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Abstract
MicroRNAs (miRNAs) are small (20–22 nucleotides) regulatory non-coding RNAs that strongly
influence gene expression. Most prior studies addressing the role of miRNAs in neurodegenerative
diseases (NDs) have focused on individual diseases such as Alzheimer’s disease (AD), making
disease-to-disease comparisons impossible. Using RNA deep sequencing, we sought to analyze in
detail the small RNAs (including miRNAs) in the temporal neocortex gray matter from non-
demented controls (n = 2), AD (n = 5), dementia with Lewy bodies (n = 4), hippocampal sclerosis
of aging (n = 4), and frontotemporal lobar dementia (FTLD) (n = 5) cases, together accounting for
the most prevalent ND subtypes. All cases had short postmortem intervals, relatively high-quality
RNA, and state-of-the-art neuropathological diagnoses. The resulting data (over 113 million reads
in total, averaging 5.6 million reads per sample) and secondary expression analyses constitute an
unprecedented look into the human cerebral cortical miRNome at single nucleotide resolution.
While we find no apparent changes in isomiR or miRNA editing patterns in correlation with ND
pathology, our results validate and extend previous miRNA profiling studies with regard to
quantitative changes in NDs. In agreement with this idea, we provide independent cohort
validation for changes in miR-132 expression levels in AD (n = 8) and FTLD (n = 14) cases when
compared to controls (n = 8). The identification of common and ND-specific putative novel brain
miRNAs and/or short-hairpin molecules is also presented. The challenge now is to better
understand the impact of these and other alterations on neuronal gene expression networks and
neuropathologies.
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INTRODUCTION
Aberrant RNA processing can cause or exacerbate neurodegenerative diseases (NDs) via
many mechanisms. RNA molecules are extremely versatile; less than 5% of total cellular
RNA is messenger RNA (mRNA) coding for protein. The other 95% of non-coding RNAs
have been shown to have a profound impact on gene expression regulation and also other
neurochemical processes, and have been implicated as “complexity multipliers” in both
normal and abnormal conditions of the human central nervous system [1–3].

One among many subtypes of non-coding RNAs are microRNAs (miRNAs), which are short
(~20–22 nucleotides), conserved RNAs that have strong impact on gene expression
regulation, and which have been implicated in ND pathogenesis. It has been estimated that
over one-half (up to 90%) of genes are regulated in part by miRNAs [4, 5]. The impact of
miRNA dys-regulation on ND pathogenesis has been a focus of much recent research [6–8].
Expression profiling has provided important insights into both ND and miRNA biology.
Microarray studies and quantitative polymerase chain reaction (qPCR) studies have helped
to describe which miRNAs are expressed during various normal and abnormal brain states,
including in brain diseases. Although miRNA expression analyses can provide
groundbreaking data for this novel research field, miRNA profiling benefits from the
parallel use of multiple and different analytical techniques; there currently is no true “gold
standard” because different methods (RNA isolation methods, miRNA profiling platforms,
etc.) entail distinct strengths and weaknesses [9–13]. In comparison to other RNA profiling
methods, deep sequencing is less biased by prior annotations of miRNAs and provides a
quantitative and nucleotide-level resolution of small RNA species, although it is important
to remember that each method, including deep sequencing, entail certain systematic biases
[14].

As there are many species of RNA molecules, there are also pathogenetically distinct
subtypes of ND that afflict elderly humans. Whereas AD is the most prevalent ND in most
populations, other diseases such as dementia with Lewy bodies (DLB), frontotemporal lobar
dementia (FTLD), and hippocampal sclerosis of aging (HS-Aging) comprise over 25% of
aged dementia cohorts when state-of-the-art neuropathological methods are applied [15, 16].
Different NDs are often comorbid with each other [16, 17]. What all NDs have in common
is that their pathobiological substrates are as yet imperfectly understood. Moreover, most
studies of miRNAs in NDs have focused on individual diseases, including AD [8, 18–31],
Parkinson’s disease (PD) [32–34], Huntington’s disease (HD) [35, 36], and other triplet-
repeat disorders [37, 38]. Prior studies have tended not to include multiple NDs that would
enable direct (within platform) comparisons across disease states.

