that do not

exist.
As we will show, our novel application of the PSG modeling

framework to RNA-Seq analysis alleviates all three of these

issues. First, we present an efficient Expectation-Maximization

(EM)-based algorithm for estimating the maximum a posteriori

(MAP) parameters of a PSG, given single or paired-end RNA-

Seq data. The estimation of PSG parameters is equivalent to the

alternative transcript quantification task, with the restriction that

transcript abundances must be consistent with the frequencies of

dependent or independent processing events. Our algorithm runs

in polynomial time even if a gene may generate an exponential

number of isoforms, assuming the isoforms may be represented

compactly as a PSG. Through experiments on real and simulated

data, we assess the accuracy of the estimates from our method

and demonstrate its theoretically predicted advantage over a

more simplistic junction-read (JR) approach that does not

make full use of the data. Our parameter estimation method

forms the basis of a couple of DP tests, which we show to

have low false-positive (FP) rates using real replicate data and

superior true-positive (TP) rates on simulated data.
Second, we provide conditions under which a PSG is provably

identifiable given RNA-Seq data, conditions which are less re-

strictive than those for full-length isoform models. Thus, the

biologically motivated assumption of independence between pro-

cessing events has an important statistical side benefit.
Lastly, we argue that transcriptome assemblers should report

PSGs rather than sets of full-length isoforms, particularly when

the data do not provide sufficient information to determine

dependencies between processing events. The PSG framework

offers an alternative parsimony objective in this context: that

of minimizing the number of processing event parameters,

rather than the number of isoforms, needed to explain the

data. The fact that many transcriptome assemblers already

build splice graphs as intermediate data structures makes PSGs

a natural fit for these assemblers. To facilitate integration of our

method with de novo assemblers, our method has been imple-

mented in such a way that a reference genome is not required.

Thus, our software may be used in conjunction with such assem-

blers to study alternative splicing in species without a sequenced

genome.

1.1 Related work

One of the first descriptions of PSGs appears in Jenkins et al.

(2006), which focuses on EST analysis. In contrast to our
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Fig. 1. An example gene for which an explicit model of all possible

isoform frequencies is not identifiable, whereas a PSG model for the

gene is identifiable, given RNA-Seq reads. We assume that the RNA-

Seq fragments are shorter than the middle exon and thus that reads from

a fragment identify at most one splice junction. (A) The gene model with

levels of coverage by RNA-Seq reads indicated above each exon. (B) The

four possible isoforms of the gene. (C) and (D) give two (of infinitely

many) possible isoform abundances that explain the observed RNA-Seq

read coverages equally well. (E) The exon graph PSG for the gene, which

is identifiable given this data (the unique ML parameters are above each

edge), assuming the exon sequences are relatively unique
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application of PSGs to short RNA-Seq data, parameter estima-

tion for their models was trivial due to the use of only longer

ESTs that mapped uniquely to full-length isoforms. Chang et al.

(2005) also described the concept of a PSG, but did not use it in

their EST-based methods. Xing et al. (2006) used splice graphs

for EST analysis, but treated them simply as data structures with

which to enumerate all possible full-length isoforms of a gene

rather than as probabilistic models of isoform frequencies.
Non-probabilistic splice graphs have been used in the context

of RNA-Seq as well. For example, Montgomery et al. (2010)

summarized RNA-Seq data in terms of read coverage (‘flux’)

of each edge in a splice graph and estimated abundances of

known full-length transcripts using a non-statistical L1-mini-

mization formulation. Singh et al. (2011) also computed

observed read coverages for edges of a splice graph but instead

used these values to detect DP between samples using non-

parametric statistical tests. In contrast, our methods are based

on generative probabilistic models of both RNA-Seq data and

isoform frequencies with splice graph edges weighted by param-

eters representing RNA processing conditional probabilities.

These models enable us to use more powerful parametric statis-

tical techniques for both estimating isoform and processing event

frequencies and detecting DP genes between samples.

For the task of gene annotation, Rogers et al. (2012)

developed SpliceGrapher, which constructs splice graphs from

RNA-Seq and EST data. Our methods assume that the splice

graph structure is known and thus could work in tandem with

SpliceGrapher to infer both the structure and parameters of

PSGs.
The model of RNA-Seq read generation that we use is similar

to the models assumed by many other methods for transcript

quantification (Bohnert et al., 2009; Jiang and Wong, 2009;

Katz et al., 2010; Li et al., 2010a; Nicolae et al., 2010; Richard

et al., 2010; Trapnell et al., 2010). The goal of these methods is

generally to estimate full-length isoform frequencies directly, and

thus they suffer in the face of the challenges we have described.

Others have focused on quantifying the frequencies of subcom-

ponents of isoforms, such as individual exons (Kakaradov et al.,

2012; Katz et al., 2010). In contrast to these methods, our

approach allows for frequency estimates at all levels simultan-

eously, from individual processing events to the exon and full-

length isoform levels.

