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Abstract
The persistence of chronic immune activation and oxidative stress in human immunodeficiency
virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing
HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is
effective in treating immune-mediated diseases and it also has potential applications to limiting
HIV disease progression. Among the relevant effects of DMF and its active metabolite
monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-
inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic
cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and
induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes.
Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin
lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms
potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV
infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also
suppress neurotoxin production from HIV-infected macrophages, which drives CNS
neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV
infection through its effective suppression of immune activation, oxidative stress, HIV replication,
and macrophage-associated neuronal injury.
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I. INTRODUCTION
Fumaric acid was initially proposed for treatment of psoriasis by the German chemist Walter
Schweckendiek in 1959.1 However, because fumaric acid is poorly absorbed after oral
intake, developing a mixture of fumaric acid esters (FAEs) to achieve higher effective
bioavailability after oral dosing was necessary. In 1994, an enteric-coated preparation of
FAEs containing 120 mg of dimethyl fumarate (DMF) and three salts of monoethyl fumarate
(MEF) was licensed in Germany under the trade name Fumaderm® for the treatment of
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psoriasis. After positive results in psoriasis treatment trials, research into the therapeutic
potential of FAEs has greatly accelerated. Most recently, a DMF-containing formulation,
BG-12, showed marked efficacy in Phase III multiple sclerosis clinical trials.2, 3

Furthermore, additional in vitro and in vivo studies over the past decade have explored the
therapeutic potential of FAEs for the treatment of other inflammatory diseases. With the
recent FDA approval of BG-12 (brand name Tecfidera™) on March 27th, 2013 for the
treatment of multiple sclerosis, the clinical application of FAEs for treating inflammatory
diseases is likely to further rapidly expand. This review will assess the understanding of the
mechanisms of FAEs in modulating immune responses and antioxidant responses and their
potential application for treating disorders of inflammation and associated oxidative stress.
Among the potential uses of FAEs is the treatment of HIV infection and its associated
complications, as inflammation and oxidative stress are central to HIV pathogenesis.
Notably, as DMF and MMF have been shown to effectively suppress inflammatory
responses in vivo in both systemic and CNS compartments, DMF formulation therapy could
offer adjunctive protection against both systemic and CNS complications of HIV infection.

II. PHARMACOKINETICS
Within minutes after oral intake, DMF is rapidly hydrolyzed by esterases within the small
intestine to form its biologically active metabolite, monomethyl fumarate (MMF).4 MMF,
but not DMF, can be detected in serum after oral DMF ingestion. DMF is undetectable
likely due its rapid hydrolysis. MMF is further metabolized through the tricarboxylic acid
cycle to form H2O and carbon dioxide, which is excreted through respiration. There is no
evidence for cytochrome P450-dependent metabolism. Small amounts of non-metabolized
MMF are detectable in the urine and feces.5 In fasting healthy individuals, the half-life of
MMF was estimated to be ~56 minutes and peak serum levels (mean 6 µM, range 3–10 µM)
were observed at ~178 minutes (standard deviation 39 minutes) after 120 mg of oral DMF
(and 95 mg of MEF).5 When these healthy individuals ingested DMF with meals, the peak
MMF serum levels increased by more than 25% in 57% of the patients, but they decreased
by an average of 69% in the remaining subjects; this demonstrates that food intake increases
variability in serum MMF concentrations. In a smaller study of psoriasis patients, the
average half-life of MMF was estimated to be ~47 minutes with peak serum levels of 11.5
µM observed at ~219 minutes post-intake (two tablets of Fumaderm®, 240 mg DMF and
190 mg MEF).6 In both of these pharmacokinetic studies, DMF was not detected in serum
(<0.07 µM in healthy individuals). This suggests that MMF, but not DMF, is absorbed into
the systemic circulation, and that MMF is the functional molecule in vivo that should be
targeted for mechanistic studies in vitro. Nonetheless, Rostami-Yazdi et al. detected the
mercapturic acid derivative of DMF in urine from individuals taking Fumaderm®,
suggesting that DMF might indeed enter the circulation prior to being rapidly metabolized.7

Thus, DMF might express some biological activity in vivo, however transiently, and
therefore defining the mechanisms of action of FAEs requires the study of both MMF and
DMF to fully define the biological effects of oral DMF formulation therapy.

III. FAE THEARAPY SAFETY AND ADVERSE EVENTS
Oral DMF (240 mg taken 2–3 times daily) has been tested in several clinical trials in
individuals with psoriasis,8, 9 multiple sclerosis,2, 3, 10 and other inflammatory diseases.11, 12

The recent phase III efficacy trials for multiple sclerosis demonstrated no increase rate of
patient dropout in drug vs. placebo-treated patients, indicating excellent long-term
tolerability.2, 3 The most common reported adverse events in these trials were flushing in
~33% of patients, gastrointestinal events (diarrhea, nausea, upper abdominal pain, and
vomiting) in ~33% of patients, and pruritus and proteinuria in ~9% of patients. Flushing and
gastrointestinal events decreased after the first month of therapy. Transient eosinophilia has
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also been reported in patients at 4–8 weeks post initiation of FAE therapy.13 DMF
formulation treatment was associated with a persistent leukocytopenia (~11% reduction in
white blood cell count) and particularly lymphocytopenia (~30% reduction in circulating T-
lymphocytes). White-cell and lymphocyte counts decreased in patients over the first year of
DMF therapy and eventually plateaued at a lower set-point, though the majority of patients’
cell counts remained within the normal range. White-cell counts less than 3.0 × 109 per liter
and lymphocyte counts of less that 0.5 × 109 per liter (corresponding to the National Cancer
Institute Common Toxicity Criteria grade 2 or higher leukocytopenia and grade 3 or higher
lymphocytopenia, respectively) were seen in ~4–7% of patients in the oral DMF groups
versus ~1% in patients in the placebo group.2, 3

Despite the reduced white blood cell and lymphocyte counts, an increase in risk for
malignancy or infection, including opportunistic infections, has not been reported in any
FAE clinical trials or retrospective studies during the 20 years of FAE use.8, 14 However,
recent case reports of progressive multifocal leukoencephalopathy (PML) have been
reported in patients taking combination formulations of DMF and other fumarate derivatives
(Fumaderm® and Psorinovo).15–17 Significant confounding risk factors for PML were
present in these patients (including sarcoidosis, cancer, and efalizumab use) and so the true
relative risk, if any, for FAE-associated PML is difficult to assess. Notably, to date, there is
no evidence that patients treated with oral DMF monotherapy (BG-12/Tecfidera™) are at
increased risk for opportunistic infections, including PML.17 Nonetheless, the rare case
reports of PML (180,000 patents-years of experience with Fumdaerm®), suggest that
vigilance in prescribers is critical. Prior to these reports, precautions for use such as
monitoring blood lymphocyte levels had been suggested. A reduction of FAE dose or
discontinuation was recommended if the white blood cell or lymphocyte counts fall below
3.0 × 109 or 0.5 × 109 cells per liter, respectively.18 This recommendation is especially
prudent, in view of these recent PML case reports.