In this study, we analyzed RNA derived from well-characterized brain samples from the
University of Kentucky Alzheimer’s Disease Center (UK ADC) autopsy series. Our main
aim was to augment prior studies of small RNAs in AD with a more systematic assessment
that includes DLB, HS-Aging, and FTLD cases (none of the latter has been systematically
assessed in the literature to date), and also rigorous bioinformatics. All cases had short
postmortem interval (PMI), relatively high-quality RNA, and state-of-the-art
neuropathological diagnoses.

METHODS
Case selection criteria and neuropathological assessment

Cases were selected on the bases of representing a spectrum of ND neuropathological
features. RNA was extracted from snap-frozen brain tissue in the superior and middle
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temporal gyri (Brodmann areas 21/22) from the UK ADC biobank under a University of
Kentucky IRB protocol.

Premortem clinical evaluations and pathological assessments were as described previously
[12, 21, 22, 39, 40]. All included patients were Caucasians. The inclusion criteria that were
applied: low PMI (<4 h wherever possible); no argyrophilic grains; no cancer in the brain
parenchyma; and no large infarctions in the brain, or micro-infarcts found within 3 cm of the
brain tissue samples. Neuropathological procedures were as described in detail elsewhere
[16, 40]. Lewy bodies, neurofibrillary tangles, and neuritic plaques were counted as
described [16]. No Lewy bodies were seen outside of amygdala in any of the non-DLB
cases, except that cases D1 and F2 had sporadic Lewy body pathology in additional to
progressive supranuclear palsy (PSP) and FTLD, respectively. Included patient
characteristics, along with pathological lesion counts in the same cases, are shown in Tables
1 and 2. Samples used for RNA isolation were taken from tissue portions immediately
adjacent to those used for neuropathological assessments.

RNA isolation from a human cerebral cortex
Biochemical analyses were performed blind with respect to patient information. RNA was
isolated as described previously in detail [12, 21, 39, 40]. Briefly, prior to RNA extraction,
gray matter was dissected away from white matter and only gray matter was used for these
studies. Tissue (1–3 g) that had been snap-frozen in liquid nitrogen and then transferred to a
−80°C freezer was thawed in isotonic lysis buffer with RNAsin ® (Promega, Madison, WI;
250 U/ml) and Complete protease inhibitor pills (Roche, Basel Switzerland). Trizol LS
(Invitrogen, Carlsbad, CA) was used according to manufacturer’s instructions, except for an
added overnight −20°C precipitation step during isopropanol precipitation. The quality of
total RNA was analyzed on an Agilent 2100 Bioanalyzer system...that measured RNA
Integrity Number (RIN) RNA purity was confirmed using A260/A280 readings (not shown).

RNA deep sequencing and data analysis
All RNA samples were processed and analyzed by LC Sciences (Houston, TX, USA). Each
received RNA sample was processed to generate a cDNA library that was then used for deep
sequencing. Briefly, a small RNA library was generated from our sample using the Illumina
Truseq™ Small RNA Preparation kit according to Illumina’s Truseq™ Small RNA Sample
Preparation Guide (see Supplementary data; available online: http://www.j-alz.com/issues/
35/vol35-2.html#supplementarydata02). The purified cDNA library was used for cluster
generation on Illumina’s Cluster Station and then sequenced on Illumina GAIIx following
the vendor’s instruction for running the instrument. Raw sequencing reads (40 nts) were
obtained using Illumina’s Sequencing Control Studio software version 2.8 (SCS v2.8)
following real-time sequencing image analysis and base-calling by Illumina’s Real-Time
Analysis version 1.8.70 (RTA v1.8.70). The extracted sequencing reads were stored and
then a proprietary pipeline script, ACGT101-miR v4.2 (LC Sciences),was used for
sequencing data analysis as described in the Supplementary data.

