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The multiple sclerosis (MS) patient population is highly heterogeneous in terms of disease course
and treatment response. We used a transcriptional profile generated from peripheral blood
mononuclear cells to define the structure of an MS patient population. Two subsets of MS subjects
(MSA and MSB) were found among 141 untreated subjects. We replicated this structure in two
additional groups of MS subjects treated with one of the two first-line disease-modifying
treatments in MS: glatiramer acetate (GA) (n = 94) and interferon-β (IFN-β) (n = 128). One of the
two subsets of subjects (MSA) was distinguished by higher expression of molecules involved in
lymphocyte signaling pathways. Further, subjects in this MSA subset were more likely to have a
new inflammatory event while on treatment with either GA or IFN-β (P = 0.0077). We thus report
a transcriptional signature that differentiates subjects with MS into two classes with different
levels of disease activity.

INTRODUCTION
Multiple sclerosis (MS) is thought to emerge when genetically susceptible individuals
encounter environmental triggers that initiate an inflammatory reaction against self-antigens
in the central nervous system. These events result in recurring episodes of inflammatory
demyelination and, in many cases, a progressive neurodegenerative process (1). However,
the prevalent syndromic definition of MS obscures extensive interindividual variation in
terms of disease course, response to a given treatment, and distribution of deficits. Currently,
although imaging may help to stratify risk of a second demyelinating event in the context of
a clinically isolated demyelinating syndrome (CIS) (2), there are no validated molecular
biomarkers that offer meaningful predictions for MS. As a result, in a clinical setting, one
can only categorize subjects after prolonged observation of their disease course. Further,
treatment decisions are based on study results from the highly selected subject populations
used in clinical trials.

As illustrated by the success of natalizumab (an anti–VLA-4 antibody) and fingolimod (a
sphingosine 1-phosphate receptor modulator), immune cells in the peripheral circulation
play an important role in MS (3, 4). Sequestering these cells in the peripheral compartment
reduces relapse rates and evidence of inflammatory demyelination on magnetic resonance
imaging (MRI) in the brain. These and other studies suggest that sampling peripheral blood
is likely to be informative in exploring the structure of the MS patient population. Here, we
assess whether we can use such information to identify a priori subsets of subjects whose
clinical course will differ over time.

Studies of the peripheral blood transcriptome in MS have been performed in many different
ways; however, they have focused, for the most part, on identifying transcriptomic
signatures of clinically defined classes of subjects, such as progressive versus relapsing
subjects or subjects that respond to a given treatment. Here, similar to the work of Corvol
and colleagues, which examined a population of subjects with CIS (5), we use an
unsupervised clustering approach to explore whether there is more than one class of MS
subjects that can be distinguished using transcriptomic data extracted from peripheral blood
mononuclear cells (PBMCs). We define two subsets of MS that are present not only in our
large collection of untreated subjects but also in two additional cohorts, one treated with
glatiramer acetate (GA) and the other treated with interferon-β (IFN-β). Further, we report
that the subset of subjects with higher expression of lymphocyte activation pathway genes is
more likely to have another inflammatory event over the course of their disease.
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RESULTS
Characteristics of the transcriptome in our three subject collections

In Table 1, we summarize the demographic and clinical characteristics of the subjects with
demyelinating disease [relapsing-remitting (RR) MS or CIS] that were considered for this
study. All subjects are participants in the Comprehensive Longitudinal Investigation of MS
at the Brigham and Women’s Hospital (CLIMB), a prospective study of the early phase of
demyelinating disease. Transcriptional profiles were generated from frozen PBMCs
collected prospectively as part of CLIMB. There were some differences in the clinical
characteristics among the three groups of subjects: (i) a slightly increased frequency of
women in the untreated group; (ii) a higher number of CIS subjects in the untreated group;
and (iii) a lower level of brain parenchymal fraction (BPF), a normalized measure of whole-
brain volume, in the IFN-β–treated subjects, after correction for age at first symptom, sex,
and disease duration (Table 1).