1.2 Probabilistic splice graphs

PSGs are statistical extensions of splice graphs, data structures

that can compactly represent all isoforms of a gene and show the

structural relationships among them. The splice graph of a gene

was originally defined by Heber et al. (2002) as a directed acyclic

graph, G ¼ ðV,EÞ, with a vertex for each exonic genomic pos-

ition of the gene and an edge from vertex v to vertex u if the

corresponding genomic position of v immediately precedes that

of u in some isoform of the gene. Typically, one merges vertices v

and u if ðv, uÞ 2 E and outdegreeðvÞ ¼ indegreeðuÞ ¼ 1. Thus, in

general, the vertices of a splice graph represent exonic segments

of a gene. The key property of a gene’s splice graph is that every

isoform of the gene corresponds to a path through the graph.
In this article, we use a splice graph definition similar to that of

Heber et al. (2002), but that differs in two respects. First, we

allow a single genomic position to correspond to multiple ver-

tices. For example, two vertices might represent the same exon

with slightly different donor or acceptor sites. Second, we require

that a splice graph has two additional vertices, representing the

start and end of an isoform. The start vertex has edges to each

possible transcription start site of a gene and the end vertex has

incoming edges from each possible polyadenylation site. The

start and end vertices are both associated with empty sequences

(i.e. they do not represent exonic segments). Because of the in-

clusion of these special vertices, edges of a splice graph represent

all classes of AP events.

Following the work of Chang et al. (2005) and Jenkins et al.

(2006), we define a PSG as a weighted splice graph in which each

edge is assigned a weight in [0, 1] and the weights of all edges out

of a vertex sum to one. The edge weights in a PSG represent

conditional probabilities of different AP events. The probability

of an isoform is defined as the product of the weights of the edges

along the path through the graph representing the isoform. Thus,

a PSG represents the relative abundances of the possible iso-

forms of a gene. The principal assumption of a PSG is that an

AP event at a given point along a path from the start vertex to

the end vertex is independent of AP events that occurred before

that point. PSGs are thus Markovian and model AP events as

occurring in a 50–30 order, which is biologically motivated by the

fact that splicing can occur co-transcriptionally (Dye et al.,

2006). The independence statements assumed by a PSG allow

it to compactly specify the probabilities of all possible isoforms.

Many PSG structures can be used to model the set of isoforms

for a gene. For example, Figure 2 gives four PSGs that all rep-

resent the mouse gene Gfra4, which has seven possible isoforms

according to the UCSC Genes annotation (Hsu et al., 2006).

These different PSGs are closely related to the various forms

of splice graphs that have been used in splice graph databases

(Bollina et al., 2006). Like the splice graphs in these databases,

PSGs can vary in the number of isoforms they allow. In addition,

PSGs can vary in the family of probability distributions they

define over the set of isoforms.

The PSGs of Figure 2B and C are examples of PSGs for the

same gene that model different numbers of isoforms. Figure 2B is

a specific type of PSG that we will refer to as a line graph, fol-

lowing Bollina et al. (2006). This type of PSG is equivalent to the

‘pairwise model’ considered by Jenkins et al. (2006). A line graph

assumes independence between all compatible AP events.
The PSG of Figure 2C also belongs to a particular class of

PSGs that we will refer to as exon graphs. In a first order exon

graph, each exon is represented by a single vertex. In Bollina

et al. (2006), such a graph is simply referred to as a ‘splicing

graph’. Exon PSGs allow for dependencies between the AP

events at the ends of each exon. Figure 2C and D are examples

of PSGs that allow for the same set of isoform structures, but

that differ in the families of distributions they define over the

isoforms. Figure 2D is an example of a higher order exon graph,

which generally has multiple vertices representing a single exon,

and is analogous to a higher order Markov chain. In the most

extreme case, a PSG can represent each possible isoform as a

disjoint path through the graph (e.g. Fig. 2E). We refer to such

PSGs as unfactorized graphs. Unfactorized graphs have struc-

tures equivalent to what are commonly displayed in genome
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browsers and are statistically equivalent to the full-length iso-

form models used by most previous quantification methods.

For the experiments we describe in Section 3, we will make use

of line, exon and unfactorized graphs. For a given gene, the set of

AP event dependencies that are known or that one wishes to

allow during inference govern the complexity of the PSG that

should be used. If one uses a less complex PSG model (e.g. a line

graph) that happens not to model some true dependencies, the

individual edge weights of the PSG may be accurate, but the

full-length isoform frequencies implied by the PSG will likely

be off.

2 METHODS

In this article, we assume that we are provided with a fixed PSG structure

for a gene and focus on inference tasks given RNA-Seq data. PSG struc-

tures may be constructed using known gene annotations or inferred from

RNA-Seq data by other methods. In this section, we describe methods for

two tasks: (i) estimating the parameters of a PSG, and (ii) determining

whether a gene or splice junction is differentially processed between two

samples.

This section is structured as follows. We first formally define a PSG

and a number of useful quantities computed from a PSG. We then de-

scribe a model of RNA-Seq data given a PSG. The identifiability of this

model will then be addressed, followed by a description of how the EM

algorithm is used to determine MAP parameters. We then provide simple

likelihood ratio tests for detecting genes or splice junctions that are dif-

ferentially processed between two samples. Our model, its associated in-

ference methods and arguments about its identifiability are all

independent of the specific form of PSG used (e.g. a line or unfactorized

graph).

2.1 PSG notation and derived quantities

A PSG is a directed acyclic graph (DAG), G ¼ ðV,EÞ, with a start vertex,

v0, and an end vertex, vM, where M ¼ jVj � 1. The only vertex in the

graph with indegree ¼ 0 is v0 and the only vertex with outdegree ¼ 0 is

vM. Each vertex, vi, of a PSG is associated with a sequence, which we

denote by �i. The sequences of the start and end vertices are the empty

string. Each edge, ðvi, vjÞ, in the graph has a weight �ij 2 ½0, 1�, and we

require that 8i,
P

j �ij ¼ 1. The weight, w(s), of a subpath, s, is the prod-

uct of the weights of its edges:

wðsÞ ¼
Yjsj�1
i¼1

�si , siþ1

An isoform is represented by a path t, with t1 ¼ 0 and tjtj ¼M. The

probability of a transcript t is defined as the weight of its path, w(t).

