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ABSTRACT

High-throughput sequencing for microRNA (miRNA)
profiling has revealed a vast complexity of miRNA
processing variants, but these are difficult to
discern for those without bioinformatics expertise
and large computing capability. In this article, we
present miRNA Sequence Profiling (miRspring)
(http://mirspring.victorchang.edu.au), a software
solution that creates a small portable research
document that visualizes, calculates and reports
on the complexities of miRNA processing. We
designed an index-compression algorithm that
allows the miRspring document to reproduce a
complete miRNA sequence data set while retaining
a small file size (typically <3 MB). Through analysis
of 73 public data sets, we demonstrate miRspring’s
features in assessing quality parameters, miRNA
cluster expression levels and miRNA processing.
Additionally, we report on a new class of miRNA
variants, which we term seed-isomiRs, identified
through the novel visualization tools of the
miRspring document. Further investigation
identified that �30% of human miRBase entries
are likely to have a seed-isomiR. We believe that
miRspring will be a highly useful research tool that
will enhance the analysis of miRNA data sets and
thus increase our understanding of miRNA biology.

INTRODUCTION

High-throughput sequence (HTS) profiling of microRNAs
(miRNA) is becoming increasingly affordable and the
technology of choice for many researchers, as it not only
informs on transcript abundance but also reveals the com-
plexity of miRNA processing. The size and complexity of
HTS mapped data sets imposes great challenges in effi-
ciently processing, visualizing and sharing all the biolo-
gical information. Typically, at the completion of a

study, the most obvious differences identified in HTS
data sets are published, but the bulk of the data is de-
posited in sequence data archives; the wealth of informa-
tion here is accessible only to those with time and
bioinformatics capabilities, and even then there is a
distinct lack of published bioinformatic tools that will
aid in calculating and visualizing the data. Although
there are a growing list of web tools and databases that
provide visualization of sequence reads to individual
miRNA within data sets (1–8), their implementation is
often cumbersome and not amenable to sophisticated in-
terrogation of large data sets. Additionally, these re-
sources do not provide a method to deeply analyze new
data sets. With the challenges encountered in preparing a
mapped HTS data set, it is likely that a significant
majority of data sets remain underutilized.
To address these challenges, we created a pipeline that

will produce a stand-alone interactive miRNA Sequence
Profiling (miRspring) document. This document is small
in size, yet completely reproduces the mapped data set; it
provides visualization of the data as well as tools that will
calculate miRNA processing statistics which were based
on our previous detailed analysis of miRNA datasets (9).
The document itself is a JavaScript encoded HTML file
that is compatible with all major browser types across all
computing platforms. We envisage that the miRspring
document could increase accessibility and transparency
of data sets by being used as a supplement for all HTS
miRNA profiling publications.

MATERIALS AND METHODS

miRspring pipeline

The aim of the miRspring software document is to provide
portability and a universal method to extract miRNA pro-
cessing information from high-throughput sequencing
data sets. The pipeline that generates the miRspring
document is dependent on three resources: SAMTOOLS
(10), miRBase database sequence files (4) and the mapped
sequencing data in BAM format (Figure 1A). Although
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the default pipeline is designed to extract miRNA
sequences present in miRBase, it is also possible to incorp-
orate other small RNAs by adding sequence and genomic
coordinates into the miRBase files (refer to web site or
manual in Supplementary Data Set 1). Similarly novel
miRNA precursor sequences, which cannot be identified
directly in miRspring, can also be incorporated into the
miRspring document.
The sequencing data within a miRspring document is

compressed by storing the precursor sequence once and
then indexing all sequence reads with the corresponding
starting position, length and number of times present in
the data set. This provides a high level of data compres-
sion and makes the final miRspring document significantly
smaller than an equivalent BAM file (Figure 1A).
Additionally, the final document does not require any
external data source or internet connectivity, thus
making it completely independent and portable; it can
even operate on a smart phone or tablet device.
Technical documents that describe how to install the
miRspring pipeline and how to use the miRspring
document are located on the miRspring web site. The
miRspring web site contains additional information
preparing the input BAM files.