At the end of our quality control pipeline, 20,527 probe sets from 363 subjects passed our
rigorous quality control measures. The first three principal components derived from these
standardized data capture 41.4% of the variance in the data, and these three principal
components are not associated with treatment category (PC1, P = 0.49; PC2, P = 0.16; PC3,
P = 0.20). This is appreciated in Fig. 1A in which the distribution of PBMC RNA profiles
from subjects of the three treatment categories (GA, IFN-β, and untreated) overlap. This
figure shows that these major axes of transcriptome-wide variation are not significantly
different among the three subject categories. When assessing individual probe sets for
evidence of pairwise differential expression in the treatment groups, we find that there are
no significant differences [false discovery rate (FDR) < 0.05] between the 94 GA-treated
and 141 untreated subjects (Fig. 1B) (table S1). On the other hand, both of these groups
reveal the expected altered expression of type 1 interferon response genes when compared to
the 128 IFN-β–treated subjects: (i) for untreated versus IFN-β, 1649 probe sets are up-
regulated and 1453 probe sets are down-regulated at an FDR < 0.05 in IFN-β subjects (table
S2); (ii) for GA versus IFN-β, 568 probe sets are up-regulated and 840 probe sets are down-
regulated at FDR < 0.05 in IFN-β–treated subjects (table S3). As illustrated in Fig. 1B, the
differential expression patterns of the two comparisons (untreated and GA) with IFN-β
overlap, and the direction of effect (up- or down-regulation) is the same in the two
comparisons. The most up-regulated probe sets (targeting the IFI44L, IFIT1, IFI44, IFIT3,
IFI6, OASL, MX1, IFIT2, OAS1, and OAS2 genes) quantify the RNA expression level of
well-described interferon response genes (6–8) (table S4). Thus, whereas we find the
expected transcriptional changes in PBMCs after treatment with IFN-β (9, 10), we see a lack
of transcriptional changes in PBMCs after treatment with GA even though our large sample
size gives us >90% power to identify an RNA expression difference between GA-treated
and untreated subjects that is of the same magnitude as that seen in IFN-β–treated subjects
relative to untreated subjects. This suggests that, at the patient population level, the effects
of chronic GA treatment on transcription, which have not been explored deeply so far, (i)
may be modest for any one gene, (ii) may be limited to a small subset of circulating cells, or
(iii) may be limited to specific immunological compartments and are not reflected in
peripheral blood. With this baseline assessment of the transcriptomic profiles of the three
subject groups completed, we turned to analyses exploring the heterogeneity of the subject
population.

Unsupervised clustering identifies two untreated MS subgroups
To empirically determine the number of subsets of subjects present within our untreated
group, we used an unsupervised clustering method, non-negative matrix factorization
(NMF) (11). NMF allowed exploration of the structure of our subject population without
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any assumptions as to which genes may be important. It identified metagenes, or groups of
coregulated genes, which were used to cluster subjects into a range of subsets. We tested a
range of models (from two to five clusters of subjects) and used the cophenetic coefficient, a
measure of how well a model fits the data, to identify the optimal k (k is the number of
clusters). As illustrated in Fig. 2, the solution of k = 2 subsets is the one that returns the
highest cophenetic coefficient for the untreated subjects (Fig. 2, A and B, and table S5A).
We called the smaller subset (n = 58) MSA and the larger subset (n = 83) MSB. This
structure in our 141 untreated subject population was not driven by the subset of 33 CIS
subjects: There was no significant difference in the proportion of CIS subjects in MSA and
MSB (table S6). Moreover, when the unsupervised clustering approach was repeated after
excluding the CIS subjects, the same structure was identified, and there was a strong
correlation between subject class assignments in the two independent classifications (with
and without CIS subjects; P < 0.0001, Fisher’s exact test) (fig. S1).