Several useful quantities can be computed from a PSG that have not

been described previously. These quantities will be important for specify-

ing the RNA-Seq model and efficiently estimating parameters using the

EM algorithm. Because a PSG is a DAG, each of these quantities can be

described by a recurrence and computed efficiently using dynamic pro-

gramming. First, we can compute the conditional probability that vertex

vj is included in a transcript given that vi is in the transcript. We denote

this quantity by fði, jÞ and compute it with the recurrence

fði, jÞ ¼
X

s:s1¼i, sjsj¼j

wðsÞ ¼
1 i ¼ jP
k

�kj fði, kÞ i 6¼ j

(

Other useful quantities involve the lengths of transcripts or subpaths. We

denote by ‘i the length of the sequence associated with vertex i, i.e.

‘i ¼ j�ij. The length of a subpath s is simply the sum of the lengths of

the sequences associated with its vertices: lðsÞ ¼
P

i ‘si . We define the ex-

pected prefix length dpðiÞ for vertex vi to be the expected length of the

subpath beginning at v0 and ending at vi; analogously, the expected

suffix length dqðiÞ for vertex vi is the expected length of the subpath begin-

ning at vi and ending at vM. These quantities can be calculated via the

recurrences:

dpðiÞ ¼ ‘i þ
1

fð0, iÞ

X
j

fð0, jÞ�jidpðjÞ ð1Þ

dqðiÞ ¼ ‘i þ
X
j

�ijdqðjÞ ð2Þ

The expected length of transcript of this gene is the expected suffix length

of v0 or the expected prefix length of vM, dqð0Þ ¼ dpðMÞ.

2.2 A PSG RNA-Seq model

We now present a novel generative model for RNA-Seq data given a

PSG, G, that describes the relative abundances of isoforms of a gene.

This model will allow us to estimate the parameters of G given RNA-Seq

data. Our model is a PSG generalization of the models that require lists of

full-length isoforms (Li et al., 2010a; Katz et al., 2010; Trapnell et al.,

2010). With an unfactorized PSG, our model is equivalent to the full-

length isoform models.

To simplify our presentation, we will describe a model of single-end

reads without sequencing error. We provide the details of model

extensions for paired-end data and sequencing error in the Supplementary

Material, and our software accommodates both of these issues, including

the handling of reads that align to multiple positions. The Supplementary

Material also describes how to efficiently simulate data from our model.

We assume that an RNA-Seq dataset represents N fragments, each

independently derived from one of the possible isoforms allowed by

G. The RNA-Seq data consist of reads from one end of each of the

N fragments, each read of length L. The single-end model involves four

random variables for each of the N reads: Rn, the sequence of read n; Tn,

A

B

C

D

E

Fig. 2. Example PSG representations for the mouse gene Gfra4.

(A) A UCSC Genome Browser visualization of the seven annotated iso-

forms of this gene. (B) The line graph PSG. (C) The first-order exon

graph. (D) A higher-order exon graph. In this graph, the AP events

immediately following the longest exon are allowed to depend on the

AP event directly preceding the exon, in contrast to the first-order exon

graph, in which these AP events are independent of each other, given that

the longest exon is included in the transcript. (E) An unfactorized PSG
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the full transcript path from which read n was derived; Sn, the subpath of

Tn from which read n is derived; and Bn, the position in the sequence of

Sn, 1 at which read n begins. Of these random variables, only Rn is

observed. In addition, the latent PSG edge weights � ¼ f�ijgij are also

treated as random variables. The joint probability distribution over the

random variables is

Pðr, t, s, b,�Þ ¼
YN
n¼1

Pðrnjsn, bnÞPðsn, bnjtnÞPðtnj�ÞPð�Þ

Assuming no sequencing error, we have that

Pðrnjsn, bnÞ ¼
1 if ðbn, snÞ ! rn
0 otherwise

�

where ðbn, snÞ ! rn denotes that rn is the length L sequence starting at

position bn in the concatenation of sequences �sn, 1 , . . . , �sn, jsj . If sn, jsj ¼M,

then the concatenated sequence also includes an infinitely long sequence

of As, representing the poly(A) tail at the end of a typical eukaryotic

protein-coding transcript. We will often use the notation �ðrÞ to refer

to the set fðb, sÞ : ðb, sÞ ! rg. In addition, we say that r is derived from

s if there exists some b such that ðb, sÞ ! r.

We assume that the position bn, at which a read begins, is uniformly

distributed across the length of the transcript from which it is derived.

Thus,

Pðsn, bnjtnÞ ¼
1

lðtnÞ
sn 2 tn, bn 2 ½1, ‘sn, 1 �

0 otherwise

(

We assume that the probability of generating a read from a specific

transcript, tn, is proportional to the product of the relative frequency of

the transcript, wðtnÞ, and the length of the transcript:

Pðtnj�Þ ¼ Dð�Þ�1wðtnÞ‘ðtnÞ

where Dð�Þ ¼
P

t wðtÞ‘ðtÞ, which is the expected length of a transcript

given the PSG. Finally, for each vertex i, we place a Dirichlet prior with

parameters �i ¼ f�ijgj on the weights of its out-edges. Specifically,

Pð�Þ ¼
Y
i

�

�P
j

ð�ij þ 1Þ

�
Q
j

�ð�ij þ 1Þ

Y
j

�
�ij
ij

0
BBB@

1
CCCA

2.3 Identifiability of the PSG RNA-Seq model

A PSG RNA-Seq model is more likely to be identifiable than a model

over all full-length isoforms implied by the PSG. In the Supplementary

Material, we state some general conditions under which a PSG is guar-

anteed to be identifiable. These conditions are generalizations of those for

the identifiability of full-length isoform models (Hiller et al., 2009;

Lacroix et al., 2008). Here we provide a simple set of specific conditions

that are sufficient, but not necessary, for the identifiability of a PSG.