Validation cohort patient information and miRNA qRT-PCR
The non-dementia controls (n = 8), AD (n = 8), FTLD (n = 14, including PSP n = 9) patient
brains were obtained from the Douglas Hospital Research Centre brain bank in Montreal,
Canada as described previously [41, 42] (Table 2), in accordance with the national ethical
committee protocols and in agreement with the local CRCHUQ ethical committee. Blocks
from the temporal lobe (Brodmann area 20) were dissected and snap frozen in liquid
nitrogen until use. Total RNA from was extracted on ice using Trizol® according to the
manufacturer’s instructions. The mean age average of patients was: controls 71.4±11.6 y,
PSP 73.5±12.2 y, FTLD 67.8±10.9 y, and AD 78.3±7.3 y. The mean PMI values were:
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controls 21.8±9.4 h, PSP 22.3±9.0 h, FTD 27.9±9.8 h, and AD 18.5±10.8 h. The quality of
total RNA was analyzed on an Agilent 2100 Bioanalyzer system. No correlations were
observed between PMI and miRNA quantifications, as documented before [19, 41]. It is
noteworthy that qRT-PCR provides a robust method to measure miRNAs in samples with
relatively low (≤3–4) RNA integrity (RIN) values [43, 44]. For miRNA quantifications,
probe-specific Taq-Man miRNA assays (Life technologies) were used according to the
manufacturer’s instructions. Relative expression was calculated by using the comparative
CT method. In all experiments, hsa-miR-16 (Life Technologies) was used as a normalization
control, as described previously [19, 41, 45]. Similar results were observed using let-7a as
normalizing control (data not shown).

Northern blot analysis
All procedures performed as described previously [22, 46, 47]. For these experiments, we
used total RNA (10 µg) extracted from the frontal cortex, cerebellum, hippocampus,
substantia nigra, and superior and middle temporal gyri from non-demented controls. The
gel used for these analyses was 15% urea-PAGE.

RESULTS
Characterization of small RNA species in the adult human brain

Total RNA was isolated from the gray matter of snap-frozen samples of superior and mid-
temporal neocortex derived from the autopsies of 20 aged individuals, including non-
demented controls (n = 2), AD Braak stage V (n = 1), AD Braak stage VI (n = 4), DLB (n =
4), HS-Aging (n = 4), and FTLD (n=5) patients. Note that FTLD patients were further
subdivided into three groups: FTLD with TARDNA-binding protein 43 (TDP-43) positive
inclusions (FTLD-TDP, n = 3), FTLD without TDP-43 positive inclusions (FTLD, n = 1],
and PSP (n = 1). Detailed pathological, biochemical, and clinical characterization of these
samples are presented in Tables 1 and 2. PMIs were low (2.95 h±0.85 [see inclusion
criteria]), and RIN values ranged between 5 and 8, indicating overall high RNA quality
when considering working with postmortem human brain tissue following careful gray
matter dissection.

Deep sequencing of small (18–35 nt) RNA sequences was performed on an Illumina
platform. An RNA library preparation kit was used in order to capture all potential small
RNAs in a relatively unbiased way. A total of 113, 905, 268 raw reads (number of
molecules) were obtained, with an average of 5, 695, 263 raw reads per sample.
Approximately half (54±8%) of the raw reads could be mapped to the genome (Fig. 1A and
Supplementary Table 1A). No significant changes were observed between raw versus
mappable reads among groups. Among mappable reads, 51±12% comprised miRNAs,
whereas the remaining RNA sequences were mapped to Rfam (i.e., tRNAs, rRNAs,
snRNAs, snoRNAs, etc.), mRNAs, and Repbase (i.e., repetitive elements) (Fig. 1B). The
global distribution of RNA length did not consistently vary among the different groups (Fig.
1C). A 22nt peak was observed in all samples, which is consistent with miRNAs being
among the most abundant small RNA species. A yet uncharacterized 32nt peak was also
observed.