Given that our three subject groups (GA, IFN-β, untreated) were not significantly different
in the major axes of variation in the data, we attempted to replicate the observation of a two-
subset population structure in the untreated subjects by deploying the NMF method in GA-
treated and IFN-β–treated subjects. In both of the latter groups, the k = 2 subset solution is
also the one that maximized the cophenetic coefficient (Fig. 2B) when testing models from k
= 2 to k = 5. In untreated subjects, 205 probe sets were differentially expressed (FDR <
0.05) between the MSA and MSB subsets (fig. S2); thus, these 205 probe sets offer a
transcriptional signature that can differentiate the two subsets of untreated subjects.

To further validate this signature and our hypothesis that the same two subsets of subjects
with MS exist in the different treatment groups, we used a support vector machine (SVM)
method (a form of supervised clustering) in which a predefined list of probe sets is used to
separate subjects into two classes (12–14). With the SVM method and the 205 probe set list
discriminating the untreated MSA and MSB subject subsets, we partitioned GA-treated
subjects into two groups. As seen in Fig. 3A, we then compared the SVM-determined group
assignments to the assignments determined by the unsupervised NMF method that uses the
entire RNA data set. We observed that the structure of the population determined
independently by each method was very similar (class assignment overlaps in 92.6% of
subjects). Figure 3A more precisely displays the consistency of the two clustering strategies:
Subjects that were classified differently in the two analyses were those subjects where the
SVM method made a less confident assignment. Thus, taking the NMF-defined subject class
(MSA versus MSB) in GA-treated subjects as our best estimate of the “correct” subject
classification, we observed that the top differentially expressed genes between the untreated
subgroups captured the structure of the GA-treated subject population. Also, the direction of
the differential expression was the same: The same genes were over-expressed when
comparing MSA versus MSB in either untreated or GA-treated subjects. Similarly, when we
repeated this process with IFN-β–treated subjects, we were able to correctly predict the
unsupervised, NMF-determined class of 90.6% of IFN-β–treated subjects with the SVM
strategy and the expression signature determined in untreated subjects (Fig. 3B). As noted
above, misclassified individuals were found among individuals for whom the SVM method
returned a classification with lower confidence.

If we impose a confidence threshold >80% before we accept an SVM-determined
classification, the accuracy becomes 98.8% for the 81 of 94 GA-treated subjects that have an
SVM classification meeting this confidence threshold. Similarly, classification accuracy
increases to 96.5% for the 114 of 128 IFN-β–treated subjects meeting the 80% confidence
threshold (Fig. 3C). Thus, with a reasonable confidence threshold (>80% confidence), more
than 86% of subjects treated with first-line disease-modifying agents (GA or IFN-β) could
be classified to >96% accuracy with a signature derived from untreated subjects (Fig. 3C).
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These results validate the existence of the same two subsets of subjects (MSA and MSB) that
can be differentiated by a single transcriptional signature in the three subject groups (GA,
IFN-β, and untreated). In this signature, 98 probe sets were differentially expressed in the
same direction in all three MSA versus MSB comparisons (table S7). Table S8 reports, by
subject group, the probe sets differentially expressed for each MSA versus MSB comparison.

Functional annotation of the transcriptional signature
To search for patterns within the signature differentiating the MSA and MSB subsets
identified by NMF, we used the Ingenuity Pathway tool (http://www.ingenuity.com) and its
repertoire of known pathways. We focused this analysis on the pathways that are shared by
the MSA versus MSB comparison in each of the three subject groups: Fig. S3 highlights
those pathways that are enriched for genes differentiating the MSA and MSB subsets and
meet a Benjamini-Hochberg P < 0.0005 (which is corrected for the testing of multiple
comparisons) in each subject group. Seventeen pathways meet this criterion, but many more
show robust enrichment below a Benjamini-Hochberg P < 0.05 threshold (table S9). Overall,
many of the pathways have overlapping sets of genes and primarily involve adaptive
immune functions. For example, the MSA subjects displayed, on average, greater expression
of genes in the predefined “T cell receptor” and “B cell receptor” pathways (fig. S3); genes
found in the NFAT (nuclear factor of activated T cells), ILK (integrin-linked kinase), PI3K
(phosphatidylinositol 3-kinase), and EGF (epidermal growth factor) signaling pathways
were also expressed more highly in the MSA subset. Thus, overall, it appears that MSA
subjects may have a greater proportion of lymphocytes or perhaps more activated
lymphocytes in their peripheral blood.