IV. MODE OF ACTION IN DIFFERENT CELL LINEAGES:
IMMUNOMODULATION AND ANTIOXIDANT RESPONSE

The effects of DMF and MMF on immune responses have thus far been only partially
characterized. Several in vitro studies have demonstrated perturbation of nuclear factor κB
(NF-κB) function through inhibition of NF-κB nuclear translocation and DNA binding
(Figure 1). The NF-κB pathway plays a central role in regulating cytokine production,
cellular activation, development, survival, and the innate and adaptive immune system
among other roles (reviewed in19). NF-κB has been shown to induce TNFα, iNOS, IL-1,
IL-2, IL-6, ICAM-1, and COX-2, among others.20 DMF and MMF also induce the nuclear
factor erythroid-2 related factor-2 (Nrf2)-dependent antioxidant response element (ARE)
pathway (Figure 1). The ARE response is a ubiquitous cytoprotective cellular stress
response involving induction of multiple genes that protect cells from many forms of
intracellular oxidative stress and injury (reviewed in21). Generally, oxidative stress occurs
when cells are unable to detoxify injurious agents or repair damage resulting from reactive
oxygen species, hydrogen peroxide, hydroxyl radicals, and other mediators of oxidative
stress. Oxidative stress induces the translocation of Nrf2 to the nucleus where it binds to the
ARE promoter element and activates gene transcription22–24 of hundreds of genes,23, 25, 26

including many antioxidant defense enzymes such as the sentinel cytoprotectant heme
oxygenase-1 (HO-1),27 NAD(P)H quinone oxidoreductase-1 (NQO1),28 γ-glutamate
cysteine ligase catalytic subunit (GCLC),29 glutathione S-transferase (GST),30 and the
cysteine/glutamate transporter (xCT).31

Many studies have demonstrated complex regulatory interactions between the FAE-
responsive Nrf2-dependent ARE and NF-κB pathways. ARE induction can inhibit the NF-
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κB pathway and thus indirectly modulate inflammatory cytokine and chemokine
signaling.32 This inhibition of NF-κB likely occurs through ARE-driven reduction in
oxidative stress, which has been shown to activate the NF-κB signaling pathway.33–36

Further supporting a role for Nrf2, several studies have demonstrated increased NF-κB
activation and dysregulation of cytokines and chemokines in Nrf2−/− mice after
inflammatory insults such as exposure to lipopolysaccharide (LPS)37 or TNFα,37 after
infection with respiratory syncytial virus,38 and after traumatic brain injury.39 Direct
pharmacologic activators of Nrf2 such as tert-butylhydroquinone, sulforaphane, and
phenethyl isothiocyanate also attenuate NF-κB activation in vitro.40–43 Complicating the
Nrf2 -NF-κB regulation, a reciprocal effect of NF-κB on Nrf2 function has been
demonstrated.44 The NF-κB p65 subunit has been shown to repress Nrf2 signaling at the
transcriptional level, through competition with Nrf2 for transcription co-activator CREB
binding protein (CBP) and through recruitment of histone deacetylase 3, resulting in local
hypoacetylation of the ARE promoter element and the consequent suppression of Nrf2
signaling.44 Thus, the Nrf2 and NF-κB pathways regulate each other through reciprocal
inhibition (Figure 1). Additional studies are needed to further define the complex
interactions between the NF-κB and Nrf2 pathways believed to be responsible for the effects
of DMF and MMF. Through a combination of ARE induction and NF-κB signaling
inhibition (Figure 1), and as yet undefined effects of other pathways, FAEs can promote an
anti-inflammatory, anti-infiltrative, and anti-oxidative cellular state in multiple cell lineages,
particularly immune cells. Notably, T-lymphocytes and cells of the monocyte lineage appear
to be particularly sensitive to FAE exposure. The effects of DMF and MMF exposure on
individual cell lineages is described in detail below and summarized in Table 1.

A. Effect of FAE in T-lymphocytes
Early studies of Fumaderm® for psoriasis treatment demonstrated a significant decline
(~30%) in lymphocytes, particularly T-lymphocytes, in 94% of treated patients.45 Similar
results were observed in recent Phase III Multiple Sclerosis trials with the DMF formulation
BG-12 (240 mg of DMF 2–3 times daily).2, 3 However, the mechanism of DMF-induced
lymphocytopenia is unknown. In vitro studies have demonstrated that DMF, but not MMF,
induces apoptosis in human T-lymphocytes after 48 hours of exposure to a concentration of
~70 µM, which is 10-fold higher than the MMF serum levels achieved with oral DMF
dosing.46 This in vitro apoptotic effect of DMF was not seen at ~7uM, the physiologic
concentration achieved by its primary in vivo metabolite MMF. Because DMF is not
detectable in vivo after oral dosing, the contribution of direct DMF cytotoxicity to this
lymphocytopenia is questionable. Thus further studies of the effects of long term exposure
of MMF on T-lymphocyte viability and proliferation are needed.