PROPOSITION 1. If for each edge ðv, uÞ in a PSG at least one of the following

conditions is true, then the model is identifiable.

(1) There is a read that is uniquely derived from ðv, uÞ.

(2) There is a read that is uniquely derived from u and indegreeðuÞ ¼ 1.

A proof of this proposition is provided in the Supplementary Material. It

provides an easy check for whether a PSG is identifiable: simply deter-

mine if each edge or its target vertex can produce a unique read. These

criteria are generally easier to satisfy than those required for the identifia-

bility of full-length isoform models. For example, the PSG in Figure 1E is

identifiable, even though a model of the full-length isoform frequencies is

not.

2.4 Edge weight estimation using EM

Given a set of aligned RNA-Seq data, we compute MAP estimates of the

PSG edge weights. When �ij ¼ 0,8i, j, this is equivalent to computing

maximum likelihood (ML) estimates for the � values (treated as param-

eters). We use the EM algorithm to compute these estimates, as the prob-

ability Pð�jrÞ is difficult to optimize directly. Briefly, the E-step of the EM

algorithm involves computing the expected number of times each edge of

the PSG is used in a transcript from which a read is derived. The M-step

then sets � to maximize the joint probability given these expected counts.

The full details of the application of the EM algorithm to our model are

provided in the supplement. One detail of our algorithm that is critical to

its efficiency is our extensive use of the fði, jÞ, dpðiÞ and dqðiÞ values, which

are computed via dynamic programming. With these values precomputed

during each iteration of the E and M steps, these steps run in

OðjVj2 þ jAjjEjÞ and OðjVj þ jEjÞ time, respectively, where A is the set

of alignments of all reads. Similarly, the memory required by the

algorithm is OðjVj2 þ jAjÞ. Without dynamic programming, the EM

algorithm would require time and memory proportional to the number

of possible full-length isoforms, which may be exponential in jVj.

2.5 Testing for DP

To test for DP of a gene between two samples we use a simple likelihood

ratio test. Given two read sets, R1 and R2, we compute the ML param-

eters, �̂1 and �̂2, for the two sets separately, as well as theML parameters,

�̂12, for the two sets combined. We test the null hypothesis that the par-

ameters for the two samples are the same by computing the ratio

PðR1j�̂1ÞPðR2j�̂2Þ

PðR1 [ R2j�̂12Þ

and assigning a P-value using a �2 distribution with k degrees of freedom,

where k is the number of free parameters in the PSG. When predicting

DP genes across an entire genome, a P-value significance threshold is

selected according to the Benjamini–Hochberg procedure for controlling

the false discovery rate.

We can additionally test for DP of an individual splice site or the

transcription start site using a similar technique. We select a single

vertex, v, and test the null hypothesis that the parameters for the out-

edges of that vertex are identical between the two samples with all other

edge weights possibly different. The alternative hypothesis is the same as

in the gene-level test. After estimating ML parameters for these two

hypotheses, we perform a likelihood ratio test with outdegreeðvÞ � 1

degrees of freedom.

2.6 Software

Our methods are implemented in a freely available software package

called PSGInfer. The software currently takes as input FASTA-formatted

genomic sequences, GTF-formatted transcript annotations and FASTQ-

formatted RNA-Seq data. PSGs may be provided directly in lieu of a

reference genome and annotation when, for example, a de novo transcrip-

tome assembly is used. For single samples, the software outputs estimates

of the frequencies of processing events and annotated full-length

isoforms. For pairs of samples, it outputs the results of the DP test on

each gene.

PSGInfer comprises three major scripts, psg_prepare_refer-

ence, psg_infer_frequencies and psg_infer_diff_proces-

sing. A typical workflow for using these scripts is depicted in

Supplementary Figure S1. The psg_prepare_reference script is re-

sponsible for constructing splice graphs from a set of known transcript

annotations. It can be configured to produce line, exon or higher-order

PSGs, such as depicted in Figure 2. The psg_infer_frequencies

script aligns a single RNA-Seq sample against a prepared set of splice

graphs using Bowtie (Langmead et al., 2009) and computes frequency
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estimates. Lastly, the psg_infer_diff_processing script takes the

output of psg_infer_frequencies from two samples and reports

DP predictions.

3 RESULTS

We performed a variety of experiments on both simulated and

real RNA-Seq data to analyze the accuracy and performance of

our PSG methods. On simulated data, we first quantify the

theoretical advantage of our method over a more simplistic

JR–based method for estimating processing event frequencies.

On real Drosophila data, we compare the estimates from the

PSG and JR method and measure the improvement in the con-

vergence rates of our method’s estimates with bootstrapping

experiments. We then evaluate the accuracy of our DP tests

through experiments on sets of real and simulated RNA-Seq

samples that include biological and technical replicates. Lastly,

with real data from the Drosophila gene Dscam, we demonstrate

the superior time complexity of using a factorized splice graph-

based method.

3.1 Comparison with a JR approach

The EM-based method we have described for estimating the

parameters of a PSG draws power from every alignable read in

an RNA-Seq dataset. That is, in our EM method, every read is

potentially informative about the frequencies of all AP events.