Visualization modes

The miRspring document provides navigation between
‘global’ and ‘focused’ visualization modes of miRNA

data (Figure 1B), and a number of features within these
views can be customized. The ‘global’ visualization mode
is the first page that is loaded on opening the document
and displays an XY scatter plot and a tabulated list of
miRNAs and associated counts. Users can navigate
from the ‘global’ to the ‘focused’ visualization mode by
either selecting the ‘detail’ button located on each row of
the table or selecting a data point on the XY scatter plot.
The ‘focused’ visualization mode displays sequence, bar
graphs and isomiR processing statistics relating to
sequence data of the selected miRNA. Sequencing data
are ranked by abundance and displayed in either a novel
50 condensed or traditional verbose format. The novel 50

condensed format merges all sequences starting at a
common 50 position onto one line (Supplementary
Figure S1). Variations at the 30 end are highlighted by a
colored nucleotide, and the frequency of each isomiR is
graphed in the adjacent column with the corresponding
color. The length of the most abundant 30 isomiR is dis-
played in the rightmost column.

miRNA processing calculations

During the creation of a miRspring document, the coord-
inates of all sequences from a BAM file are compared to
the 50 starting position of miRBase-defined processed
miRNAs. Sequences that start within 3 nt (referred to as
the 50 miRBase window) of the 50 end of a miRBase
defined processed miRNA entry are included in the total

Figure 1. Overview of the workflow for miRspring software. (A) The pipeline that creates the miRspring document uses custom scripts which access
local miRBase data files, the mapped sequence BAM file and Samtools. Multiple BAM files can be used to create the final miRspring document,
which has a considerably smaller file size. (B) Many parameters of the data set can be visualized through the ‘global’ or ‘focused’ visualization modes
of miRspring. (C) The miRspring document reports on all aspects of miRNA-processing including (i) 50 isomiRs, (ii) 30 isomiRs, (iii) non-canonical
processing, (iv) arm bias, (v) miRNA length and (vi) RNA editing. (D) Finally, the tabulated data sets can be copied to spreadsheet or statistical
software for further in-depth analysis.
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count for that miRNA. This classification system has been
used by others (11), and the total counts are displayed in
the main table of the global visualization page. The
miRspring document uses the total counts to calculate
the fraction of reads that relate to various processing
features of miRNAs (Figure 1C). miRspring can be in-
structed to analyze the whole data set to generate a
tabulated report that calculates all miRNA-processing
events (Figure 1D), which can then be easily copied for
downstream analysis in programs such as Excel or R. User
can modify the size of the 50 miRBase window value either
within a browsing session (through the options menu) or
modifying the global parameters when creating miRspring
documents.

Seed analysis

Seed visualization and reporting tools transforms all tran-
scripts encoding identical seeds into single data points.
Data can be displayed as a XY scatter plot or tabulated
form that be easily copied into excel or R for downstream
analysis.

Availability

The miRspring pipeline and example documents are freely
available online at http://mirspring.victorchang.edu.au.
Technical documents and training screen casts are also
provided through the web site.

Analysis of public data sets

A number of human publically accessible data sets were
used to demonstrate the versatility of the miRspring
document. From hereon, we refer to these data sets as
follows:

(i) ‘Tissue Altas’. This refers to data sets generated
from a number of tissues using two different
versions of a SOLiD library prepation kit (12).
Multiple raw sequence files exist for each library,
and each one was mapped using the LifescopeTM

small RNA pipeline to generate BAM files. Each
BAM file was converted to a separate miRspring
‘intermediate file’ (refer software manual in
Supplementary Data Set 1). Intermediate files for
the same library were then concatenated and con-
verted into a final miRspring document.

(ii) ‘AGO IP’. This refers to data sets generated from
Argonaute immunoprecipitations (13). Together,
this data set comprises three raw sequence files,
one each for AGO1, AGO2 and AGO3 immunopre-
cipitations, which were mapped using the
LifescopeTM small RNA pipeline to generate BAM
files. Each BAM file was then converted into a
miRspring document.