Analyses of the immunomodulatory effects of FAEs on human T-lymphocytes demonstrated
that FAEs alter cytokine production, cytokine and chemokine receptor expression, and
adhesion molecule expression. Both DMF and MMF increased the production of multiple
Th2 cytokines (IL-4, IL-10)47–49 in T-lymphocytes. Furthermore, DMF, but not MMF,
suppressed Th1 cytokine (IFN-γ) release and chemokine receptor (CXCR3) expression, as
well as the skin-homing chemokine receptor CCR10.50 In contrast, DMF exposure
decreased release of IL-6,50 a cytokine that inhibits Th1 polarization and promotes Th2
differentiation. The suppression of Th1 cytokine release and chemokine receptor expression
is likely linked to DMF’s ability to inhibit NF-κB DNA binding in T-lymphocytes,51 an
effect that is not induced by MMF in vitro. In line with these findings, DMF inhibited IFN-
γ- and LPS-induced Th1 chemokine (CXCL9 and CXCL10) production in a dose dependent
manner in human peripheral blood mononuclear cells (PBMC).52 Furthermore, DMF was
able to increase the expression of Th2 cytokines in lymphocytes in multiple sclerosis
patients and mice with herpes stromal keratitis (see section V. FAEs In Inflammatory
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Diseases for further discussion), suggesting that DMF treatment maintains the Th1 to Th2
shift in the setting of superimposed infections and other inflammatory states. The persistence
of this Th1 to Th2 shift after DMF therapy is stopped has not been reported.

DMF has also been shown to reduce adhesion molecule expression (CD25, HLA-DR, and
cutaneous lymphocyte-associated antigen) in treated T-lymphocytes, which can explain the
decreased binding of treated lymphocytes to E-selectin, P-selectin, and VCAM-1.53 Such
effects might also explain reduced leukocyte rolling and adhesion in DMF-treated mice.53

As many of these in vitro effects were either not studied or were not observed with MMF
treatment, it is unknown if they occur in vivo in DMF-treated subjects. Furthermore, the
roles for DMF and MMF in Nrf2-driven ARE activation in T-lymphocytes, beyond its
associated NF-κB modulation, have not been studied. Thus, although limited in scope, these
in vitro studies suggest that DMF, and MMF in part, promote a shift from a pro-
inflammatory, IFN-γ-driven Th1 T-lymphocyte profile to an anti-inflammatory, IL-10-
driven Th2 T-lymphocyte profile. Such a shift from a Th1 response (autoimmune responses
and the killing intracellular parasites) to a Th2 response associated with eosinophilic
responses and counteraction against Th1 responses could result in decreased T-lymphocyte
activation and tissue infiltration in vivo.

B. Effect of FAE in B-Lymphocytes
Studies of the direct effects of FAE on B-Lymphocyte function have not been reported.
However, there is evidence that disruption of NF-κB signaling can interfere with B-
lymphocyte development and survival,19 suggesting FAE-mediated NF-κB modulation may
alter Blymphocyte function.

C. Effect of FAE in Monocytes/Macrophages/Microglia
DMF and MMF express potent anti-inflammatory and antioxidant effects in monocytes,
monocyte-derived macrophages, and microglia. In human macrophages, DMF and MMF
decreased NF-κB nuclear translocation and DNA binding in response to TNFα exposure
and reduced TNFα secretion in response to phytohaemagglutinin, suggesting a decreased
state of activation.54 Furthermore, DMF and MMF suppressed CCL2-induced chemotaxis of
human monocytes,54 which would likely result in decreased infiltration across endothelial
surfaces into tissue. In LPS-activated microglia, DMF has been shown to decrease release of
the pro-inflammatory cytokines IL-1β, IL-6, and TNFα,55 likely through decreased NF-κB
signaling. DMF- and MMF-induced expression of Nrf2-dependent ARE proteins, including
the ubiquitous cytoprotectant enzyme HO-1, was also reported in macrophages and
microglia,54, 56 suggesting that FAEs can modulate the oxidative state within these cells.
However, DMF- and MMF-treated monocytes expressed higher levels of reactive oxygen
intermediates in the respiratory burst,57 a rapid release of free radicals that is essential step
in immunological defense, particularly against bacteria and fungi. In contrast, induction of
HO-1 can also decrease expression of reactive nitrogen species, another principal
component of the respiratory burst, through suppression of the inducible nitric oxide
synthase (iNOS) expression and associated nitric oxide induction.58 Overall, these data
suggest that DMF and MMF have potent anti-inflammatory and anti-oxidative effects in
macrophages and microglia and this further suggests that DMF formulations could be
effective in treating both systemic and CNS inflammatory diseases that involve macrophage/
microglial activation.

D. Effect of FAE in Dendritic Cells
Both DMF and MMF suppress monocyte-derived dendritic cell differentiation and cytokine
production in vitro through suppression of both NF-κB and extracellular signal-regulated
kinase 1 and 2 (ERK1/2) signaling.59, 60 In addition, MMF decreased IL-12, IL-10, TNFα,
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and IFN-γ secretion from dendritic cells, which resulted in decreased dendritic cell
effectiveness in stimulating Th1 cytokine production in T-lymphocytes.61, 62 DMF exposure
to dendritic cells also decreased inflammatory cytokine production (IL-12, IL-23, and IL-6),
dendritic cell maturation, and effectiveness in generating activated T-lymphocytes60. These
findings, coupled with reports demonstrating that DMF exposure increases the production of
IL-10 by dendritic cells, suggest that DMF promotes the type II dendritic cell phenotype.63

In summary, FAE interference with dendritic cell differentiation and cytokine secretion
further suppresses Th1 responses in addition to the direct effects of FAEs on T-lymphocytes
and also promotes a type II dendritic cell response.

E. Effects of FAE in Endothelial Cells
Similar to DMF effects in T-lymphocytes, macrophages, and dendritic cells, DMF has been
shown to decrease TNFα-induced NF-κB activation and associated activation of vascular
endothelial cells.64, 65 DMF also decreased the expression of the adhesion molecules E-
selectin, VCAM-1, and ICAM-1 on endothelial cells, resulting in decreased leukocyte
rolling, firm adhesion, and diapedesis in vitro,66, 67 perhaps through inhibition of NF-κB
activation. Notably, these effects were not seen with MMF, which might indicate that DMF
formulations might not induce these effects after oral administration. Nonetheless, these
results suggest a second mechanism (decreased adhesion and transendothelial migration) by
which FAEs decrease immune cell migration into tissues, in addition to direct effects on
chemotaxis by exposed lymphocytes and mononuclear phagocytes, which could further limit
tissue inflammation.