An increased likelihood for a demyelinating event in MSA subjects
Having defined two subsets of subjects with MS by NMF, we went on to assess whether this
structure plays a role in disease course. First, we compared the demographic features of the
two subsets of subjects in each treatment group to evaluate them for any differences that
could confound our treatment response analysis. As outlined in table S5, A to C, none of the
available clinical and paraclinical data appeared to be different between the two MS subsets
after correcting for the testing of multiple hypotheses, except for a difference in disease
duration at the time of sampling in GA-treated subjects. The following analysis therefore
included a covariate for disease duration in addition to covariates for sex and age at
symptom onset.

To maximize our power in our primary analysis of the role of the subject subsets in disease
course, we included GA-and IFN-β–treated subjects that had information on new
inflammatory events occurring after the time of blood sampling. The NMF-defined subject
subsets were used in this analysis. Given their shared population structure, we merged GA-
and IFN-β–treated subjects to assess the role of the subject subsets in disease course,
independent of treatment. It is important to note that previous analysis of the extended
CLIMB cohort from which our subjects were drawn revealed no significant difference in the
likelihood of inflammatory events after the onset of GA or IFN-β treatment (15).

Our primary analysis therefore assessed the trajectories of disease activity in the merged
MSA and MSB subsets of GA-and IFN-β–treated subjects after transcriptional profiling.
Evidence of disease activity (the analysis end point) included (i) a clinical relapse, or (ii)
new T2 hyperintense or gadolinium-enhanced lesions, or (iii) an expanded disability status
scale (EDSS) increase of 1, sustained more than 6 months. Among the 56% of GA-treated
subjects who reached one of these end points, 39.2% had a clinical relapse, 51.0% had a new
lesion on MRI, and 9.8% had an increase in EDSS. For IFN-β–treated subjects who reached
an end point (57% of subjects), the distribution included 46.7% with relapses, 38.7% with an
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MRI event, and 14.7% with an increase in EDSS. There was no significant difference in the
distribution of these events between the two treatment categories (P = 0.37). After merging
subjects on first-line disease-modifying treatments for our disease course analysis, we
observed that subjects classified as MSA at the time of sampling were more likely to exhibit
evidence of disease activity over time than MSB subjects (Cox proportional hazard ratio =
0.6, P = 0.0077). Specifically, this hazard ratio suggests that MSB subjects are 40% less
likely to have a relapse than MSA subjects (Fig. 4). Secondarily, we assessed whether this
association was driven by one of the two treatment groups. Given that there was no
statistically significant difference in the trajectories of the MSA and MSB subject subsets
when comparing GA- and IFN-β–treated subjects (P = 0.37, interaction term for an effect of
treatment on the disease course associated with MSA), the role of the MSA and MSB subject
subsets may be the same in the context of disease course while a subject is treated with
either one of these two disease-modifying treatments. When the treatment groups were
analyzed separately, we observed that, in GA-treated subjects, the MSA subset had more
events than the MSB subset (P = 0.02) (fig. S4A). In IFN-β–treated subjects, the trend was
the same, but the analysis returned a nonsignificant result (P = 0.17) (fig. S4B). Data on the
trajectory of untreated subjects were unfortunately not available for comparison because
most of these subjects were started on a disease-modifying treatment shortly after being
sampled.

DISCUSSION
We have gathered a large set of transcriptomic data generated from MS patients and
leveraged an unsupervised clustering method to identify two subsets of MS subjects (MSA
and MSB) that can be distinguished by a transcriptional signature. We validated this
architecture of the MS patient population in subjects treated with either GA or IFN-β,
suggesting that the underlying architecture of the disease may not be fundamentally altered
by these two treatments.