(iii) ‘ENCODE’. This refers to data sets from release 1
and 2 of the CSHL encyclopedia of DNA elements
(ENCODE) project (14,15). Mapped BAM data sets
were downloaded directly from the ENCODE re-
pository on the UCSC web browser and converted
into miRspring documents.

The accession numbers or download paths for all the
aforementioned data sets are provided as additional infor-
mation (Supplementary Table S1).

Quality control analysis
Custom scripts were used to extract miRNA length, non-
canonical processing and mismatches from miRspring
documents. For each of these features, the average value
was calculated for each rank centile. For the ‘Tissue
Atlas’, we only calculated values from the Whole
Transcriptome Analysis Kit (WTAK) data, which corres-
ponds to the most recent manufacturers kit release.

Identifying processed miRNAs from miRBase-defined
precursors
Each human tissue data set was mapped and converted to
a miRspring document and used the ‘global view’ table
sorting feature to identify abundant non-canonical pro-
cessed miRNAs. We only considered those miRNAs
having non-canonical counts >5000 and with no
miRBase-defined entry for either the 5p or 3p arm (i.e.
having a value of ‘undefined’). We identified the most
abundant sequence by navigating to the ‘focused’ view
for those short listed miRNAs.

Cluster analysis
Using the miRspring document for each human tissue
data set, we downloaded the miRNA cluster report (via
the ‘miR cluster counts’ button) for those miRNAs
located <25 kb from each other. We primarily wanted to
identify pre-miRs within clusters that were differentially
expressed across different tissues. To do this, we used
custom scripts to identify ‘active’ clusters having at least
one pre-miR sequence with >100 sequences aligning to it.
The expression levels of miRNAs within these miRNA-
clusters were ranked for each tissue data set. We then only
considered miRNA clusters that had the same rank order
in data sets generated from two related library prep kits.
The rank orders of each short listed miRNA cluster were
then compared with the corresponding clusters other data
sets. Candidate clusters were identified where a pre-
miRNA rank increased or decreased by at least one
rank in any tissue data set.

IsomiR and seed distribution analysis
We downloaded the seed distribution report from the
miRspring document created from human Tissue Atlas
data sets. Custom scripts were then used to count seed
sequences identified in the data set and cross reference
to miRbase entries.

RESULTS

To demonstrate the research versatility of the miRspring
document, we remapped or directly obtained BAM files
from previously published data sets (12–15) and converted
them into miRspring documents (Supplementary Data Set
2). In total, �895 million sequence tags aligned to
miRBase v19 precursors, which were distributed across
73 miRspring documents needing <55 megabytes of disk
space (Supplementary Table S1). Our analysis focused on
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three areas: (i) quality control parameters, (ii) miRNA
genomic clusters and (iii) miRNA seed analysis.

Quality control

A number of reports have highlighted systematic
transcript selection biases introduced into library prepar-
ations (16–18), highlighting the importance of using the
same preparative method when comparing different data
sets. However, to our knowledge, there are no quality
control measures that reflect the efficiency of individual
library preparations. In examining numerous miRspring
documents generated from different library preparations
and sequenced on different sequencing platforms, we
identified a number of parameters that reflect the effi-
ciency, variation and quality of those preparations.
From the miRspring cumulative distribution XY-scatter
plot, we noticed that in most data sets, a small number
(<50) of miRNAs contribute to a large portion of
miRBase mapped tags (Figure 2A). In the majority of
data sets analyzed, the most abundant miRNA repre-
sented <35% of all miRBase mapped tags (Figure 2B).
This was an informative parameter, as in a small
number of data sets, the most abundant miRNA was
>50%, which suggests that low abundant miRNAs may
have been poorly sampled (Figure 2C).
The XY-scatter plots of miRNA length, non-canonical