The RNA data was analyzed primarily to assess the number and identity of miRNAs that
were expressed in the human neocortex, including comparisons across the different ND
conditions. Only a small fraction (1.5%) of annotated miRNAs (based on miRBase [47]
Release 18) was expressed at very high (>10, 000 raw reads) levels (Supplementary Table
1). The remaining miRNAs were expressed at relatively high (15%, 1000–9999 raw reads),
moderate (30%, 100–999 raw reads), and low (55.5%, 1–99 raw reads) levels. Notably, 11
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miRNAs (miR-181a > miR-27b > miR-26a > miR-22 > miR-125b > miR-127-3p > miR-143
> miR-99b > miR-100 > miR-125a-5p > miR-30a) comprised roughly 50% of all miRNA
reads (Fig. 1D). An additional 19 miRNAs (let-7a > let-7f > miR-191 > miR-29a >
miR-151b > let-7g > miR-9 > miR-30e > let-7b > miR-128 > miR-126* > miR-138 >
miR-30d > miR-181c > miR-92b > miR-338-3p > miR-124 > let-7c > miR-149) constituted
25% of total miRNA reads across all samples. Thus, ¾ of the mature miRNA fraction
detected from these samples correlated with only ~30 individual annotated miRNAs.

Northern blot analysis of selected “annotated” miRNAs
Previously, it has been shown that some “annotated” miRNAs actually represent non-
specific or non-canonical RNA species, as determined by northern blot from brain tissue-
derived RNA; anomalous northern blotting characteristics were observed in more recently-
annotated “high number” miRNAs [12, 48]. We therefore selected a subset of miRNAs
identified in the deep sequencing data, namely miR-598, miR-769-5p, miR-889, miR-1271,
and miR-3676-5p for further validation. In these experiments, miR-29a was included as
positive control. The northern blots demonstrated that only two miRNAs, miR-598 (1898
reads) and miR-769-5p (4404 reads), gave a positive miRNA signal (Fig. 2). No signal was
observed for miR-1271 and miR-889. As with previous observations, the “miR-3676-5p”
gave no miRNA-like signal. These data confirm that deep sequencing data of high-read
RNA species (as with other miRNA profiling platforms) need to be corroborated with
northern blotting.

Analysis of miRNA and isomiR expression profiles
Previous studies have identified alterations in miRNA expression profiles in AD brain [8,
18–30]. We next asked whether such changes exist in our samples, and, importantly,
whether certain miRNAs were robustly affected in different NDs (sample sizes were
inadequate to detect highly-variable or more subtle changes across NDs). To this end, we
focused on samples with comparable amounts of mappable reads, including AD Braak VI
(cases #1 and 3), FTLD-TDP (cases #1–3), DLB (cases #1–4), and HS-Aging (cases #1–4)
pathologies. From a total of 795 miRNAs expressed in the human brain (and 721 isomiRs,
see below), we identified 31 human miRNAs to be expressed differently (p < 0.05,
ANOVA, without Bonferroni correction for multiple comparisons) in disease conditions
when compared to non-demented controls (cases #1–2) (Fig. 3A and Supplementary Table
2). A number of these miRNAs have previously been associated with AD and other NDs,
including miR-132/212 family members, but also miR-34c, miR-125b, and miR-106b. Other
miRNAs hitherto associated with AD (e.g., miR-29a, miR-29b, miR-103/107, miR-181c,
miR-9) were not statistically different in these analyses. We note that the sample size of the
current study was limited, and both miR-29 and miR-107 paralogues, for instance, were
lower in AD samples than controls, but the variability was too high to achieve statistical
significance. Finally, we also performed disease versus disease comparisons where a number
of miRNAs had different expression between samples, but none of these survived a
Bonferroni correction for multiple comparisons (Supplementary Table 2).