The MSA and MSB architecture of the MS subject population requires rigorous further
validation in prospective cohorts. If this validation is achieved, we speculate that it may be
useful to recognize this population architecture when performing studies of MS patients,
particularly as the likelihood for further inflammatory events differs in the two subsets of
MS patients. As virtually all MS patients are treated, we unfortunately do not have
longitudinal clinical and MRI data on the untreated subject group and do not know whether
there may be a possible differential disease course in the two subject subsets among
individuals who remain untreated. However, looking at our data generated from subjects on
chronic treatment, the population of MSA subjects had a more active disease course than the
MSB subjects on either GA or IFN-β treatment, suggesting that the difference in disease
course was not treatment-specific. Thus, our transcriptional signature may have uncovered
information relating to the pathophysiology of MS, and MSA subjects may benefit from
consideration of more aggressive treatments at an earlier stage of disease compared to MSB
subjects. Further, although the two subsets appear to behave similarly in the context of GA
and IFN-β treatment, it is possible that other interventions may have a different effect in the
two subsets.

The nature of this transcriptional signature requires more detailed study; our initial pathway
analysis highlighted lymphocyte activation pathways as being overrepresented among the
genes that were differentially expressed between MSA and MSB. This observation fits with
our existing knowledge of MS pathophysiology in which both B and T cells play an
important role in the early, inflammatory phase of MS, which was the focus of this study (1).
Whether this signature is driven by a higher frequency of lymphocytes among PBMCs of
MSA subjects or by overexpression of specific molecules of activation pathways in
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lymphocytes remains to be determined. Investigation of specific cell populations is the next
step. Such investigation will also need to sample subjects before starting therapy to integrate
our results with expression signatures identified by other investigators, such as the higher
expression of interferon response genes in pretreatment samples that appears to be
associated with more disease activity after the initiation of IFN-β treatment (9, 10).

Our study has a number of limitations, including the lack of transcriptional profiles from
longitudinal samples of our subjects. Thus, we cannot comment on the stability of our
subject classification over time. Although there appear to be two MS states in our study
(MSA and MSB), we do not know whether an individual subject fluctuates between these
two states or remains in a single state over time. This important question needs to be
explored in future longitudinal studies to determine how the molecular signature performs as
a prognostic marker for predicting disease activity prospectively. The distinction is
important because it would inform the frequency at which a subject’s state should be
characterized; repeated sampling would be required if, for example, our transcriptional
signature distinguishes active subjects with ongoing, acute episodes of inflammation from
subjects who are quiescent at the time of sampling. None of our subjects had a clinical
relapse at the time of sampling, but much of the disease activity in MS is asymptomatic and
is probably imperfectly captured by MRI (16). Thus, whether our signature provides a
surrogate marker for active, asymptomatic inflammation or captures an underlying
difference in the pathophysiology of different subjects with MS, this information could be
leveraged in the future to enhance patient care and drug development.

Another limitation of our study is the lack of data relating to disease course in our untreated
subjects; as a result, we cannot assess whether GA and IFN-β treatments altered the natural
history of disease activity in MSA and MSB subjects. It is possible that the difference in
disease trajectories may be more pronounced in the untreated state. In addition, although the
use of a single RNA detection platform and cellular substrate (PBMCs) enhanced our
discovery effort, we have not addressed whether the signature is transportable to other
settings that more closely approximate a clinical laboratory. Finally, our focus on the early,
inflammatory phase of MS does not address the pressing need to understand the
pathophysiology of progressive disease, that is, typically, the more disabling phase of MS. It
is unclear, at this time, whether the architecture of the early MS patient population that we
describe persists in the progressive stage and whether the MSA and MSB classification
affects the timing or likelihood of entering the progressive phase of MS.

Overall, we report a transcriptional signature that distinguishes a subset of MS patients with
more active disease. Stratifying MS subjects into meaningful subsets in this manner has
potential for personalizing patient care and for enhancing our understanding of this disease.