However, there are other more simplistic methods that may be

used to estimate the parameters of a PSG. In general, these

methods ignore some subset of the data and are thus less power-

ful than the EM method when the model assumptions hold.
One such approach is to consider only those reads that align

across edges (junctions) in the splice graph and to compute MAP

estimates of the edge parameters using the number of reads that

map to each edge. We will refer to this more simplistic strategy as

the JR approach. Although this method is simplistic and ignores

much of the data, it is statistically consistent under our RNA-Seq

model, with JR estimates converging to true parameter values as

the sample size becomes large. In addition, it is relatively robust

to violations of the assumptions made in our RNA-Seq model,

such as the assumption that the probability of a read being

generated by a transcript is proportional to that transcript’s

length. And while it is sensitive to non-uniformities around

individual junctions, it is not affected by biases in the read dis-

tributions elsewhere in the transcripts and the estimates at one

junction do not affect those at other more distant junctions.

An article published during the revisions of this manuscript

demonstrated that a JR approach can provide more accurate

estimates than more sophisticated methods that use reads map-

ping to exon bodies (Kakaradov et al., 2012). For example, Katz

et al. (2010) describe a method (�̂SJ) that uses reads mapping to

exon bodies immediately flanking a junction, in addition to reads

mapping to the junction itself. As this method is only appropriate

for certain types of alternative splicing events (e.g. cassette exon

inclusion), we do not consider it here. In addition, we expect that

the �̂SJ method would provide comparable estimates to that of

our EM method for AP events such as cassette exons, as the two

methods make similar use of the data in these situations.

Therefore, we focus on comparisons with the JR method,

which can provide estimates for all AP events, with the exception

of alternative transcription start site events, which do not involve

a junction.

3.1.1 Comparisons on simulated data We first sought to quan-
tify the theoretical advantage of our EMmethod over that of the

JR approach using data simulated according to our model, as

was similarly done in Katz et al. (2010). Of course, these experi-

ments represent the best-case scenario for the EMmethod, as the

data perfectly fit the model that the EM method uses to gain

power. Nevertheless, these experiments allow us to quantify the

size of the improvement in the accuracy of the EM estimates over

those of JR when the model assumptions hold.

For our simulations, we used protein-coding Drosophila genes

from the FlyBase v5.12 (Smith et al., 2007) annotation, each

containing a single cassette exon. To capture a range of

scenarios, we ordered all such genes by the lengths of their cas-

sette exons and selected the three genes at the quartiles of this

distribution. We simulated single-end reads of length 100 from

the genes, each of which can be represented generically by the

gene model shown in Supplementary Figure S2A. JR and EM

were used to estimate the one parameter of the line PSG for this

gene on simulated read sets varying in size from 10 to 10 000

reads, with 500 simulations per read set size. For both methods,

we used a pseudocount of one (� ¼ 1 for EM) for the splice

junctions, which helps to control the variance of the estimates

on small datasets. As expected, owing to the fact that EM ex-

tracts more information from the data than JR, the EM esti-

mates converge more quickly to the truth and exhibit less

variance than those of JR (Supplementary Fig. S2B). The advan-

tage of EM over JR is most pronounced for read set sizes51000

and for the gene with the longest cassette exon (s-cup), as EM

gains information from reads that map to the body of that exon.

Simulations with paired-end reads gave similar results, with

both methods benefitting from paired-end data (Supplementary

Fig. S3).

3.1.2 Comparisons on real data We next compared the
estimates of the EM and JR methods on a real set of

Drosophila RNA-Seq data to assess the impact of the model

assumptions used by EM. Here we assumed that the more

robust JR estimates are accurate when a large number of reads

are available. We used RNA-Seq data from the Drosophila cell

line CME-W1-Cl.8þ (SRA accession SRS002587) (Cherbas

et al., 2011), which consists of �14 million pairs of reads, each

37 bases long. Gene annotations were obtained by selecting all

protein-coding genes of FlyBase v5.12 and preprocessing using

Cufflink’s cuffcompare program. We used Bowtie (Langmead

et al., 2009) to align the reads against the sequences of the line

PSGs constructed from these annotations and selected all 88

genes that (i) included at least one AP event and (ii) had more

than 5000 read pairs mapped to it.
The line PSG parameters for each of these genes were esti-

mated using JR and EM. For each vertex with outdegree �2,

we computed the distance between the probabilities of its out-

edges by taking the maximum of the absolute difference between

the estimates on each edge (infinity norm). Figure 3 gives the

distributions of these distances between EM and JR estimates for

both single and paired-end reads (Supplementary Fig. S4 gives
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the plots for comparisons between estimates from the same

method on single and paired-end reads). We also examined

how often the estimates at each vertex agreed in terms of

which AP event following that vertex was most likely. EM and

JR agreed with respect to this measure on 84 and 81% of the

vertices for single and paired-end estimates, respectively. The

single-end and paired-end estimates agreed with each other on

95 and 93% of vertices for EM and JR, respectively. These

results indicate that the EM estimates are highly accurate on

average, assuming that the JR estimates are close to the truth.

This suggests that the model assumptions used by EM are

reasonable, at least on this dataset. The differences observed be-

tween the estimates of the same method on single and paired-end

data show that many of the discrepancies between the methods

arise simply because they draw information from different sub-

sets of the data. The remaining discrepancies may be the result of

highly biased read distributions or incorrectly annotated gene

structures.
We further explored the validity of the independence assump-

tions made by the line PSGs in these experiments by additionally

computing estimates of the AP event frequencies with first-order

exon and unfactorized PSGs for these genes. As is shown in

Supplementary Figure S5, the estimates from the line, first-

order exon and unfactorized PSGs are all similar in terms of

their distances from the reference JR estimates. Thus, the inde-

pendence assumptions made by the line PSGs do not appear to

affect the accuracy of the AP frequency estimates for this dataset.