processing and mismatches are also useful in assessing the
quality of small RNA libraries. In many data sets, we
noticed that low abundant miRNAs have a broad range
of lengths, whereas the more abundant miRNAs are more
uniform in length (Figure 2D). Furthermore, low
abundant miRNAs have a greater proportion of reads
that are not defined in miRBase, and therefore classified
as non-canonically processed (Figure 2E). Some of these
data points are likely to represent novel processed
miRNAs that are derived from the arms of miRNA
stem-loop sequences that have no annotated entry in
miRBase. We therefore used the tabulated list of
miRNA on the ‘global’ visualization page to determine
whether any abundant non-annotated miRBase entries
existed in a data set. From the human tissue data sets
(12), we identified 34 miRNAs that were derived from
miRBase defined hairpins, but had no annotation
(Supplementary Table S2). Finally, we also identified
that many of low abundant miRNAs had a 1 nt
mismatch to the reference (Figure 2F), and these were
not primarily due to RNA editing events. We next
calculated the average length (Figure 2G), non-canonical
(Figure 2H) and mismatches (Figure 2I) in data sets for
each centile rank. This analysis confirmed the observa-
tions from individual miRspring documents. In most
data sets, variation in miRNA length, non-canonical pro-
cessing and mismatches increased in miRNAs with a
centile rank greater than 3. Using these data sets as a
guide, we conclude that the top 100 ranked miRNA of
high-quality miRNA library preps should have an
average length of 22 nt and have an average of <10%
non-canonical processing. Furthermore, miRNAs with a
rank >300 are most likely to have an average length
<21 nt and >20% non-canonical processing. Together,

these findings highlight the value of the miRspring
document in defining parameters for assessing the
quality of small RNA data sets.

Characterizing expression levels within miRNA clusters

Recent reports have identified sequence modifications and
interactions that regulate miR-1 and let-7 pre-miRNA
processing (19–22). Both miR-1 and let-7 are produced
from polycistronic primary miRNAs (pri-miRs); as the
regulatory proteins target the pre-miR loop, a structural
component common to all miRNAs, many other pre-
miRs within polycistronic pri-miRs could be similarly
regulated. We propose miRNA HTS profiling can
identify other candidates by comparing the relative
expression among pri-miRs. To our knowledge,
miRspring is the first software tool that calculates the
relative expression level within a genomic cluster of
miRNAs, which is suitable for this analysis. We
examined public data sets to annotate expression levels
within miRNA clusters and potentially identify clusters
that may be differentially processed between tissues. For
this examination, we looked for reproducibility from small
RNA library replicates made from two different releases
of the manufacturer’s library preparation kit (12).

Suggested genomic distances that define a miRNA
cluster range from 6 to 50Kb (23,24), and owing to the
lack of a strict definition, miRspring offers the user a
number of distances that can be used to define the
boundaries of a genomically clustered miRNAs. Using
the output generated from the miRspring ‘miRNA
cluster counts’ and custom scripts, we identified that the
expression pattern within many miRNA clusters was
conserved across tissues, and that this was independent
of transcription direction (Supplementary Table S3). For
one potential pri-miR polycistronic cluster, we identified a
ranked expression difference of a individual miRNA in
different tissues (Figure 3A). With the exception of lung
and ovary, miR-365b was the predominant miRNA ex-
pressed from this cluster and suggests that this precursors
of this cluster may be differentially processed.

Seed-isomiR

One of the first detailed miRNA profiling studies
identified that a small number miRNAs produced 50

isomiRs, and owing to the altered seed-sequence, they
are proposed to have a different spectrum of targets (25).

The importance of the miRNA seed sequence in
identifying targets inspired the incorporation of seed
analysis tools in the miRspring document. We used
the miRspring ‘list seed abundance’ reporting feature
to obtain a list of all miRNA seeds and their abundance
from each of the human tissue data sets. From this, we
determined that in each tissue between 4 and 14% of all
miRNAs had seeds that were not defined in miRBase
(Figure 3B). The majority (>99%) of non-miRBase
seeds were generated by isomiRs of miRNAs (defined
in miRBase), and <1% were derived from precursor
arms not defined in miRBase, whereas the remainder
were processed from non-canonically processed RNA.
Similar analysis on small RNA data sets from
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Argonaute immunoprecipitations (13) confirms that a
similar proportion is incorporated in the RNA induced
silencing complex (RISC) complex (Figure 3B). It has
not previously been appreciated that the small number
of miRNAs that produce 50 isomiRs represents a large
proportion of miRNA seeds within human tissues. We
believe this highlights a need to have existing public
target identification software tools that primarily focus
on canonically processed miRNAs (26) to expand their
repertoire to include 50 isomiRs.