In an attempt to provide validation for some of these changes, we measured miR-132-3p (the
most abundant miR-132/212 family member) and miR-100 in a completely different cohort
of patients (Table 2). For these studies, we increased the number of cases and disease
subtypes, which included non-demented controls (n = 8), AD (n = 8), and FTLD (n = 14).
The FTLD group was further divided into FTLD (n = 5) and PSP (n = 9) patients. By
miRNA quantitative RT-PCR, we observed a significant downregulation of miR-132-3p in
AD (p < 0.01, Mann-Whitney test), FTLD (p < 0.01, Mann-Whitney test), and PSP (p <
0.05, Mann-Whitney test) cases when compared to non-demented controls (Fig. 3B).
MiR-100 was statistically lower in AD versus non-demented controls (p < 0.05, Mann-
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Whitney test), reflecting some disease-specific changes as suggested by the ANOVA
analysis.

MiRNAs with subtle sequence changes in relation to annotated miRNAs, also known as
isomiRs, can significantly contribute to miRNA target specificity and function [35, 49–51].
A number of isomiRs were present in the list of misregulated miRNAs (names ending with
R [right] or L [left]) (Fig. 3A). However, further analysis demonstrated that all affected
isomiRs constituted equal or increased expression with regard to the consensus (reference)
miRNA (Fig. 3C and Supplementary Table 3), an observation consistent with previous
studies (see e.g., [35]). Thus, no significant changes in human isomiR expression per se
were observed in our disease groups.

Evidence for mature miRNA editing
RNA editing is a mechanism that allows for posttranscriptional modification of RNA
sequences. MiRNA transcripts are recognized targets for RNA editing enzymes, and single-
nucleotide changes through editing can impact miRNA target specificity and therefore
function [52–54]. Previously, Martì et al. [35] identified a number of edited nucleotides
within mature miRNA sequences in the human brain. We asked whether such modifications
could be reproduced in our sample sets, and whether differential RNA editing could be
correlated with pathological brain conditions. We found evidence of limited edited
nucleotides located in the mature miRNA (Fig. 4). Representative results are shown for
miR-26a, miR-125b, and miR-132-3p. The highest editing rate occurred at 5′ and 3′ ends
(positions 1–2 and 19–22) of the mature miRNA, which is consistent with prior results [35],
and which may also be linked to the technical process of RNA sequencing itself (e.g.,
adapter ligation, PCR, and informatics). Additional editing “hot spots” were also present at
position 11 and to a lesser degree at position 12.

Interestingly, our initial deep sequencing run provided evidence for atypical miRNA editing
patterns in disease conditions (Fig. 4). In order to validate these findings, we performed a
second, independent sequencing run on the same RNA samples. In the second sequencing
run (performed several months hence), most of the original “disease-specific” editing
patterns could not be replicated (run 1 versus run 2), implying some sequencing errors
associated with this technology. By contrast, most of the “physiological” editing profiles
(see above) could be reproduced (e.g., nucleotides 1, 11, 19, 20, 21, and 22), although these
modifications were not statistically different between disease conditions or when compared
to non-demented controls (not shown).

Analyses of putative novel miRNAs
Bioinformatics analysis identified a subset of putative novel miRNAs derived from
predicted RNA hairpins (Supplementary Table 1), from which only 1.18% (87 out of 7381)
were expressed at ≥10 raw reads in one or more samples. Twenty-three percent (20 out of
87) of putative novel miRNA hairpin RNAs had between 21–23nt in length (Fig. 5A).
Secondary structure analysis of corresponding putative precursor miRNAs (pre-miRs)
indicated free energies between −23 and −78 kcal/mol. For comparative purposes, we
included three recognized miRNAs, miR-23a, miR-132-3p, and miR-17, chosen arbitrarily.
Conservation alignments demonstrated that most putative novel miRNAs (with focus on the
seed sequences) were human or primate-specific, with the exception of PC-5p-70745 and
PC-3p-84393 (Fig. 5B and Supplementary Fig. 2). Interestingly, a number of putative novel
miRNAs were apparently misregulated in disease conditions (Fig. 5C). Only PC-3p-10838
was exactly 21nt in length, while the remaining candidates were 15–19nt in length. Given
technical issues with regard to the detection of mature miRNAs in the brain (as shown
above), it will be challenging to validate conclusively whether these candidate hairpin RNAs
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represent genuine miRNAs with important biological functions. Nonetheless, the potential
diagnostic value of these molecules remains an interesting possibility.

