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local/systemic bacterial load subsequent to sepsis induction. 
In contrast GRK5 deficiency significantly inhibited sepsis-in-
duced plasma corticosterone levels and the consequent thy-
mocyte apoptosis in vivo. Associated with these outcomes, 
CLP-induced mortality was significantly prevented in the 
GRK5 KO mice in the presence of antibiotics. Together, our 
studies demonstrate that GRK5 is an important regulator of 
inflammation and thymic apoptosis in polymicrobial sepsis 
and implicate GRK5 as a potential molecular target in sepsis. 

 Copyright © 2013 S. Karger AG, Basel 

 Introduction 

 G-protein-coupled receptor kinases (GRKs) are serine/
threonine kinases well known for their role in phosphory-
lation of G-protein-coupled receptors  [1] . Functionally 
GRKs have been linked to a number of cell signaling pro-
cesses, not only related to their role in G-protein-coupled 
receptor phosphorylation, but also in their ability to phos-
phorylate or scaffold a number of intracellular signaling 
proteins  [2] . GRKs are functionally grouped into three 
classes: GRK1-like (GRK1 and GRK7, otherwise known as 
rhodopsin kinases), GRK2-like [GRK2 and GRK3, other-
wise known as βARK1 and 2 (β-adrenergic receptor ki-
nases 1 and 2)] and GRK4-like (GRK4, GRK5 and GRK6). 
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 Abstract 

 NFκB-dependent signaling is an important modulator of in-
flammation in several diseases including sepsis. G-protein-
coupled receptor kinase-5 (GRK5) is an evolutionarily con-
served regulator of the NFκB pathway. We hypothesized that 
GRK5 via NFκB regulation plays an important role in the 
pathogenesis of sepsis. To test this we utilized a clinically rel-
evant polymicrobial sepsis model in mice that were deficient 
in GRK5. We subjected wild-type (WT) and GRK5 knockout 
(KO) mice to cecal ligation and puncture (CLP)-induced poly-
microbial sepsis and assessed the various events in sepsis 
pathogenesis. CLP induced a significant inflammatory re-
sponse in the WT and this was markedly attenuated in the 
KO mice. To determine the signaling mechanisms and the 
role of NFκB activation in sepsis-induced inflammation, we 
assessed the levels of IκBα phosphorylation and expression 
of NFκB-dependent genes in the liver in the two genotypes. 
Both IκBα phosphorylation and gene expression were sig-
nificantly inhibited in the GRK5 KO compared to the WT 
mice. Interestingly, however, GRK5 did not modulate either 
immune cell infiltration (to the primary site of infection) or 
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Even though there is some specificity in terms of their tis-
sue distribution, GRKs especially GRK2 and GRK5 are 
ubiquitously expressed in many cell types including im-
mune cells  [2] .

  Of the seven members of the GRK family, GRK5 was 
first identified as a kinase that phosphorylates β 2 -
adrenergic receptor, m2 muscarinic cholinergic receptor, 
and rhodopsin  [3] . Using GRK5-deficient mice, Gainet-
dinov et al.  [4]  further identified a critical role for GRK5 
in muscarinic receptor signaling in vivo. Subsequently, 
however, several studies have demonstrated a broad role 
for this kinase in cell signaling. For example, GRK5 has 
been shown to phosphorylate and/or interact with non-
receptor substrates including arrestin-2  [5] , F-actin  [6] , 
HDAC5  [7] , Hip  [8] , IκBα  [9] , p105  [10] , Lrp6  [11] , nu-
cleophosmin  [12]  and p53  [13] . Based on its role in cell 
signaling, GRK5 has been proposed to be a critical kinase 
in the pathogenesis of several diseases including endotox-
emia  [14] , cancer  [15] , Alzheimer’s  [16]  and atheroscle-
rosis  [17] . In addition, GRK5 levels are modulated in a 
number of diseases including sepsis, heart failure, obesity, 
cystic fibrosis, cancer and mental disorders  [2] . We have 
recently demonstrated that the GRK5 knockout (KO) 
mice have attenuated the ability to produce cytokines in 
vivo in response to lipopolysaccharide (LPS) [a Toll-like 
receptor 4 (TLR4) ligand]  [14] . We further showed GRK5 
to be an important regulator of signaling from multiple 
Toll-like receptor ligands including TLR2 and TLR3 in 
vivo    [18] . Interestingly, a recent study also demonstrated 
that GRK5 is a critical mediator of inflammation in dro-
sophila and zebra fish models  [19] . However, the role of 
GRK5 in the pathogenesis of a clinically relevant model 
of polymicrobial sepsis is not known.