F. Effects of FAE in CNS Cells
The effects of FAEs in the CNS could be expressed through modulation of macrophages,
microglia, endothelial cells, astrocytes, neurons, oligodendrocytes, and choroid plexus cells.
Among those cell types in which FAE effects have been examined are monocyte-derived
macrophages, microglia, endothelial cells (previously discussed), astrocytes, neurons, and
oligodendrocytes. No studies of DMF or MMF effects in choroid plexus-derived cells have
been published. DMF has been shown to decrease IL-1β, IL-6, and TNFα release from
astrocytes and microglia,55, 68 which could contribute to an anti-inflammatory effect in the
CNS compartment. Furthermore, DMF and MMF, through Nrf2 activation, induced the
expression of ARE effector proteins, including NAD(P)H quinone oxidoreductase-1 and
HO-1, in microglia, astrocytes, and neurons.55, 69, 70 Such induction of antioxidant enzymes
in astrocytes and neurons was shown to protect against oxidative injury and glutamate
toxicity.69–71 Despite this protection in astrocytes and neurons, DMF and MMF did not
protect against oxidative injury in the oligodendrocyte CG4 cell line.72 These studies and
those mentioned above suggest a role for FAEs as both indirect neuroprotectants through
anti-inflammatory and anti-oxidative effects in macrophages, microglia, astrocytes, and
endothelial cells, and as direct neuroprotectants through induction of the ARE in neurons.

V. FAEs IN INFLAMMATORY DISEASES
A. Psoriasis

Psoriasis is a common (1–3% of the worldwide population), systemic T-lymphocyte-
mediated chronic inflammatory skin disease characterized by cutaneous inflammation,
increased epidermal proliferation, abnormal keratinization, and appearance of erythematous
plaques (reviewed in73). Psoriasis is the disease for which FAEs have been most widely
applied for therapeutic benefit. The efficacy of FAEs likely results from their potent anti-
inflammatory and antioxidant effects.
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1. Inflammation in Psoriasis—Early reports demonstrated persistent Th1 T-lymphocyte
activation within psoriatic plaques,74–76 although natural killer T-lymphocytes were also
implicated.77–79 Recent work has shown a significantly complicated picture of the
inflammatory milieu in psoriasis plaques. Current models now incorporate an inflammatory
axis that balances the Th1, Th2, Th17, and T-regulatory type responses as well as
contributions by dendritic cells, natural killer T-lymphocytes, and macrophages (reviewed
in80). Underscoring this central role of inflammation in the pathogenesis of psoriasis,
numerous immunomodulatory therapies have shown efficacy in treating psoriasis, including
corticosteroids,81 tacrolimus,82 pimecrolimus,83 methotrexate,84 and the TNFα inhibiting
therapies etanercept,85 infliximab,86 and adalimumab.87

2. Oxidative Stress in Psoriasis—In addition to markers of immune activation,
markers of oxidative stress are consistently elevated in psoriasis patients and coupled with
antioxidant dysfunction. These patients have increased carbonylation (oxidative stress
marker) of macromolecules in skin biopsies and cultured fibroblasts,88 increased plasma
malondialdehyde (lipid peroxidation product),89 increased urine 8-hydroxydeoxyguanosine
(a marker of DNA oxidation) and nitrate (a product of nitric oxide),90 increased lipid
hydroperoxides,91 and lower serum antioxidants, including paraoxonase-1 and
thiols.89, 91, 92 Furthermore, the 55 L/M allele of paraoxonase-1 (an antioxidant enzyme
implicated in psoriasis that hydrolyses lipid peroxidases) is a risk factor for psoriasis and
allele carriers have higher levels of oxidative stress and lower ARE activity.93 In summary,
psoriasis is a chronic inflammatory skin diseases involving numerous immune axes,
particularly various arms of the T-lymphocyte axis, and elevated oxidative stress and
impaired antioxidant responses.

3. Clinical Trials of FAEs in Psoriasis—Before the roles for immune activation and
oxidative stress in psoriasis were identified, the German chemist Walter Schweckendiek
empirically developed an FAE therapy for psoriasis.1 Although unknown at that time, the
anti-inflammatory effects through suppression of NF-κB activity and oxidative stress
reducing effects through induction of the ARE suggest a role for FAEs in treating psoriasis.
The first randomized, double-blind trial of FAE therapy for psoriasis was published by
Nugteren-Huying et al. in 1990.94 This trial demonstrated an average reduction in the
psoriatic skin lesion area by 68% in 39 psoriasis patients treated with a combination of DMF
and MEF for 4 months, an effect significantly different from the groups treated with an
MEF/octylhydrogen-fumarate combination or with a placebo. Since that initial trial, other
larger and longer-term clinical trials (up to 3 years) have affirmed the effectiveness and
safety of FAE therapy for patients with severe psoriasis.9, 13, 95–99 Combining DMF with
other FAEs including MEF (Fumaderm®) showed greater efficacy and patient adherence to
FAE therapy than DMF monotherapy.95, 97 The mechanism for this synergistic effect is
unknown, but likely could be due to competitive metabolism.

4. FAE effects on keratinocytes: role in psoriasis—The mechanisms of action of
FAE therapy in effectively treating psoriasis likely represent both direct effects on
keratinocytes and the aforementioned immunomodulatory and anti-oxidative properties of
DMF and MMF on other cell types. Keratinocytes play a major role in the inflammatory
response in psoriasis through expression of chemokines and cytokines (reviewed in100).
DMF treatment in co-cultured keratinocytes and T-lymphocytes increased the Th2 cytokine
IL-10, while decreasing IFN-γ, IL-6, and TGFα.48 Furthermore, DMF inhibited the
expression of the chemokines CXCL1, CXCL8, CXCL9, CXCL10, and CXCL11 in primary
human keratinocytes.52 These immunomodulatory effects on keratinocytes have not been
tested with MMF. However, DMF and to a lesser extent MMF have been shown to decrease
keratinocyte proliferation.101, 102 In clinical studies, DMF treatment of psoriasis in patients
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resulted in improved epidermal hyperproliferation, epidermal thickness, and keratinocyte
differentiation.98 Overall, these direct effects on keratinocytes suggest multiple mechanisms
that modulate chemoattraction of macrophages, T-lymphocytes, and neutrophilic
granulocytes and pathologic proliferation of keratinocytes.