DISCUSSION
The present study involves the analysis small RNAs isolated from the superior/mid-temporal
gyri (gray matter) of 20 individuals including pathologically verified examples of AD, DLB,
FTLD, HS-Aging, and non-demented control subjects. The method of RNA sequencing is
powerful because it is unbiased by prior annotated miRNA reads, and has previously been
applied to analyze the human brain, albeit in different contexts [55, 56]. Here, although we
found no obvious sequence (e.g., isomiR) defining small RNA changes in these samples to
distinguish a particular ND or control subjects, bioinformatics and independent qRT-PCR
analyses did help refine our understanding of the specificity of quantitative miRNA changes
in AD. We also found solid evidence of physiologic miRNA editing in human brain, as
documented before [35]. Together, these data constitute important primary information
about the human brain miRNome with new insights into the complex world of small non-
coding RNA neurochemistry, in both normal and pathogenic conditions.

Caveats inherent to the study design include the small number of samples in each case
category, which severely limited statistical power in terms of categorical comparisons. This
consideration needs to be kept in mind in interpreting the results, as stated below. Another
cautionary technical point is that the RNA preparation stages of the distinct miRNA
profiling platforms entail key differences that affect results [13]. For example, deep
sequencing of small RNAs involves multiple potential sources of technical biases, including
those referent to the application of T4 RNA ligase, which is required for small RNA
ligations and has base-specific bias, and PCR, which also introduces biases in the course of
multi-step amplifications [11, 14, 57, 58]. These factors may help explain some of the
differences when comparing RNA deep sequencing results and profiling data derived from
other platforms as we previously described (for example, the unexpectedly low relative
abundance of miR-124 in comparison to other brain miRNAs; see [9]). There is some
evidence that RNA degrades postmortem and that particular miRNAs decay at different
rates in human brain [26], although it is also notable that brain miRNAs have been described
to be very robust under other circumstances [59]. Because of these technical considerations
and limitations, the present study cannot be seen as a definitive quantitative profiling
experiment comparing the miRNA repertoire across ND conditions. Instead, the goals of the
study were to assess the complexity of small RNA from this area of the brain, and to use
those data to help define broader aspects of similarity and difference between the different
ND, and to evaluate the differential influence of RNA modifications and novel RNAs.

Another note of caution pertains to the current lack of insights into what induces miRNA
expression variation in the adult human brain. In addition to disease states, there are as-yet
uncharacterized potential contributions to miRNA expression variability from the
heterogeneous influence of gender, anatomical region, age, medication, diet, concomitant
diseases (e.g., diabetes), agonal events, genetic polymorphisms, and many other factors.
Some of these factors have been hinted at in prior studies [60–63]. An assumption
underlying the current study is that we need to “start somewhere”, and with these limitations
in mind, we can now begin to characterize the small RNA repertoire from human temporal
neocortex in various NDs.

A fundamental observation is that a small number of miRNAs represents the large bulk of
neocortical tissue miRNA in these samples. More than ¾ of the miRNAs corresponded to
only 30 different individual mature miRNA species. Moreover, the top 50 expressed
miRNAs constituted 91% and the top 100 expressed miRNAs 97% of total miRNAs. These
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findings are broadly compatible with prior studies [35, 64–67]. It is notable that these
samples represent multiple populations of cells (neurons, oligodendrocytes, astrocytes, and
endothelial cells), yet, the number of miRNAs expressed in high amounts within a given
sample is not large. Only a small number (1.5% of total) miRNAs were present in large
(>10,000 raw reads) amounts. This consideration is directly relevant to miRNA gene-
function analyses. For example, it seems likely that much of the functional impact of
miRNAs will be correlated with this small list of gene products, and that relatively small
“fold-changes” in these robustly-transcribed genes may be more important than larger-
percentage changes in expression among miRNAs that are present in far lower levels (three
or more orders of magnitude lower expression). Even among fairly highly-represented
miRNAs, our results also underscore the importance of using northern blots to verify
outcomes of deep sequencing, qPCR, and microarray profiling experiments, since even
annotated miRNAs can have non-canonical (or even non-existent!) banding patterns.