This experiment also shows that AP frequency estimates from

factorized PSGs are comparable with those estimated from full-

length isoform models, as the unfactorized PSGs are equivalent

to such models.
We additionally assessed the convergence rates of JR and EM

through bootstrapping experiments on these data. For each of

the selected 88 genes, we generated a series of bootstrapped read

samples from its full read set. We generated read samples of sizes

ranging from 10 to 5000, with 100 samples per read set size. On

each read sample we estimated the line PSG parameters with

both JR and EM and calculated the distance between each meth-

od’s estimates and its estimates on the full read set. Mean dis-

tances were computed for each read set size and a further mean

was taken over all vertices (Fig. 4). As expected, the distances

approach zero as the read set size increases, EM estimates con-

verge faster than those of JR and estimates from paired-end data

converge the fastest. EM with single-end data converges about as

quickly as JR with paired-end data, suggesting that for this

dataset, EM is extracting about twice as much information

from the data as JR.

3.2 Evaluation of DP calls

We evaluated the performance of our PSG-based DP test by

applying it genome-wide on four sets of RNA-Seq samples:

three real and one simulated. The four sets were five

modENCODE Drosophila samples (Cherbas et al., 2011), four

human samples from HapMap individuals (Montgomery et al.,

2010), four human cell line samples from the ENCODE project

(The ENCODE Project Consortium, 2011) and four samples

simulated using parameters learned from the ENCODE

human samples. The real sets were selected because they were

publicly available, contained paired-end data, which benefit DP

analyses and contained either biological or technical replicates.

Beyond these criteria, the sets we have presented were chosen

arbitrarily and a priori. Details of these sets are provided in the

supplement.
Using first-order exon PSGs, we applied our DP test to all

pairs of samples within each set to assess its FP and TP rates.

We expected that an accurate DP test should call few genes as

DP between replicates and a modest number of genes as DP

between non-replicate samples. For comparison, we also applied

FDM (Singh et al., 2011) and Cuffdiff 2 (Trapnell et al., 2013) to

these datasets. The parameters and annotations used to run the

PSG, FDM and Cuffdiff DP tests are described in the supple-

ment. The target false discovery rate, as determined by the

Benjamini–Hochberg procedure, was set to 0.05 for all methods.

We tallied the number of genes called as DP between each pair of

samples for each method individually as well as the number of

Fig. 4. The mean distances of parameter estimates on bootstrap samples

from those on the full read set as a function of the bootstrapped read

sample size. All differences between pairs of methods at each read set size

are significant (P50:05, sign test) except for that between Single EM and

Paired JR for read set size¼ 10

Fig. 3. Distributions of the differences between the parameter estimates

of EM and JR from single and paired-end data
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genes called as DP by multiple methods. Lists of the genes called

as DP are provided on our software’s Web site.
Table 1 summarizes the results for the DP analyses on the

three real datasets. Remarkably, the PSG test calls few genes

as DP between the biological and technical replicates in the fly

and HapMap datasets, indicating a low FP rate on these sets. At

the same time, the test calls a modest number of genes as DP

between non-replicate samples in these sets, suggesting that its

low positive rate does not come at the expense of predicting TPs.

On the ENCODE set, the number of DP calls between the

replicate samples is also lower than that between the non-repli-

cates. However, the FP rate is much higher for this set, particu-

larly for the K562 replicates. This suggests that the ENCODE

samples are more heterogeneous, perhaps owing to higher biolo-

gical or sample preparation variability. One difference between

the ENCODE samples and the others is that the read length is

more than twice as long in the ENCODE samples. However,

through an experiment in which we reran the DP tests with the

ENCODE reads trimmed to match the read lengths in the other

sets, we did not find this to be the cause of the larger numbers of

PSG DP calls for these samples (Supplementary Table S1).
The FDM method performed similarly to our PSG DP

method, generally reporting fewer DP genes between replicates

than between non-replicates. However, for all sample sets in

Table 1, the PSG method reports more DP genes between

non-replicate samples than FDM, while at the same time report-

ing smaller numbers of DP genes between replicate samples than

FDM (except for in the HapMap set where both methods report

zero DP genes between replicates). This result suggests that the

PSG test has a higher TP rate and a lower FP rate than FDM.

Surprisingly, of the genes called DP by either PSG or FDM, only

a small fraction are called by both methods. The fraction shared

is smallest for the replicate pairs of samples, which is expected

given that all of the DP calls on these pairs are FPs. We hypothe-

size that the small overlap of the DP calls on the non-replicate

pairs is owing to the fact that the two methods are different: our

PSG DPmethod is a parametric test based on a generative model

of the read data, whereas FDM is a non-parametric test that acts

on read coverage levels. Also of note are the numbers of FDM

DP genes for the trimmed ENCODE set (Supplementary

Table S1), which are much smaller than those for the untrimmed

set. We believe this occurs because the trimming of reads reduces

read coverage levels, which are used by FDM.
Cuffdiff, on the other hand, had odd behavior in these experi-

ments, as it called large numbers of genes as DP between repli-

cates and a small number as DP between non-replicates. After

discussing these results with the authors of Cuffdiff, we believe

that they are explained by the combination of Cuffdiff accurately

estimating low global processing variability between the replicate

samples but then having highly noisy estimates of isoform

Table 1. The number of DP genes called by the PSG test, FDM, Cuffdiff and combinations of the methods on pairs of samples from three sets:

(A) HapMap, (B) Drosophila modENCODE and (C) ENCODE

Sample 1 Sample 2 PSG FDM Cuffdiff PSG \ FDM PSG \ Cuffdiff FDM \ Cuffdiff All

(A)