  Sepsis is the leading cause of death among intensive 
care patients  [20] . Dysregulated inflammatory response 
is a prominent modulator of sepsis progression, causing 
coagulation derangements, apoptosis of lymphoid and 
nonlymphoid tissues and organ dysfunction  [21] . Despite 
the improvements in resuscitation and antibiotic sup-
portive care, the high incidence and fatality in sepsis un-
derscore the need for better understanding of the patho-
physiology of sepsis and to identify new molecular thera-
peutic targets. Using a clinically relevant polymicrobial 
sepsis model  [22] , we demonstrate here that GRK5 is an 
important modulator of sepsis progression, inflamma-
tion, thymocyte apoptosis and mortality. We further 
demonstrate that GRK5 is an important regulator of sep-
sis-induced NFκB activation in the liver. Together, our 
studies implicate GRK5 as an important molecular target 
in the pathogenesis of polymicrobial sepsis. 

  Materials and Methods 

 Materials 
 Protease inhibitor cocktail tablets were from Roche Applied 

Science (Indianapolis, Ind., USA); pIκBα, pERK1/2, pP38 and 
pJNK and tubulin antibodies were from Cell Signaling Technol-
ogy, Inc. (Danvers, Mass., USA) and Sigma (St. Louis, Mo., USA), 
respectively. Ultrapure  Escherichia coli  (0111:B4) LPS was from 
InvivoGen (San Diego, Calif., USA) and dexamethasone was from 
Sigma. 

  Mice 
 GRK5 KO mice were obtained from Jackson Labs and have 

been previously described  [14] . Animals used for experiments 
were 8- to 12-week-old males. They were housed 4–5 mice per cage 
at 22–24   °   C with 50% humidity and a 12-hour light-dark cycle. All 
animal procedures were approved by Michigan State University 
Animal Care and Use Committee.

  Sepsis Model 
 Polymicrobial intra-abdominal sepsis was induced by the cecal 

ligation and puncture (CLP) technique  [23] . Briefly, mice were 
anesthetized by administering ketamine (80 mg/kg) and xylazine 
(5 mg/kg) intraperitoneally. The cecum was exteriorized, ligated 
and punctured twice with a 20-gauge needle. Sham surgeries were 
carried out to serve as control in which the exteriorized cecum was 
neither ligated nor punctured. All animals were administered sub-
cutaneously with 1 ml of warm saline after surgery. In one set of 
survival experiments, antibiotics (ceftriaxone 25 mg/kg and met-
ronidazole 15 mg/kg) were administered (intraperitoneally) 1 h 
postsepsis and every 24 h for 5 days.

  Peritoneal Lavage Fluid and Blood Collection 
 Peritoneal exudate fluid was collected at different time points 

postsepsis as described before  [24] . Briefly, the peritoneal cavity 
was lavaged with 7 ml of RPMI media with 10% FBS and perito-
neal fluid was collected, centrifuged to separate the cells and the 
supernatants stored at –80   °   C until further analysis. Blood was col-
lected by cardiac puncture and plasma was separated (by centrifu-
gation) and stored at –80   °   C until further analysis.

  Cytokine/Chemokine Measurements 
 Cytokines and chemokines were measured from peritoneal ex-

udate and plasma using ELISA kits from eBiosciences, Inc. as de-
scribed before  [25] .

  Bacterial Counts 
 Bacterial load was determined in blood and peritoneal fluid at 

different time points as described before  [24] . Briefly, blood and 
peritoneal fluid were serially diluted and plated on Trypticase TM  
Soy Agar with 5% Sheep Blood (BD Biosciences) and incubated at 
37   °   C for 48 h. Colony-forming units were counted to determine 
bacterial load and expressed as colony-forming units per millili-
ter.