A key strength of the current study was the use of RNA deep sequencing technology that
enables the study of RNA editing. Collectively, our observations and analyses strengthen the
hypothesis that miRNA editing is indeed a physiological event. However, the overall
percentage of edited miRNAs was low (less than 4% of total miRNA reads). The functional
relevance of these edited miRNAs remains unknown. Furthermore, the presence of isomiRs
needs to be critically assessed using other platforms and RNA samples. Whether miRNA
editing occurs at a higher rate in other biological contexts (e.g., during brain development)
or other areas of the brain also remains to be determined. Based on these observations, we
did not find strong evidence of ND-linked RNA editing of miRNAs.

The analyses of multiple NDs enable us to contextualize some of the prior work in the field.
These new data can be compared with prior studies of miRNA perturbation linked with
individual NDs, with the abovementioned caveat that the sample size of this study was
problematic in terms of categorical comparisons. For the most part, our data are compatible
with prior work. However, the small sample sizes precluded new evaluation of the prior
studies that show significant but not “qualitative” changes in AD brain miRNAs such as
miR-29 paralogues, miR-15/107 genes, miR-153, and miR-146a [19, 41, 68, 69]. However,
we note that the general trends were as previously published accounting for the inadequate
statistical power. Whether these are affected in only a subset of patients, or in specific brain
regions, remains to be explored. The observation that miR-29a/b-1 is downregulated in AD
patients displaying increased BACE1 protein levels is in line with this hypothesis [17].
Another source of discrepancy could reside in the technology used for miRNA profiling
(e.g., deep-sequencing versus hybridization). The advantage of the current study’s design is
to enable detection of miRNAs that are altered across a range of diseases, such as miR-132,
that previously has been shown to regulate splicing of the microtubule associated protein tau
gene [41, 70]. MiR-132 has also been shown to regulate cognitive function in other
experimental models including neuronal/synaptic integrity and the brain’s response to
stressors [71–75]. Interestingly, miR-132 downregulation was recently observed in another
cohort of FTLD-TDP brains [76], which is consistent with our results (and which helps
illustrate the importance of having disease controls as well as cognitively intact controls).
This provides us with insights that some miRNAs may have more general ‘neuroprotective’
functions whereas others have direct roles in specific subtypes of pathologies.