CEU Rep 1 CEU Rep 2 0 0 1187 0 0 0 0

CEU Rep 1 Yoruban Rep 1 39 24 269 2 8 3 1

CEU Rep 1 Yoruban Rep 2 46 24 282 3 5 3 1

CEU Rep 2 Yoruban Rep 1 45 22 253 4 5 1 1

CEU Rep 2 Yoruban Rep 2 38 29 260 2 4 4 1

Yoruban Rep 1 Yoruban Rep 2 0 0 1253 0 0 0 0

(B)

CME_W1_Cl.8þ Rep 1 CME_W1_Cl.8þ Rep 2 16 32 204 1 0 2 0

CME_W1_Cl.8þ Rep 1 Kc167 365 207 7 75 2 0 0

CME_W1_Cl.8þ Rep 1 ML-DmBG3-c2 232 164 6 46 1 1 0

CME_W1_Cl.8þ Rep 1 S2-DRSC 406 228 12 86 6 1 1

CME_W1_Cl.8þ Rep 2 Kc167 319 211 16 72 4 3 1

CME_W1_Cl.8þ Rep 2 ML-DmBG3-c2 260 126 16 37 2 1 1

CME_W1_Cl.8þ Rep 2 S2-DRSC 353 220 17 71 5 1 1

Kc167 ML-DmBG3-c2 384 321 12 93 2 1 1

Kc167 S2-DRSC 419 209 12 88 6 2 1

ML-DmBG3-c2 S2-DRSC 431 287 4 110 3 1 1

(C)

HUVEC Rep 1 HUVEC Rep 2 35 43 440 6 2 4 1

HUVEC Rep 1 K562 Rep 1 376 344 8 113 2 0 0

HUVEC Rep 1 K562 Rep 2 379 302 12 81 6 2 2

HUVEC Rep 2 K562 Rep 1 442 382 8 144 4 3 3

HUVEC Rep 2 K562 Rep 2 355 285 10 80 3 2 2

K562 Rep 1 K562 Rep 2 224 308 168 39 8 8 1

Note: Pairs of samples that are technical or biological replicates are indicated in bold.
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frequencies for a subset of genes, particularly those that have
multiple highly similar isoforms. When Cuffdiff is given a pair
of non-replicate samples, it estimates higher levels of global vari-

ability and thus the effect of noisy isoform frequency estimates is
diminished. This explanation fits with the general trend observed
in the results in which the lower the variability between the sam-

ples, the larger the number of genes predicted as DP by Cuffdiff.
Although Cuffdiff was originally used in an experiment without
replicates (Trapnell et al., 2010), during the revisions of this art-

icle, the authors of Cuffdiff began advising its users through its
Web site to not use its DP tests with fewer than three replicates
per condition, likely owing to issues such as the one we have

observed here.
The performance of the three methods on the simulated

dataset was similar to that on the real datasets (Supplementary
Table S2). In this dataset, four samples were simulated with two

biological replicates for each of two conditions (A and B). Each
sample was simulated with separate parameter settings estimated
from one of the four real human ENCODE samples (e.g. the

simulation parameters for A Rep 1 were estimated from HUVEC
Rep 1). Within replicates of the same condition, the relative
isoform frequencies were set to be identical. We note that the

gene-level abundances were different across all samples, even if
the relative isoform frequencies were the same. Between condi-
tions, 10% of multi-isoform genes expressed in both conditions

were set to be DP, with isoform frequencies randomly shuffled
between the two conditions for these genes.
Because we knew the true set of DP genes between the two

conditions, we were able to measure the recall and precision of
the methods on pairs of samples from different conditions, in
addition to the number of FPs measured on pairs of samples

from the same condition. The PSG DP method exhibited good
FDR control with a precision of 0.93–0.95 and had the highest
recalls (0.54–0.60) of the three methods. Although Cuffdiff dis-

played the same high FP behavior between pairs of replicate
samples, it had reasonable precision (0.88–0.98) between non-
replicate samples but with lower recall (0.11–0.13). FDM had

moderate recall (0.24–0.39) but poor precision (0.40–0.51).
Precision-recall curves constructed by varying the P-value thresh-
old required for calling a gene as DP further demonstrated that

the PSG method’s performance dominated that of FDM and
Cuffdiff on this simulated dataset (Supplementary Fig. S6).
Because Cuffdiff and FDM are able to take into account mul-

tiple biological replicates per condition, we additionally per-
formed an A versus B DP test in which all replicates were
provided to the methods at the same time. Cuffdiff’s recall im-

proved noticeably with this test, although with a slight decrease
in precision (Supplementary Table S3). FDM, on the other hand,
did not predict any DP genes with this test, which was the result

of the highly conservative permutation test it uses when multiple
replicates are provided. However, in terms of its precision-recall
curve performance, FDM improved slightly at the high precision

end of the curve, as compared with its performance with no
replication (Supplementary Fig. S7). Despite only taking into
account pairs of samples, the average accuracy of the PSG

method between non-replicate pairs was superior to the accuracy
of both Cuffdiff and FDM when these methods were provided
with multiple biological replicates (Supplementary Table S3 and

Supplementary Fig. S7).