MATERIALS AND METHODS
Patients and samples

Three hundred and sixty-three subjects with demyelinating disease and frozen PBMC
samples were selected from the CLIMB (17) at the Partners Multiple Sclerosis Center in
Boston. At the time of sampling, 315 subjects (86.77%) were diagnosed with RRMS per
McDonald criteria (18) and 48 subjects (13.22%) were diagnosed with CIS. Only patients
who were untreated or treated with one of the two first-line disease-modifying treatments,
IFN-β and GA, at the time of sampling were part of the study. The untreated subjects (i) had
never been treated with cytotoxic, monoclonal, or investigational agents and (ii) had been
sampled either before their first treatment or at least 6 weeks after their last treatment. The
disease-modifying treatment groups were limited to subjects that (i) had never been treated
with cytotoxic, monoclonal, or investigational agents and (ii) had been treated for at least 3

Ottoboni et al. Page 7

Sci Transl Med. Author manuscript; available in PMC 2013 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



months at the time of sampling. Finally, we excluded all samples collected within 4 weeks
of a methylprednisolone pulse.

Computational methods
Unsupervised clustering—NMF consensus clustering was used to uncover the model
that best fit each of the three data sets. It was performed with the algorithm proposed by
Brunet et al. in 2004 (11). Briefly, NMF is an unsupervised learning algorithm (19, 20) that
identifies molecular patterns in gene expression data. Rather than separating gene clusters on
the basis of distance computation (Euclidean), NMF detects context-dependent patterns of
gene expression in complex biological systems.

First, we reduce the dimensionality of the expression data from thousands of genes to a few
metagenes by applying NMF consensus as implemented in GenePattern version 4 (14). We
computed multiple factorizations of our expression matrix A. The number of classes k that
we tested on the basis of the expected heterogeneity of our MS data set was between 2 and
5. In NMF, we repeated the clustering process many times to assess its stability and
robustness and to define consensus membership. We have tested 20 and 40 initial clustering
attempts per k to define the factorization of matrix A (20 is a standard default setting and 40
matrices require more computation time but may provide more robust results). Matrix A
derives from the orthogonal combination of W × H, where W and H are the dimensionality-
reduced matrices obtained by number of genes and number of experiments, respectively, per
number of classes that are tested to assess heterogeneity of the data set (k = 2 to 5) (11). k =
2 was always the most stable model when testing either 20 or 40 initial different W × H
matrices. In each of the three classes, only one sample was differently classified when we
compare the classifications generated with n = 20 and n = 40 permutations of the matrix. We
therefore selected the results based on the 40 matrices for each model (k = 2 to 5).