  Determination of Thymic Cell Numbers and Apoptosis 
 Thymi were collected from septic and sham-operated mice 20 

and 36 h postsepsis and single cell suspension was prepared as 
described before  [26] . For determining cell number changes, cells 
were counted using a hemocytometer. Cells were also labeled with 
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Annexin V and propidium iodide (PI) [following the manufac-
turer’s instructions (eBiosciences)] to determine the apoptotic 
cells by flow cytometry (LSRII, BD Biosciences) as described be-
fore  [27] . In addition, cells were labeled with anti-CD4-PE-Cy7 
and anti-CD8-PE for determining CD4+ and CD8+ cells in the 
thymus and data were acquired using LSRII (BD Biosciences) and 
analyzed using Flowjo software (Tree Star, Inc., Ashland, Oreg., 
USA).

  Caspase Activity Assays 
 Thymocytes (obtained as described above) were lysed in buffer 

(50 m M  HEPES, 0.1% CHAPS, 1 m M  DTT, 0.1 m M  EDTA and 0.4% 
Triton X-100, pH 7.4) at 4   °   C for 15 min. The cell lysate was col-
lected and the protein content determined (Bio-Rad). 10 μg of the 
cell lysate was incubated with the fluorescent substrates (Ac-DEVD-
AFC, Z-IETD-AFC and Ac-LEHD-AFC) to determine caspase-3, 8 
and 9 activities at 100 μ M  in the assay buffer (50 m M  HEPES, 1% 
sucrose, 0.1% CHAPS and 10 m M  DTT, pH 7.4) as described  [28] . 
The fluorescence of the cleaved substrates was determined spectro-
fluorometrically (excitation of 400 nm and emission of 505 nm) in 
Tecan Spectra FluorPlus fluorescence plate reader. Data are pre-
sented as picograms of cleaved AFC per milligram protein per min-
ute calculated from a standard curve plot with free AFC.

  In vitro Stimulation of Septic Peritoneal Cells 
 Peritoneal cells collected from wild-type (WT) and GRK5 KO 

mice 36 h postsepsis were washed with PBS and plated in 12-well 
plates at 1 million cells/well. Cells were then stimulated (or not) 
with LPS (0.5 μg/ml) for 12 h and supernatants collected and as-
sayed for the indicated cytokines by ELISA.

  Restraint Stress 
 Eight- to 10-week-old GRK5 WT and KO mice were subjected 

to stress with physical restraint as previously described  [29] . Briefly, 
mice were placed in a 50-ml centrifuge tube with multiple openings 
for ventilation and held horizontally for 30 min. After the stipu-
lated time, blood was collected for corticosterone measurement. 

  Corticosterone Measurements 
 Plasma corticosterone levels were measured using a corticoste-

rone EIA kit from Cayman Chemical (Ann Arbor, Mich., USA) 
according to the manufacturer’s instructions.

  RNA Extraction and Real-Time Q-PCR 
 Liver and lung samples from septic and sham-operated mice 

were collected 12 h post-CLP, and total RNA was extracted using 
the Qiagen’s RNeasy Mini kit. Reverse transcription was carried 
out with 1 μg of RNA with the Promega cDNA synthesis kit. Real-
time Q-PCR was performed as described before for the expression 
of IκBα, IL-6, IL-1β and HPRT  [9] . Primers were obtained from 
IDT DNA Technologies. The following primers were used: IκBα 
forward: TGG CCA GTG TAG CAG TCT TG, reverse: GAC ACG 
TGT GGC CAT TGT AG; IL-6 forward: ACA AGT CGG AGG 
CTT AAT TAC ACA T, reverse: TTG CCA TTG CAC AAC TCT 
TTT C; IL-1β forward: TCG CTC AGG GTC ACA AGA AA, re-
verse: CAT CAG AGG CAA GGA GGA AAA C, and HPRT for-
ward: AAG CCT AAG ATG AGC GCA AG, reverse: TTA CTA 
GGC AGA TGG CCA CA. Real-time Q-PCR was performed using 
ABI Fast 7500 (Applied Biosystems) and all the genes were nor-
malized to HPRT.