We visualized the seed frequency on the miRspring XY
scatter plot and observed that the seed sequences of an
isomiR of one miRNA family could be identical to a
seed sequence of a canonically processed miRNA of

another family. These occurrences were rare, but most
prevalent among low abundance miRNAs, with a few ex-
ceptions noted later in the text. We predict that miRNAs
having identical seeds could be important in enhancing
target selection or in providing some level of target redun-
dancy. We term the relationship of miRNAs that have this
trait ‘seed-isomiRs’. When comparing all human canon-
ical miRNAs and the +/� 1 nt isomiRs (miRBase v19),
30.8% of canonical miRNA seed sequences had possible
seed-isomiRs (Figure 3C). In other species, the proportion
of seed-isomiRs correlated with the number of miRNAs
identified (Supplementary Table S4), which may suggest a
smaller need of redundancy and target enhancement in
lower organisms.

Figure 2. Quality control visualization parameters provided by the miRspring document. (A) Cumulative distribution of miRNAs for a typical data
set. (B) Examination of numerous data sets identified that the most abundant miRNA represented <35% of all reads. Data sets where the majority
of sequence tags are taken by a single miRNA as in (C) have to be treated with caution, as any low abundant miRNAs are poorly represented. (D) In
individual data set, we noticed that the less abundant miRNAs have a large distribution in length, whereas abundant miRNAs have a more uniform
length. Additionally, we also noticed low abundant miRNAs are not processed as defined in miRBase and therefore considered non-canonically
processed (E). Furthermore, more of the low abundant miRNAs tend to have 1 nt mismatches (F). Average, (G) length, (H) non-cannonical
processing and (I) mismatches for each rank centile were calculated from the analyzed data sets.
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In the analysis of publically available data sets, nine
seed-isomiRs were expressed predominantly by the
isomiR rather than the canonical miRNA (Table 1). The
two most notable examples (as identified from the XY
scatter plots) were seed-isomiRs found to be present in
many tissues and cell lines: miR-196-5p/let-7-5p +1
isomiR and the miR-128/miR-27a +1 isomiR

(Figure 3D). The seed-isomiR of let-7 and miR-196 are
particularly intriguing, given that both these miRNAs
play important roles late in development (27,28), and
that HMGA2, a well-described target of let-7, can also
be targeted by miR-196a (29). In all human tissues
analyzed, the let-7-5p+1 isomiR contributed a significant
proportion of reads that contained the AGGUAGU seed

Figure 3. Analysis of published data sets using the miRspring document. (A) Differential expression or processing of miRNA precursors within a
miRNA cluster across different human tissues. (B) Proportion of non-miRBase defined seeds identified in human tissues. Majority are derived from
isomiRs of defined-processed miRNAs, and the remainder is derived from miRNAs that are processed from miRBase precursor arms that in
miRBase v19 have no defined mature sequence (unannotated) or other processed sequences. (C) Vennn diagram showing the number of miRNAs
and their isomiRs that have identical seeds. Seed-isomiRs are highlighted in gray. (D) Examples of interesting seed-isomiRs. The +1 isomiR of
miR-27b has the same seed as miR-128 and miR-3681. Similarly, the+1 isomiR derived from the let-7 family has the same seed as miR-196 family.
(E) The proportion of miRNAs and their isomiRs that have the canonical miR-196 seed (AGGUAGU) in different human tissues.
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(Figure 3E). We note that while only �1% of the let-7-5p
sequence tags are the +1 isomiR, we predict that the
combined output of all let-7 family members together
could effectively target a subset of mRNAs of the canon-
ical miR-196 family.

DISCUSSION

Here, we describe miRspring a method that reproduces a
miRNA-Seq data set combined with powerful research
analysis tools that identify all aspects of miRNA biogen-
esis. The indexing algorithm programmed into the
miRspring document significantly compresses the
sequencing data without compromising computation
speed in displaying or performing detailed sequencing
analysis. The end result is a highly portable document
that is independent of servers and internet connectivity.
Together, these features bring a new level of transparency
and accessibility to the field of miRNA research.