5. FAEs reduce immune cell infiltration in psoriasis and other skin disorders
—Psoriasis involves infiltration of the dermis by CD4+ T-lymphocytes and the epidermis by
CD8+ T-lymphocytes, the majority of which are CD45RO+ (memory effector).103–106

Clinical studies have demonstrated that DMF treatment of psoriasis patients for sixteen
weeks decreases CD3+CD4+CD45RO+ T-lymphocytes in the dermis and CD3+ CD8+
CD45RO+ T-lymphocytes in the epidermis.98 This FAE effect of decreased immune cell
infiltration is supported by the demonstrations of FAE efficacy in decreasing immune cell
infiltration in other inflammatory skin diseases. These include disseminated granuloma
annulare11, 107 and recalcitrant cutaneous sarcoidosis,12 each of which involves large
number of CD3+ lymphocytes and CD3+/CD68+ mononuclear phagocytes, each of which is
suspected to result from unregulated Th1 reaction. These in vivo findings are consistent with
in vitro studies of DMF that demonstrate decreased expression of adhesion molecules in
endothelial cells66, 67 and lymphocytes53 and decreased CCL2-induced chemotaxis in
macrophages54, resulting in decreased immune cell tissue infiltration into tissues. Of note,
DMF also decreased T-lymphocyte expression of the chemokine CCR10,50 which is often
expressed on skin-homing T-lymphocytes. In addition to decreased chemotaxis and homing
in DMF-exposed macrophage and T-lymphocytes, induction of leukocytopenia and
lymphocytopenia by DMF might also contribute to DMF efficacy in treating
psoriasis.2, 3, 8–10

B. Multiple Sclerosis
Multiple sclerosis is the most common cause of neurological disability in young adults
worldwide with approximately 2.1 million cases worldwide and 400,000 cases in the United
States.108, 109 Epidemiologic data suggest that multiple sclerosis pathogenesis involves
environmental influences occurring on a background of genetic susceptibility.110 In most
patients, multiple sclerosis presents as a relapsing-remitting disease characterized by
dynamic inflammatory demyelinating lesions in the CNS that are associated with sensory
(~30%) or motor (~13%) disturbance of the limbs, partial or complete visual loss (~16%)
and other signs and symptoms (reviewed in111). Multiple sclerosis is the first CNS disease
successfully treated with FAEs. The efficacy of FAEs in multiple sclerosis likely results
from their potent anti-inflammatory and antioxidant effects within the CNS compartment.

1. Inflammation and Degeneration in Multiple Sclerosis—Traditionally multiple
sclerosis was considered to be an autoimmune, inflammatory disease of the CNS mediated
by an aberrant T-lymphocyte attack against CNS elements, particularly myelin, resulting in
degeneration of axons.112 This view was strongly supported by pathological, laboratory,
radiological, genetic, epidemiological, and therapeutic data, all of which supported an
autoimmune and inflammatory phenotype that is driven by Th1 type inflammation in the
brain (reviewed in112). However, recently published studies have posited that multiple
sclerosis is primarily a degenerative disorder, with a secondary immune response to myelin
and other highly immunogenic debris (reviewed in113). Evidence for this includes reports
demonstrating that myelin abnormalities might begin at the inner myelin sheath in areas
outside focal inflammation;114, 115 patients in early stages of multiple sclerosis show little
evidence of T-lymphocyte or B-lymphocyte infiltration in newly formed demyelinating
lesions (although evidence of the innate immune response by macrophage infiltration and
microglial activation is present, probably for clearing debris);116, 117 and the ineffectiveness
of autologous hematopoietic stem-cell transplantation to halt the progression of
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demyelination, axonal degeneration, and brain atrophy despite reducing CNS inflammatory
activity.118, 119 Regardless of the initial pathologic substrate, the inflammatory response
present in relapsing-remitting multiple sclerosis plays a critical role in disease pathogenesis
as evidenced by the success of numerous immune modulators, including interferon
beta-1b100 and beta-1a,120, 121 glatiramer acetate,122, 123 fingolimod,81, 124 and
teriflunomide125 among many others, in reducing and in some instances eliminating
neuroinflammation and clinical relapses.

2. Clinical Trials of FAEs for Multiple Sclerosis Treatment—BG-12, an oral FAE
formulation containing DMF, recently showed strong positive effects in two independent
placebo-controlled phase III clinical trials (DEFINE and CONFIRM) involving more than
2600 relapsing-remitting multiple sclerosis patients.2, 3 Importantly, BG-12 improved
clinical outcomes associated with suppression of brain inflammation in such patients when
given twice daily or three times daily, likely due in part to the CNS penetrance of MMF.70

BG-12 therapy in both trials significantly reduced the proportion of patients who relapsed
and the annualized relapse rate at 2 years by ~50%. Furthermore, BG-12 reduced the number
of gadolinium-enhancing lesions (inflammation) and of new or enlarging T2-weighted
hyperintense lesions (demyelination). In the DEFINE trial,2 BG-12 significantly reduced
progression of disability by 38% with BG-12 twice daily and 34% with BG-12 thrice daily.
In the CONFIRM trial,3 BG-12 also reduced progression of disability, but the trend was not
significant. Given the positive results of these clinical trials BG-12 was approved for the
treatment of multiple sclerosis by the FDA on March 27th, 2013 under the brand name
Tecfidera™. These results show that the oral DMF formulation (BG-12/ Tecfidera™) is
effective in modifying CNS inflammation and associated neurological dysfunction in treated
patients and they suggest that DMF formulations should be considered for use in other
neuroinflammatory diseases.