  Western Blot Analysis 
 Cytoplasmic extracts from frozen liver tissue samples were 

prepared by homogenizing the tissue in lysis buffer (1  M  HEPES, 
2  M  KCl, 0.5  M  EDTA and 0.1  M  EGTA along with protease and 
phosphatase inhibitors). The protein concentrations in the ex-
tracts were determined and equivalent amounts of protein were 
loaded onto the gels for Western blot analysis. Immunoblotting 
was carried out for pIκBα, pERK, pJNK, pp38 and tubulin as de-
scribed before  [14] . The bands were quantified using the image-J 
(for chemiluminescence) or Licor’s Odyssey program (for fluo-
rescence).

  Statistical Analysis 
 All data are presented as the mean ± SEM. Two group com-

parisons were performed using Student’s t test and comparisons of 
more than two groups were done by ANOVA with the post-Bon-
ferroni test. Survival studies were analyzed by log-rank test (Man-
tel-Cox)  [30–32]  as well as by factorial analysis. All statistical anal-
yses (except factorial analysis) were performed using GraphPad 
Prism Software (San Diego, Calif., USA) and p < 0.05 were consid-
ered statistically significant. Factorial analysis for survival [two 
genotypes (WT and KO) and two treatments (without and with 
antibiotics)] was performed in consultation with the Center for 
Statistical Training and Consulting of the Michigan State Univer-
sity and using the SPSS software program.

  Results 

 In previous studies, we demonstrated that the GRK5-
deficient mice have an attenuated inflammatory response 
after in vivo stimulation with TLR ligands  [14, 18] . Given 
that the progression of polymicrobial sepsis is in part de-
pendent on the stimulation of multiple TLRs, we exam-
ined the role of GRK5 in a clinically relevant model of 
polymicrobial sepsis. For this, we subjected WT and 
GRK5 KO mice to CLP and determined the various 
pathogenic events including inflammatory response, im-
mune cell infiltration, thymic apoptosis, bacterial load 
and mortality.

  GRK5 Mediates Sepsis-Induced Cytokine Production 
 Cytokine and chemokine levels were examined in the 

peritoneal fluid and plasma from the different groups of 
mice (sham and CLP in the WT and KO groups) at 12 h 
after surgery. As shown in  figure 1 a, IL-6, IL-10, TNFα 
and MCP-1 levels in the peritoneal fluid were signifi-
cantly decreased in the KO septic compared to the WT 
septic mice. Peritoneal IL-12/23 (total p40) was also in-
hibited in the KO mice but did not reach statistical sig-
nificance. Similar to the peritoneal fluid, plasma levels 
of IL-6 and IL-10 were significantly decreased in the KO 
compared to the WT septic mice ( fig. 1 b). Plasma levels 
of TNFα, IL-12/23 and MCP-1 did not significantly dif-
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fer between the septic groups. Note that neither of the 
sham groups showed any detectable levels or showed 
very low levels of cytokines/chemokines at the time 
points tested (data not shown). Together, these results 
suggest that GRK5 mediates sepsis-induced local and 
systemic inflammation.

  GRK5 Mediates NFκB Signaling in Polymicrobial 
Sepsis 
 Previous studies have shown that GRK5 is an impor-

tant regulator of NFκB signaling and inflammatory gene 
expression in mouse, zebra fish and drosophila models 
 [14, 19] . Our results in the CLP model of polymicrobial 
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  Fig. 1.  GRK5 mediates inflammatory response in the CLP model of polymicrobial sepsis: GRK5 WT and KO mice 
were subjected to CLP surgery and peritoneal ( a ) and plasma ( b ) fluids were collected 12 h after surgery as de-
scribed in Materials and Methods. IL-6, IL-10, TNFα, IL12/23 (total p40) and MCP-1 were measured in these 
two fluid samples using ELISA kits from eBiosciences (n = 12 for WT and n = 9 for KO for the 12-hour time 
point). *  p < 0.05,  *  *  p < 0.01,  *  *  *  p < 0.001 compared to the corresponding septic WT groups. 
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sepsis suggest that GRK5 deficiency attenuates inflam-
matory cytokine production both in the peritoneal cav-
ity and in the plasma. To examine if GRK5 deficiency 
leads to attenuated NFκB signaling in this sepsis model, 
we determined phospho-IκBα levels and mRNA expres-
sion of NFκB-dependent genes in the liver from the two 
genotypes of mice subjected to sham or CLP surgery. As 
shown in  figure 2 a, CLP induced significant phosphory-
lation of IκBα in the liver of WT mice, and this was sig-
nificantly inhibited in the GRK5 KO mice. To determine 
the expression of NFκB-dependent genes, we examined 
the mRNA levels of IκBα, IL-6 and IL-1β in the liver 12 h 
after CLP. Consistent with the role of GRK5 in IκBα 
phosphorylation, mRNA expression of  IκBα, IL-1β and 
IL-6  was significantly inhibited in the GRK5 KO mice 
( fig.  2 b). Interestingly, this phenomenon was also ob-
served in the lungs ( fig. 2 b, lower panel). To rule out oth-
er signaling pathways, we also examined pERK, pJNK 
and pP38 and found no effect of GRK5 deficiency on 
these pathways ( fig. 2 c). Together, these results demon-
strate a crucial role for GRK5 in NFκB activation in vivo  
 and the consequent inflammatory response in this poly-
microbial sepsis model.