Supervised SVM clustering—To validate the structure of the MS patient population
observed in untreated subjects, we used SVM (as implemented in GenePattern version 4,
namely, with SVM R algorithm in e1071 package) (14) and the set of 205 probe sets
identified by a linear regression model (Limma, R package) (21) as significantly
differentially expressed between the untreated MSA and MSB subgroups to predict class
membership of each individual in the GA- and IFN-β–treated subject groups. For each
subject, the class defined by NMF (unsupervised) was used as the reference “true” class in
our predictive analyses. We used the Prediction Results Viewer tool (version 4.5) written in
Java and available in the GenePattern toolkit to visualize the results.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Transcriptomic data from MS subjects. (A) Distribution of the study subjects using the first
three principal components calculated from the transcriptomic data. Each dot represents one
individual, color-coded according to the treatment group to which they belong [green,
untreated (UNTR); red, GA-treated; blue, IFN-β–treated]. (B) Venn diagram of the number
of the differentially expressed probe sets in each pairwise comparison among the three
treatment groups. The number of probe sets meeting a Benjamini-Hochberg threshold of
FDR < 0.05 was reported. Between GA and untreated subsets, there were no probe sets
meeting that threshold. The inset graph plots each of the 1061 probe sets shared by the two
comparisons to IFN-β using the magnitude and direction of the differential expression in
each comparison (x axis, untreated and IFN-β; y axis, GA and IFN-β) to illustrate the
consistency of gene expression changes in PBMCs relative to the IFN-β subject group.
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Fig. 2.
Two subsets of MS subjects in the untreated, GA, and IFN-β groups. (A) NMF consensus
clustering results of mRNA expression array data from 141 untreated MS cases. Four
models with two to five clusters of subjects (k = 2 to 5) were tested, and the results were
summarized in the four consensus clustering plots that capture all pairwise comparisons for
the 141 untreated subjects (one for each model). Each square is colored by the extent of
correlation within the transcriptome of that subject pair: red, high correlation; yellow/green,
moderate to low correlation; blue, no correlation. The cophenetic coefficient, a measure of
how well a model fits the data, is reported below each plot, with 1.0 being maximal fit. (B)
Plots summarizing the cophenetic coefficient for each of the four tested models (k = 2 to 5)
in each of the three groups of subjects (untreated, GA, and IFN-β). In each case, the solution
that maximizes the cophenetic coefficient is k = 2, meaning that the transcriptomic data are
best explained by a model in which two subsets of subjects are present. The maximal
cophenetic coefficient is reported below each plot.
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Fig. 3.
Top probe sets differentially expressed between MSA and MSB subsets in untreated subjects
predict subject class in the GA- and IFN-β–treated subject groups. (A and B) The results of
supervised SVM classification for GA (A) and IFN-β (B) using the untreated signature are
shown. The confidence score for each SVM classification is plotted on the y axis. On the x
axis, each subject is arrayed on the basis of the rank order of the likelihood of belonging to
MSA after SVM classification. Each point represents one subject. The upper portion of each
graph contains those classified as MSA by the SVM classifier; the lower portion contains
MSB subjects. The unsupervised NMF-derived classification, which is used as the reference
classification, is reported in color: blue, MSA; green, MSB. Thus, the misclassified subjects
are readily apparent. The confusion matrix that compares the NMF and SVM classifications
is reported in each graph; the number and percentage (in parenthesis) of subjects found in
each cell of the confusion matrix is shown. A total of 94 GA-treated subjects and 128 IFN-
β–treated subjects were classified. (C) The table reports the success of the classifier at
different confidence thresholds for the SVM classification and the proportion of subjects (in
parenthesis) that meet each threshold. Most of the misclassified individuals were the result
of low confidence classifications.
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Fig. 4.
The MSA and MSB gene signatures are associated with disease outcome. The proportion of
subjects in the MSA subgroup (black line) and in the MSB subgroup (red line) that were free
of evidence of inflammatory demyelination was plotted. Subjects treated with either IFN-β
or GA were pooled in this analysis. The results of the Cox proportional hazard (Cox-PH)
models were adjusted for gender, disease duration from symptom onset, and treatment
duration. The hazard ratio (HR) for the comparison of MSA versus MSB (with MSA as the
reference group) is shown, along with its 95% confidence interval.
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Table 1

Demographic characteristics of subjects used in the study. Values are reported as means (SD). T2LV: T2

hyperintense lesion volume.

GA (n = 94) IFN-β (n = 128) Untreated (n = 141) Adjusted P value*

Female, n (%) 68 (73) 95 (74) 117 (85) 0.0344

Disease subtype (CIS/RR) 7/87 9/119 32/109 0.0001

Symptom duration at sampling 6.12 (6.36) 6.65 (6.36) 7.48 (8.06) 0.5644

Age at first symptom 34.23 (9.19) 34.77 (9.30) 33.35 (9.07) 0.4841

BPF 0.885 (0.034) 0.871 (0.036) 0.880 (0.040) 0.0178

EDSS 1.04 (1.01) 1.19 (1.04) 1.07 (1.09) 0.5539

T2LV** 3.19 (2.58) 3.65 (2.64) 3.93 (4.75) 0.1720

*
Adjusted for symptom duration, age at first symptom, and gender (unless outcome of interest). MRI measurements were captured in a time

window of 6 months before or after sampling.

**
P value from model with natural log transformation of T2 lesion volume value.
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