3. FAE Immune Modulation in Multiple Sclerosis—The balance between Th2 and
Th1 responses plays a key role in multiple sclerosis pathogenesis. Multiple sclerosis lesions
contain activated CD4+ and CD8+ T-lymphocytes, mononuclear phagocytes, and high
expression of IFN-γ, TNFα, IL-1, and leukocyte and vascular adhesion molecules.126–128 A
shift from a Th1 towards a Th2 cytokine profile, as induced by FAEs in T-lymphocytes and
PBMCs in vitro,47–50, 52 could have a beneficial effect on the clinical course of the disease.
This is supported by a recent study that showed that BG-12-treated multiple sclerosis
patients showed increased intracellular expression of the Th2 cytokine IL-10 in CD4+
peripheral lymphocytes, with no change in IFN-γ expression.129 It has also been proposed
that the mild leukocytopenia and lymphocytopenia observed in BG-12 treated individuals
could contribute to BG-12 efficacy by reducing the number of circulating immune cells.130

A possible complimentary mechanism for the efficacy of BG-12 in multiple sclerosis is the
decreased expression of adhesion molecules on endothelial cells66, 67 and lymphocytes53

and decreased CCL2-induced chemotaxis in macrophages54, resulting in decreased immune
cell tissue infiltration into the brain. Each of these mechanisms is supported by studies of
autoimmune encephalomyelitis (EAE), the murine model of multiple sclerosis. During
chronic EAE, MMF significantly and DMF nonsignifcantly reduced the infiltration of T-
lymphocytes in the spinal cord. Additionally, MMF, and to a lesser degree DMF,
significantly reduced the infiltration of macrophages into the spinal cord.131 Thus, although
the major beneficial effects of BG-12/Tecfidera™ in treating multiple sclerosis are likely
associated primarily with the ability to reduce CNS inflammation, the reduction of levels of
circulating T lymphocytes and reduction of T-lymphocyte and monocyte/macrophage
chemotaxis might also contribute to the beneficial effects in multiple sclerosis.

Gill and Kolson Page 9

Crit Rev Immunol. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. FAE Antioxidant Response Induction in Multiple Sclerosis—The emerging and
prominent role for oxidative stress in multiple sclerosis pathogenesis and the well studied
protective effects of the ARE activation in cell of different lineages in the CNS highlight
another probable mechanism of FAE efficacy in multiple sclerosis. Oxidative stress
associated with mitochondrial dysfunction132 and excessive release of free radicals133 has
been strongly associated with multiple sclerosis pathogenesis, perhaps contributing to
increased CNS leukocyte invasion and activation, neurodegeneration, and oligodendrocyte
damage. Free radicals include reactive oxygen species, reactive nitrogen species, and nitric
oxide, which are mainly produced by macrophages and microglia.134, 135 In addition,
myeloperoxidase activity, which produces the cytotoxic oxidizer hypochlorous acid and
tyrosyl radicals catalyzed from H2O2, is elevated in macrophages and microglia in actively
demyelinating white matter and cortical lesions in multiple sclerosis.136 These data suggest
that a reduction in oxidative stress might reduce neuroinflammation and associated CNS
damage, each of which could be suppressed by BG-12.

BG-12 is the first multiple sclerosis therapy shown to activate the Nrf2-dependent ARE
pathway and thus reduce oxidative stress. Previous studies have shown that FAE induction
of the ARE and its effector proteins, including HO-1, prevented oxidative-stress induced
astrocyte and neuronal injury,69, 70, 137 decreased microglia nitric oxide burst,72 and
prevented myelin loss within the CNS.70 In EAE studies, DMF treatment attenuated axonal
loss and reduced astrocyte activation in wild-type mice, but not in Nrf2−/− knockout mice,70

strongly suggesting a role for Nrf2-dependent ARE activation in FAE-mediated
neuroprotection. This finding is supported by in vitro data that demonstrated that Nrf2
knockdown removed the dose-dependent protective effect of DMF and MMF on astrocyte
and neuron cell viability after toxic oxidative challenge.69 High concentrations (100 µM) of
DMF and MMF have been shown to induce the ARE protein HO-1 in oligodendrocytes
without evidence of drug cytotoxicity.138 However, whether FAEs are directly protective
against oxidative injury or other insults in oligodendrocytes has not been reported. Despite
this strong evidence linking ARE induction to protection during CNS oxidative and
inflammatory injury in multiple sclerosis, the specific antioxidant pathways and effector
proteins responsible for these protective effects are not known.

C. Other Inflammatory Diseases as Targets for FAEs
1. Huntington’s Disease—FAEs have been studied preclinically in other diseases linked
to inflammation and oxidative stress. Huntington’s Disease (HD) is an autosomal dominant,
progressive neurodegenerative genetic disorder, associated with an expanded trinucleotide
(CAG)n repeat encoding a polyglutamine stretch in the N-terminus of the huntingtin
protein.139 Oxidative stress, mitochondrial dysfunction, and other metabolic deficits have
been shown to play central roles in the pathogenesis of HD.140 Furthermore, symptomatic
CNS disease staging in HD model mice was associated with increased levels of brain
oxygen radicals.141 Treatment of these HD model mice with DMF prolonged survival and
preserved motor functions and neuronal morphology within the striatum and motor cortex,6

likely through the induction of the ARE. These findings implicate a central role for oxidative
stress in HD pathology and have led to multiple clinical trials studying the efficacy of
various antioxidants and modulators of the Nrf-2/ARE pathway,142 though FAEs have not
yet been studied clinically in HD. The efficacy of FAEs in this model and in multiple
sclerosis suggests a broader applicability to CNS disease states with oxidative stress
components, regardless of cause.

2. Herpes Stromal Keratitis—Herpes Stromal Keratitis (HSK), the leading cause of
infectious blindness in developed nations,143 is a disease characterized by an immune-based
pathological reaction that is triggered by herpes simplex virus (HSV) infection of the cornea.
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In HSK, CD4+ Th1 T-lymphocytes are believed to be the principal disease mediators, as the
Th1 cytokines IFN-γ and IL-2 were highly expressed in the HSK cornea144 and anti-IFN-γ
and anti-IL-2 treatment decreased the incidence and severity of herpetic corneal
disease.145–147 Neutrophils and antigen-presenting cells may also play central roles in HSK
pathogenesis.148, 149 In mice exposed to HSV after a corneal scratch, DMF therapy reduced
corneal infiltration of lymphocytes, polymorphonuclear leukocytes (PMNs), and
macrophages and decreased the severity and incidence of stromal keratitis.150, 151

Additional studies of these mice demonstrated that DMF treatment increased the expression
of Th2 cytokines IL-4 and IL-10 in lymphocytes cultured from the spleen, although no
changes were seen in expression of the Th1 cytokines IFN-γ and IL-2.151 Thus, while Th1
cytokines are associated with HSK progression, Th2 cytokines are consistently associated
with improvement.151–153 Even though DMF treatment improved outcomes in these HSK
mouse studies, DMF had no effect on viral titers, HSV antibody production, or HSV
antigen-specific T cell proliferation.151 These data demonstrate that FAEs have therapeutic
efficacy in treating virally-induced inflammation and immune cell infiltration, and that these
effects likely result from direct modulation of the immune response rather than interference
with virus replication.