  GRK5 Does Not Regulate Chemotaxis to the Local Site 
of Injury/Infection 
 Studies have shown that following CLP, peritoneal 

cell infiltration plays a critical role in the progression of 
sepsis  [33]  and that modulation of immune cell infiltra-
tion can have therapeutic consequences  [34] . GRKs have 
been shown to be important regulators of chemokine 
receptor signaling and chemotaxis  [35] . Therefore, to 
determine if GRK5 regulates immune cell infiltration 
into the site of injury/infection (peritoneum), we exam-
ined the number of cells in the peritoneal cavity follow-
ing CLP at different time points in the two genotypes of 
mice. As shown in  figure 3 , GRK5 deficiency did not af-
fect immune cell infiltration into the peritoneal cavity at 
any of the time points tested. In addition, there was no 
difference in infiltration of specific immune cell popula-
tions ( fig. 3 ). Together, these results suggest that GRK5 
is an unlikely regulator of chemotaxis in this model of 
sepsis.

  Deficiency of GRK5 Does Not Affect Bacterial Load 
following Sepsis 
 In order to examine if GRK5 is able to modulate bacte-

rial load after CLP, we plated peritoneal lavage fluid and 
blood samples from sham and septic mice onto 5% sheep 
blood agar plates and determined the colony-forming 

units. Interestingly, the bacterial load was not any differ-
ent between the WT and the KO mice at any of the time 
points tested ( fig. 4 a, b). Taken together, our data so far 
suggest that even though GRK5 mediates NFκB signaling 
and inflammation in sepsis, neither chemotaxis nor bacte-
rial load is significantly affected.

  Regulation of Thymocyte Numbers by GRK5 in Sepsis 
 It is now well established that sepsis-induced thymo-

cyte apoptosis contributes to the pathogenic events and 
the consequent mortality in septic animals  [36]  and hu-
man patients  [37] . Importantly, inhibiting thymic apop-
tosis has been shown to be beneficial in preventing sepsis-
induced mortality in experimental models  [38] . Previous 
studies have suggested a role for GRK5 in irradiation-in-
duced thymocyte apoptosis via a p53-dependent pathway 
 [13] . Furthermore, NFκB signaling in thymocytes has 
been shown to be an important regulator of thymocyte 
apoptosis  [39, 40] . Together, based on these rationales, we 
hypothesized that GRK5 could be an important regulator 
of sepsis-induced thymocyte apoptosis. To test this, we 
first assessed the number of thymocytes from WT and 
KO mice subjected to sham or CLP surgery. As predicted 
from previous studies, in the WT septic mice thymocyte 
numbers were significantly decreased compared to sham-
operated mice ( fig. 5 a). Interestingly, however, septic KO 
mice had significantly higher numbers of thymocytes 
compared to the corresponding WT mice at both time 
points. In addition to the total cells, the frequency of dou-
ble-positive CD4+CD8+ lymphocytes (loss of these lym-
phocytes has been linked to poor survival  [41] ) was also 
markedly decreased in the WT septic mice compared to 
the sham mice ( fig. 5 b). Importantly, the decrease in these 
double-positive CD4+CD8+ cells was significantly atten-
uated in the GRK5-deficient mice ( fig. 5 b). 