Although miRspring has similar visualization features
to existing online databases and web servers, it does
provide a number of significant improvements to these
tools. To our knowledge, it is the first software that
provides a simple but powerful method to succinctly visu-
alize from a whole miRNA data set the processing
features, seed distribution and relative expression levels
of genomic clustered miRNAs. Most importantly, the
miRspring document quantifies and generates detailed
reports on all miRNA-processing parameters that can
then be used for downstream statistical analysis. This
detailed level of analysis can be applied to any data sets
from any species and removes the dependency of web
servers to derive this information.

We used the reporting feature of the miRspring
software to analyze public data sets and discovered new
insights into quality control parameters that are stored
within sequencing data. Importantly, we also discovered
new aspects of miRNA biology that had not been
identified or previously described. This included discovery
of miRNAs not annotated in miRBase, quantifying the
total abundance of 50 isomiRs within human tissues,
relative expression levels within genomic clustered
miRNA and the discovery of seed-isomiRs.

The seed-isomiR is an intruiging class of miRNA and
potentially highlights the inbuilt redundancy built into

miRNAs. There is a maximum of 16 384 possible 7nt
seed sequences of which the 2042 human miRNAs in
miRBase v19 encode 1662 combinations. The identifica-
tion of family members, which are defined as those having
identical seed sequences (4), highlights a level of redun-
dancy that is built into the system. The discovery of
isomiRs significantly expanded the diversity of seed
sequence possibilities. However, our finding that �30%
of 50 isomiRs that are shifted by 1 nt encode the same
seed sequence of miRBase defined miRNAs emphasizes
the importance of miRNA seed redundancy. We predict
that the targets of seed-isomiRs would have significant
overlap to those of the miRBase defined miRNAs, and
as such, the seed-isomiRs may provide a fine tuning mech-
anism for biological systems to enhance repression of
specific targets through their up or downregulation.
HTS profiling of small RNA has proven to be a

powerful tool, and as the technology becomes more af-
fordable, its use will only increase. Analysis of mapped
data sets has been limited to high-performance computers
with large storage capacity, and there are only selective
data sets making it onto public web databases. The
miRspring document provides a revolutionary solution,
as it replicates the entire mapped data set and provides
user-friendly way of presenting sequencing data along
with inbuilt novel analysis tools that can globally assess
the whole data set. As the document can be used on
personal computers and mobile devices, we anticipate
that miRspring will increase the speed and depth of
HTS data analysis and provide complete and compact
data transparency at the time of publishing.

AVAILABILITY

For archival purposes, version 1.0 of the software is
included as Supplementary Data file 1, but it is recom-
mended to use the latest version available through the
website: http://mirspring.victorchang.edu.au.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4, Supplementary Figure 1 and
Supplementary Data 1–2.

Table 1. Abundant human seed isomiRs identified from miRspring documents of public data sets

SEED miRBase seed seed-isomiR Data set Notable examples

AAGUGCU miR-302-3p miR-520-3p miR-106-5p +1 isomiR ENCODE A549 and K562
miR-20-5p +1 isomiR

GCACCAU miR-767-5p miR-29-3p +1 isomiR Tissue Atlas Placenta
AGGUAGU miR-196-5p let-7-5p +1 isomiR Tissue Atlas Thymus (WTAK)
CACAGUG miR-128-3p miR-27-3p +1 isomiR Tissue Atlas Placenta
UAUACAA let-7a-3p miR-381-3p �1 isomiR ENCODE Ag04450
CUGGCUC miR-149-5p miR-24-3p �2 isomiR ENCODE HeLaS3
UUAUCAG miR-374-3p miR-21 +3 isomiR ENCODE HepG2
UAGCACC miR-5682-3p miR-29-3p �1 isomiR ENCODE Prostate
GAGCUUA hsa-miR-27b-5p miR-590 �5p �1 nt isomeR ENCODE Sknshra
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