There are many future challenges and unanswered questions with regard to small noncoding
RNA research in the human brain; it is probable that new paradigms and small RNA species
remain to be discovered. These efforts will profit from resources that help define the
repertoire of human brain RNAs across a gamut of conditions and anatomical areas. We
hope that data from the current study, comprising over 113 million different reads from
human neocortex (averaging almost 6 million read per sample), will be a resource that will
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be useful to our colleagues in this exciting field, as more hypotheses are generated and
tested with regard to small non-coding RNA in the human brain in health and disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
A) Overview of raw versus mappable reads counts from each sample used in this study. B)
Distribution (in percentage) of mappable small RNA species. Note that miRNAs constitute
approximately half of the small RNAs in the adult human brain. C) Nucleotide length
distribution (in percentage) of individual samples (by groups) used in this study. Error bars
(standard deviation) are shown. D) Pie chart of individual miRNAs (including percentages)
constituting approximately 75% of all bulk miRNAs. Here, calculations were based on the
average number of reads from the two non-demented controls.
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Fig. 2.
Northern blot analysis of selected “annotated” miRNAs. Candidate miRNAs were chosen
based on their low-to-moderate expression, to see whether they were detectable via northern
blot, and if they had the ‘classic’ miRNA pattern with regard to precursor and mature
miRNAs, as described in a prior study [48]. For this analysis, we used total RNA from
different brain regions for comparative reasons. As shown here, only two miRNAs, miR-598
and miR-769-5p, gave positive signals. No signal was observed for miR-1271 and miR-889,
which may be below detection levels. The putative “miR-3676-5p’ gave no miRNA-like
signal. A representative ethidium-bromide-stained gel was photographed to convey RNA
quality and loading parity among the samples; indicated on the figure are well-characterized
RNA bands: tRNA (73–93nts); 5S rRNA (120nts); and 5.8S rRNA (160nts).
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Fig. 3.
A) Heatmap of significantly (p < 0.05) misregulated human miRNAs in the disease groups
when compared to non-demented controls. For these calculations, we focused on samples
with relatively high and comparable reads numbers: controls #1 and 2, AD Braak VI #1 and
3, FTLD-TDP #1–3, DLB #1–4, and HS-Aging #1–4. Normalization details are found in
Supplementary data. B) Real-time quantitative RT-PCR of mature miR-132-3p or miR-100
in control (n = 8), FTLD (n = 5), and PSP (n = 9) patients from the Canadian cohort. Here,
total RNA extracted from temporal cortex was used. The miRNA miR-16 was used as
normalization control (using the average of non-demented controls as 1 fold). Statistics were
calculated using a Mann-Whitney t test, where *p < 0.05 and **p < 0.01. C) Representative
examples of significantly changed isomiRs that are actually expressed at higher levels than
their miRNA reference counterpart (http://mirbase.org/). In all cases, the added or deleted
nucleotide corresponds to the genomic sequence (see shaded boxes).
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Fig. 4.
Distribution of edited nucleotides for (A) miR-26a, (B) miR-132-3p, and (C) miR-125b. A
representative example was taken from non-demented controls, AD Braak VI, and DLB.
Note that most “disease-specific” editing patterns (in shaded boxes) could not be reproduced
when sequencing the same RNA samples independently (run 1 versus run 2). However,
some “hot-spot” editing patterns were consistently observed, for instance at positions 1, 11,
12, 20, 21, and 22. These likely represent physiological editing patterns, although
representing only ~1–4% of total reads. The mature miRNA sequences are presented below.
Notably, editing patterns were not significantly different between control and disease
groups, as determined using a two-way ANOVA with Bonferroni post-hoc test (not shown).
Y-Axis; nucleotide position of the mature miRNA sequence. X-Axis, percentage of edited
miRNAs. “Physiological” (consistent) editing patterns are highlighted in light blue boxes.
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Fig. 5.
A) Table demonstrating putative novel miRNAs with 21–23 nucleotides. The candidate
miRNA names (“PC-”), sequence, number of reads (average n = 2 of controls), precursor
miRNA (pre-miR) free energy (calculated using RNAfold: http://rna.tbi.univie.ac.at/cgi-bin/
RNAfold.cgi), miRNA precursor properties (calculated using MirEval: http://tagc.univ-
mrs.fr/mireval), and putative pre-miR structure (generated using RNAfold). Range of read
numbers in these samples was from 0 (PC-3p-81538) to 219 (PC-3p-10838). A “0” reads
count indicates that no putative miRNA molecule was detected in this sample. For
comparative reasons, we included miR-23a (21nt), miR-132-3p (22nt), and miR-17 (23nt)
which all had >1000 reads. B) Conservation alignment of three putative novel miRNAs. The
seed sequence (nucleotides 2–7 of the mature sequence) is shown in yellow. Conserved
nucleotides are shown in light blue. C) Heatmap of significantly misregulated putative novel
miRNAs in the different disease groups when compared to non-demented controls. Note that
only one candidate miRNA has 21 nucleotides.
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