  Regulation of Thymocyte Apoptosis by GRK5 in vivo 
 To further confirm whether the difference in thymo-

cyte numbers is the result of altered apoptosis between 
WT and GRK5 KO mice, we performed two separate as-
says: flow cytometry analysis of thymocytes stained with 
Annexin V and PI, and caspase activity assays. Consis-
tent with the thymocyte numbers, an increased frequen-
cy of Annexin V+PI– cells (early apoptotic cells) was 
observed in WT septic mice, and this was significantly 
inhibited in the GRK5 KO mice ( fig. 5 c). Furthermore, 
CLP significantly induced caspase-3 activity in the WT 
thymocytes, and this was again markedly reduced in the 
GRK5 KO mice ( fig. 5 c). Unlike caspase-3, activities of 
caspase-8 and 9 were not significantly induced in sepsis 
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 Fig. 2.  GRK5 mediates IκBα phosphorylation and expression of 
NF-κB-dependent genes in liver and lung.  a   Cytosolic extracts of 
the liver tissue from GRK5 WT and KO mice 12 h postsepsis were 
subjected to Western blotting for phospho-IκBα and tubulin (for 
normalization) as described before  [14] . A representative blot is 
shown on the left and quantitation on the right (n = 11–12 each for 
WT and KO mouse CLP and n = 3 for shams;    *  p < 0.05, ** p < 0.01). 
 b  Liver and lung tissue samples from GRK5 WT and KO mice sub-

jected to sham or CLP surgery were collected 12 h postsepsis and 
analyzed for the expression of NFκB-dependent genes as described 
in Materials and Methods   (n = 8 for CLP and n = 4 for sham per 
genotype;  *  p < 0.05,  *  *  p < 0.01 compared to the corresponding 
septic WT group).  c  Liver tissue extracts described in  a  were sub-
jected to immunoblotting for pERK, pJNK and pP38 as described 
in Materials and Methods. Western blot is shown on the left and 
quantitation on the right (n = 5 each for WT and KO mouse CLP)
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and did not differ between the groups ( fig. 5 c). Together, 
these results implicate GRK5 in the regulation of cas-
pase-3-mediated thymocyte apoptosis following sepsis. 

  Mechanism of GRK5-Mediated Thymic Apoptosis 
 Previous studies have shown that sepsis-induced corti-

costeroids induce thymic apoptosis in the CLP model  [42] . 
To determine whether GRK5 directly modulates cortico-

steroid-induced thymocyte apoptosis, we stimulated thy-
mocytes from WT and GRK5 KO mice ex vivo with dexa-
methasone (100 n M ) and assessed apoptosis using flow 
cytometry (Annexin V/PI). Dexamethasone treatment in-
duced significant apoptosis in both the genotypes and, 
surprisingly, apoptosis was equivalent between the geno-
types (data not shown). Because these results ruled out any 
direct effect of GRK5 on thymic apoptosis (at least as in-
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duced by corticosteroids), we next examined whether the 
levels of corticosterone are different between the two gen-
otypes during sepsis progression. Interestingly, plasma 
corticosterone levels were significantly higher in the WT 
septic mice (compared to sham) and the levels were mark-
edly attenuated in the GRK5 KO septic mice ( fig. 6 ). This 
was more evident at the later time point (20 h). To deter-
mine whether the difference in the corticosterone levels 
between the two genotypes is specific to sepsis, we induced 
stress with physical restraint in both genotypes and mea-
sured plasma corticosterone levels. We found that 30 min 
of physical restraint induced a significant increase in plas-
ma corticosterone, but the levels were similar between the 
two genotypes ( fig. 6 ). Together, these results suggest that 
sepsis-induced corticosterone levels are attenuated in 
GRK5-deficient mice, and this might lead to enhanced 
thymocyte survival during later stages of sepsis.