VI. FAEs AS ADJUNCTIVE THERAPY FOR HIV INFECTION
A. HIV Systemic Disease

Human immunodeficiency virus type 1 (HIV-1) infection of cells of the immune system
(helper T-lymphocytes, macrophages, and dendritic cells) results in profound
immunosuppression as well as chronic immune activation. Untreated HIV infection is
characterized by high levels of viremia, low levels of CD4+ T-lymphocytes, and subsequent
progressive failure of the immune system, resulting in life-threatening opportunistic
infections and/or cancer and death. With the widespread use of highly active antiretroviral
therapy (HAART) or combination antiretroviral therapy (cART) as such therapy is now
called, the long-term survival of individuals living with HIV/AIDS has dramatically
increased. As of 2006, the 6-year survival rate for cART-treated HIV infected individuals
was 90%.154 Today, a 20 year-old individual with HIV infection and starting cART is now
expected to live into his or her 60s.155

1. Persistent Systemic Immune Activation in HIV/AIDS: A Target For
Adjunctive Immunosuppressive Therapy—Despite cART providing a significant
reduction in morbidity and mortality in HIV-infected individuals, life expectancy is still
reduced, particularly in those who begin cART after becoming immunosuppressed (CD4 T-
lymphocyte counts < 200 cells/µl).156–160 A significant risk factor for increased mortality
and end-organ diseases in cART-treated individuals is chronic immune activation,161 which
is thought to result from the effects of increased microbial translocation across the damaged
gastrointestinal tract (reviewed in162). In HIV-infected humans and simian
immunodeficiency virus (SIV)-infected macaques microbial translocation across the gut
results from several events at the gut mucosal barrier: i) severe depletion of mucosal CD4+
T lymphocytes, ii) mucosal immune activation and persistent inflammation, iii) structural
damage to the intestinal epithelium, and iv) migration of enteric microbial products into the
local mesenteric lymph nodes and extraintestinal sites through the portal and systemic
circulation.162 Among translocated microbial products is lipopolysaccharide (LPS),162–164

which, upon entering the systemic circulation, interacts with LPS-binding protein (LBP) and
then facilitates binding to the monocyte CD14 receptor and toll-like receptor 4 (TLR4).
These events then lead to NF-κB activation, cytokine production, and associated immune
activation events.165, 166
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Enhanced immune activation is a consistent observation in both HIV-infected humans and
SIV-infected macaques,167–175 and immune activation of T-lymphocytes and monocytes and
associated inflammation are thought to drive HIV pathogenesis.163, 164, 176–184185, 186187, 188

Elevated plasma levels of IL-6, D-dimer, C-reactive protein (CRP), and fibrinogen are
strongly associated with HIV/AIDS mortality.189, 190 Monocyte/macrophage activation is
associated with elevated blood levels of LPS, soluble CD14 (sCD14), and numbers of
CD14+/CD16+ monocytes.182, 191 CD16+ monocytes are more permissive for HIV
infection than CD16− monocytes,192 and circulating CD14+/CD16+ monocytes levels are
correlated with increased risk of disease progression.191 Elevated plasma LPS from gut
bacteria translocation can increase the circulating CD16+ monocyte population.193 LPS is
also thought to activate T-lymphocytes in HIV-infected individuals through interactions
with TLR4, resulting in effector T-lymphocyte sequestration in lymphoid tissues and T-
lymphocyte turnover.194 The increased T-lymphocyte turnover associated with generalized
immune activation could increase the proliferative generation of new memory CD4+ T
lymphocytes, which provide new targets for HIV replication and thus promote disease
progression, as defined by the endpoints of death, AIDS, CD4+ T lymphocyte counts, and
plasma viral load.162, 195 Depletion of both CD4+ and CD8+ T-lymphocyte populations,
which is strongly associated with disease progression,196 occurs in late stages of disease and
is associated with and proposed to be caused by immune activation.197, 198

In addition to increasing plasma levels of LPS, HIV can induce immune activation of
monocyte/macrophages through direct effects of infection or through the release of factors
that can interact with bystander uninfected monocyte/macrophages. For example, the HIV
envelope glycoprotein gp120 is shed from virions and can transduce signals in monocytes
when presented as a soluble protein or as a component of the virus particle even when
presented on non-infectious virions (as in plasma in vivo).199, 200 Gp120 interacts with non-
infected, bystander monocytes/macrophages and activates intracellular pathways that lead to
monocyte/macrophage immune activation.199, 200 Other factors released from HIV-infected
macrophages, such as TNFα and other proinflammatory cytokines, can also induce
bystander cell immune activation.201–203

Thus, as systemic immune activation is driven by HIV replication, suppression of HIV
replication with cART significantly dampens such immune activation; however this
suppression is incomplete.162, 163, 178, 180, 181, 204–208 The persistence of immune activation
despite suppression of HIV replication to undetectable levels remains a major obstacle to
preventing further disease progression in cART-treated HIV infected individuals. Successful
therapeutic targeting of persistent immune activation has now been proposed as a critical
goal for further improving long-term survival, lowering risk of associated end-organ
diseases, and improving quality of life in HIV-infected cART-treated individuals.162, 195