One implementation detail that sets our PSG methods apart

from Cuffdiff and FDM is that our PSG methods align RNA-

Seq reads to transcript subsequences, whereas Cuffdiff and FDM

accept genomic alignments. Although we used standard align-

ment options for our genomic alignments using TopHat

(Trapnell et al., 2009), we observed that the TopHat alignments

generally had fewer aligned reads than the transcript alignments

used by our PSG methods. To test if this factored into the per-

formance differences on the simulated data, we additionally con-

structed a set of genomic alignments by aligning first to the

annotated transcript sequences and then transforming to gen-

omic coordinates. Running Cuffdiff and FDM with these align-

ments somewhat decreased FPs on the replicate pair tests, but

did not markedly change recall and precision on the non-repli-

cate pair tests with a target FDR of 0.05 (Supplementary

Table S2 and Supplementary Fig. S6). Even with more compar-

able alignment inputs, the PSG method outperformed FDM and

Cuffdiff on these data.

3.3 Efficiency of computation with an exon graph PSG

One advantage of the PSG approach is that inference can be

more efficient, particularly for genes with many isoforms. Even

if a gene has an exponential number (in terms of the number of

exonic segments) of isoforms, a compact PSG model of the gene

can enable polynomial-time inference of the model parameters.

Although factorized PSGs only indirectly model the abundances

of individual isoforms, they enable an efficient alternative for

quantification.
To demonstrate these theoretical efficiency gains, we at-

tempted to perform inference with the Drosophila gene Dscam,

which is capable of producing tens of thousands of isoforms

(Schmucker et al., 2000). For this experiment, we used all read

pairs (184) that mapped to Dscam from the CME_W1_Cl.8þ

Rep 1 sample analyzed in the previous section. Estimation of

the 74 free parameters of the first-order exon graph PSG from

this dataset required less than 3 s of computation. We then con-

structed a reference annotation set of all 23 976 possible isoforms

(equivalent to the unfactorized version of the exon graph PSG)

of Dscam for use with the quantification-only mode of Cufflinks

(Trapnell et al., 2010). A run of Cufflinks on this dataset required

490GB of RAM and did not complete within 6 h. This experi-

ment indicates that as the number of annotated splice variants

for each gene grows, quantification methods that explicitly

model the abundance of each isoform will not be computation-

ally feasible. We note that with current gene annotation sets,

which are not complete in terms of representing all possible iso-

forms for each gene, Cufflinks and our PSG method require a

comparable amount of time. For example, with the simulated

human dataset and comparable alignments from the previous

section, both the PSG and Cufflinks methods required �40

min per pair of samples (the PSG method additionally required

�30 min of preprocessing time per individual sample) on a 12-

core, 800Mhz Linux server.

4 DISCUSSION

In this article, we have demonstrated the utility of PSG RNA-

Seq models for analyzing AP of gene transcripts. Whereas splice
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graphs provide efficient structural representations of the possible
isoforms of a gene, PSGs allow for compact statistical models of
the relative frequencies of these isoforms. Because of their fac-

torized nature, PSG models are more likely to be identifiable
than full-length isoform models and we have provided some
simple criteria wherein this is the case. In addition to being

more identifiable, PSG models allow for efficient inference of
event frequencies, even for genes with an exponential number
of potential isoforms. Through our computational experiments

with simulated and real data, we have confirmed that the event
frequency estimates of the PSG model are accurate and converge
more quickly than those of simpler JR approaches, as is theor-

etically expected. Lastly, we have shown that our DP tests
achieve remarkably low FP rates on several real datasets and
superior accuracy on simulated data.

Although the results of our DP experiments are promising for
PSG-based tests, the lack of overlap between the predictions of
the three compared methods is somewhat alarming. For

example, on the fly non-replicate sample pairs, on average,
only 21% of PSG DP predictions are shared with FDM. Our
DP simulation experiment suggests that much of this lack of

overlap is because of poor precision and recall by the other
methods. However, large methodological differences may also
be a factor here.

A limitation of our PSG-based DP test is that it is only
designed to detect differences in the AP event frequencies be-
tween two samples and is unable to determine whether any

such differences are biologically significant. This fact may ex-
plain our test’s poor performance on the K562 samples, which
are likely to be highly variable. To determine if DP-called genes

are biologically significant, one needs to use multiple biological
replicates per condition (Hansen et al., 2011). Currently, unlike
FDM and Cuffdiff, our method cannot use replicates to assess

biological variability. In addition, our methods do not currently
model biases in RNA-Seq data, and therefore they are not suit-
able for comparing datasets generated by different protocols.

Nevertheless, our method’s strong performance in distinguishing
between replicate and non-replicate samples in the fly and
HapMap datasets suggests that it is a good base method to be

extended with models of biological variation and protocol bias.
In addition, our simulations suggest that our PSG method can
produce more accurate DP predictions than those from Cuffdiff

and FDM, even when these methods are provided with multiple
replicates per condition.
A major task that we have not addressed in this work is that of

determining the best PSG structure for a gene. This task has two
components: (i) identifying the exonic sequences, splice junctions,
transcription start sites and polyadenylation sites of a gene, and

(ii) determining the statistical dependencies between AP events.
The first task is currently an active area of RNA-Seq research
involving splice junction detection methods [e.g. Trapnell et al.

(2009)], and reference-based (Guttman et al., 2010; Rogers et al.,
2012; Trapnell et al., 2010) and de novo transcriptome assembly
(Grabherr et al., 2011; Robertson et al., 2010). The latter task

can be thought of as a model selection problem, for which the
statistical machinery we have presented should be invaluable.
In addition to the learning of PSG structures, our future work

includes several extensions to our current model. First, we plan
to modify the model to include sequencing biases, which have

been demonstrated to significantly impact quantification from
RNA-Seq data (Hansen et al., 2010; Li et al., 2010b; Roberts

et al., 2011). Second, we plan to implement a hierarchical

Bayesian version of our model to properly handle the detection

of DP with multiple biological replicates.
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