  GRK5 Inhibits Immunoresponsiveness of Peritoneal 
Cells in Sepsis 
 Decrease in lymphocytes due to apoptosis is thought 

to be an important pathogenic event in the development 
of immunosuppression observed during sepsis progres-
sion. Because thymic apoptosis is reduced in the GRK5-
deficient mice, we hypothesized that the consequent de-
velopment of immune suppression may be attenuated in 

GRK5-deficient mice. To test this in vitro, we obtained 
peritoneal cells from the two genotypes of mice subjected 
to sepsis (36 h post-CLP) and assessed their immuno-
competency in response to in vitro LPS stimulation. Su-
pernatants from these experiments were assayed for IL-6, 
IL-10, TNFα and IL-12/23 using ELISA. As expected, un-
stimulated GRK5 KO cells (from septic mice) produced 
lower cytokine levels compared to the WT septic mice 
( fig. 7 ). However, upon stimulation with LPS, GRK5 KO 
cells produced significantly enhanced proinflammatory 
cytokines (IL-6, TNFα and IL-12/23) compared to the 
WT cells. This effect was restricted only to the typical pro-
inflammatory group and not to IL-10. The basal IL-10 
level was much higher in the WT cells from septic mice 
and LPS stimulation did not further enhance IL-10. To-
gether, these results show that even though the initial in-
flammatory response in the KO cells is attenuated, cells 
from these septic mice respond better than the WT cells 
to in vitro LPS stimulation. This suggests that deficiency 
of GRK5 possibly renders the mice more immune-re-
sponsive at later stages of sepsis.

  Role of GRK5 in Sepsis-Induced Mortality 
 Dysregulated inflammatory response, poor bacterial 

clearance and excessive loss of lymphocytes have all been 
linked to poor survival in sepsis  [21] . Our results using 
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GRK5-deficient mice indicate that GRK5 mediates in-
flammatory response and thymocyte apoptosis in sepsis. 
Therefore, we predicted that septic GRK5-deficient mice 
might exhibit altered survival profile compared to the 
corresponding WT mice. Contrary to our expectations, 

mortality following sepsis was similar between the two 
genotypes ( fig. 8 a). We then reasoned that because bacte-
rial load was similar between the two genotypes, GRK5-
deficient mice might exhibit better survival in the pres-
ence of antibiotics. To test this, we subjected WT and 
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siveness of peritoneal cells in sepsis:   perito-
neal cells from GRK5 WT and KO mice 
subjected to sham or CLP surgery were col-
lected 36 h postsepsis, stimulated with LPS 
and assessed for cytokine production as de-
scribed in Materials and Methods (n = 7–8 
per genotype).          *  p < 0.05,  *  *  p < 0.01 com-
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toneal cells stimulated with LPS;  #  p < 0.05 
compared to the corresponding septic WT 
peritoneal cells without LPS stimulation.

0

20

40

60

80

100

Su
rv

iv
al

 (%
)

0 1 2 3 4 5 6 7
Days postsurgery

Without antibiotics

0

20

40

60

80

100

Su
rv

iv
al

 (%
)

0 1 2 3 4 5 6 7
Days postsurgery

With antibiotics *WT-CLP
KO-CLP

  Fig. 8.  Role of GRK5 on survival following 
CLP: GRK5 WT and KO mice were sub-
jected to sham or CLP surgery and survival 
was assessed for 7 days in the absence ( a ) or 
presence ( b ) of antibiotics as described in 
Materials and Methods (n = 10 per geno-
type in  a ; n = 15–16 per genotype in  b ).      *  p 
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GRK5-deficient mice to CLP and administered antibiot-
ics (ceftriaxone: 25 μg/g body weight and metronidazole: 
15 μg/g body weight) intraperitoneally 1 h post-CLP and 
every 24 h thereafter for 5 days  [43] . Compared to WT 
mice that did not receive any antibiotics ( ∼ 70% mortali-
ty), mortality in WT mice that received antibiotics de-
creased to  ∼ 40%. Interestingly, however, GRK5-deficient 
mice receiving antibiotics had only  ∼ 10% mortality 
(compared to  ∼ 90% mortality in GRK5-deficient mice 
not receiving antibiotics) ( fig. 8 b). Together, these results 
demonstrate that in the presence of antibiotics, GRK5 de-
ficiency protects mice from sepsis-induced mortality.

  Discussion 

 Given the high rate of mortality in sepsis, understand-
ing the pathophysiologic events and molecular mecha-
nisms that mediate mortality in sepsis can help in devel-
oping new therapies and better treatment strategies. In 
the CLP model of polymicrobial sepsis GRK5 deficiency 
inhibited several but not all aspects of sepsis progression. 
Importantly, GRK5 deficiency significantly enhanced 
survival  only  in the presence of antibiotics. Even though 
GRK5 deficiency attenuated the inflammatory response 
both at the systemic and organ levels, as well as signifi-
cantly inhibited thymocyte apoptosis, these changes were 
not sufficient to enhance survival. It is possible that both 
the severity of sepsis and bacterial dissemination were too 
high, in spite of the favorable effects on inflammation and 
thymocyte apoptosis in GRK5 deficiency. This is in part 
supported by the observation that the bacterial load per 
se was not different between the two genotypes of mice at 
early or later time points of sepsis. Thus it is possible that 
at this level of severity, both antibiotics (to clear bacterial 
infection) and GRK5 deficiency yield a better outcome. A 
similar phenotype was reported in MyD88 KO mice  [44]  
wherein deficiency of MyD88 led to a diminished inflam-
matory response and attenuated lymphocyte apoptosis 
without any effect on bacterial load following polymicro-
bial sepsis. Importantly, similar to our studies, these ef-
fects were not sufficient to prevent mortality following 
CLP. MyD88 is a critical adaptor molecule for many TLRs 
including TLR4. Consistent with the phenotype of MyD88 
KO mice, blocking TLR4 alone in a CLP model of sepsis 
did not prevent mortality because of persistent bacterial 
load  [32] . Similar to our model, the TLR4 antagonist sig-
nificantly improved survival only in the presence of anti-
biotics  [32] . Based on our previous studies  [14, 18]  show-
ing that GRK5 is an important regulator of TLR4 signal-

ing, our results are consistent with these other studies in 
terms of the outcome of sepsis. 

  Studies have consistently found that the cytokine re-
sponse plays a major role in the resolution of sepsis by the 
activation of immune cells and subsequent clearance of 
microbes. However, an excessive production of cytokines 
with aberrant activation of immune cells can have ill ef-
fects on the host. As shown in the endotoxemia model 
 [14] , we demonstrate here that GRK5 deficiency attenu-
ates inflammatory cytokines following intra-abdominal 
polymicrobial sepsis. Consistent with the systemic and 
peritoneal cytokines, mRNA expression of NFκB-
dependent genes in the liver and lungs were also attenu-
ated at 12 h postsepsis. In line with our observations in 
the LPS model as well as the demonstrated effects on bac-
terial infection in drosophila and zebra fish models, poly-
microbial sepsis-induced IκBα phosphorylation in the 
liver was significantly inhibited in the GRK5 KO mice. 
Together, these studies are consistent with previous stud-
ies showing that GRK5 regulates NFκB signaling and 
therefore is able to modulate NFκB-dependent gene ex-
pression. 

  Contrary to our results in mice and those of Valanne 
et al.  [19]  in drosophila, zebra fish and human cells, other 
studies have also shown that GRK5 is a negative regulator 
of NFκB signaling in endothelial cells  [17]  and vascular 
smooth muscle cells  [17] . This effect of GRK5 has been 
linked to its role in stabilizing nuclear IκBα levels where-
as we have demonstrated previously that GRK5 is able to 
phosphorylate IκBα at the same sites as that of IKKβ and 
to mediate degradation  [9] . Thus it is possible that GRK5 
may have multiple roles in terms of NFκB regulation but 
the dominance of regulation might depend on the cell 
type and disease being examined. 

  Lymphocyte apoptosis has increasingly been recog-
nized as an important step in the pathogenesis of sepsis, 
by inducing a state of ‘immune paralysis’ that renders the 
host vulnerable to invading pathogens  [41] . NFκB signal-
ing plays a vital role in lymphocyte development, func-
tion and apoptosis. In addition, NFκB signaling can either 
promote survival  [39]  or apoptosis  [40]  of lymphocytes 
depending on the cell type involved. Even though we 
found GRK5 to be an important regulator of NFκB signal-
ing in the liver, this phenomenon appeared to be tissue 
specific since we did not observe any difference in NFκB 
activity in the thymus from the two genotypes subjected 
to CLP (data not shown). Since previous studies have 
shown that sepsis-induced thymocyte apoptosis is medi-
ated by corticosterone  [42] , we hypothesized that either 
corticosteroid signaling or its plasma levels may be dif-
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