2. Systemic Oxidative Stress in HIV/AIDS: A Target For Adjunctive Antioxidant
Therapy—HIV infection can induce systemic oxidative stress209–212 through both chronic
immune activation213–215 and direct effects of HIV proteins.216–219 Increased oxidative
stress in HIV-infected individuals was first suggested after confirmation of diminished
levels of reduced glutathione in plasma, lymphocytes, PBMCs, and monocytes isolated from
such individuals.220–222 These early findings were supported by later studies demonstrating
reduced levels of thioredoxin (a thiol antioxidant) in HIV-infected cells223 and elevated
serum levels of the lipid peroxidation products malondialdehyde224, 225 and lipid
hydroperoxides226 in HIV-infected individuals. Moreover, the HIV proteins
gp120,216, 219, 227–230 Vpr,218, 231 and Tat217, 219 have been directly implicated in the
induction of cellular oxidative stress. Oxidative stress in turn can drive NF-κB-driven HIV
replication232–234 and inflammatory cytokine release,232, 235–239 thus perpetuating chronic
systemic immune activation and disease progression in HIV-infected individuals.
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Furthermore, in vivo markers of oxidative stress correlate with systemic disease progression
in HIV-infected individuals240–242. One study showed that glutathione deficiency in CD4+
T-lymphocytes from HIV-infected patients was associated with markedly increased
mortality.243 These findings implicate oxidative stress in HIV disease pathogenesis and
mortality and highlight the potential for adjunctive antioxidant therapies to ameliorate
disease progression in cART-treated patients.

3. FAEs as Candidate Adjunctive Therapy for Systemic HIV disease in cART-
Treated Individuals—The FAEs, and specifically the oral DMF preparations (BG-12/
Tecfidera™, Fumaderm®), are attractive candidates as adjunctive agents for suppressing
chronic immune activation, oxidative stress, and associated HIV disease progression and
comorbidities in cART-treated individuals (reviewed in Figure 2). To date, no in vivo or
clinical studies have examined the efficacy of FAE therapy in HIV infection, however the
dual anti-inflammatory and anti-oxidative mechanisms of FAEs suggest potential potent
systemic efficacy. FAEs have been studied in in vitro models of HIV macrophage-mediated
neurotoxicity where they have shown promising results. The CNS penetrance of MMF and
the demonstrable suppression of CNS inflammation in BG-12-treated multiple sclerosis
patients are especially appealing for targeting persistent CNS inflammation and oxidative
stress in such individuals (see section VI.B. HIV CNS Disease).

a. FAEs as Suppressers of Systemic Immune Activation in HIV/AIDS: Through
inhibition of the NF-κB signaling, which regulates cytokine and chemokine signaling, oral
DMF therapy might provide an additional suppressive effect on the chronic immune
activation in cART-treated patients. This prediction is supported by the efficacy of oral
DMF-formulations (BG-12/Tecfidera™ and Fumaderm®) in limiting inflammation and
immune cell infiltration in multiple sclerosis and psoriasis.2, 3, 8–10, 103–106, 129 Suppression
of chronic immune activation will likely improve long-term survival, lower risk of
associated end-organ diseases, and improve quality of life in HIV-infected cART-treated
individuals.162, 195 The glucocorticoid prednisolone, a potent immunosuppressant, lowered
systemic immune activation in both untreated and cART-treated patients244 and postponed
CD4+ T-lymphocyte count decreases for a median of two years in untreated HIV-infected
patients.245, 246 Prednisone, the precursor to prednisolone, inhibited monocyte TNFα
production without affecting T-lymphocyte antigenic responses.247 However, the profound
side effects of glucocorticoid therapy make its long-term use unattractive as adjunctive
therapy. In a small retrospective study, addition of the immunosuppressant cyclosporine to
cART therapy during primary HIV-1 infection restored CD4+ T-lymphocytes to normal
levels (both percentage and absolute numbers) and adjunctively treated patients maintained
higher CD4+ T-lymphocyte levels than those in patients taking cART alone.248 In this
study, cyclosporine adjunctive therapy did not significantly affect virus-specific CD8+ or
CD4+ T-lymphocyte responses or viral load.248 However, another study of the effects of
cyclosporine treatment during acute and early HIV-infection in 48 subjects demonstrated no
significant improvement in CD4+ T-lymphocyte counts or other markers of disease
progression.249 Notably, cyclosporine has shown limited efficacy in multiple
sclerosis,250–253 in direct contrast to the strong and consistent efficacy reported for the
immune modulator BG-12/Tecfidera™,2, 3 suggesting DMF therapy may similarly prove
more effective in HIV-infection. The central role of chronic immune activation in disease
progression in cART-treated individuals coupled with these promising findings
demonstrating a delayed disease progression with suppression of immune activation strongly
supports further exploration of immunomodulatory therapy for the treatment of HIV
infection. The anti-inflammatory effects of DMF in cell lineages relevant to HIV-infection
coupled with its effectiveness in the chronic inflammatory diseases multiple sclerosis and
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psoriasis, makes it a promising adjunctive therapy for improving morbidity and mortality in
cART-treated HIV-infected individuals.

b. FAEs as Possible Protectors of the Intestinal Mucosal Barrier in HIV/AIDS: Chronic
immune inflammation is believed to occur primarily as a result of microbial translocation
across the damaged gastrointestinal tract,162 as described above. Beyond direct anti-
inflammatory effects on immune cells, FAE therapy might ameliorate chronic immune
activation through decreasing microbial translocation by several effects: i) reversing or
halting the depletion of mucosal CD4+ T-lymphocytes, ii) limiting mucosal immune
activation and inflammation, and iii) preventing structural damage to the intestinal
epithelium. Through inhibition of NF-κB activity in mucosal lymphocytes and other
mucosal immune cells, FAEs could dampen mucosal immune cell activation thereby
limiting mucosal inflammation. This decreased inflammation could reduce immune
activation-induced T-lymphocyte apoptosis.254 Recent in vitro and in vivo mouse studies
suggest that inducers of the Nrf2-dependent ARE can protect intestinal mucosa from
inflammation-associated oxidative stress and injury and reduce the associated invasion of
anaerobic bacteria into the mucosa.43, 255–259 Therefore, oral DMF through induction of the
ARE might limit microbial translocation across the intestinal mucosa and through NF-κB
inhibition promote gut immunity, thereby preventing the primary cause of chronic systemic
inflammation in HIV-infected individuals.

c. FAEs as Suppressors of Systemic HIV Replication: The ability of DMF and MMF to
modulate NF-κB signaling and cellular pathways of cytokine production, particularly of
TNFα, suggests the possibility of associated effects on replication of HIV in immune cells.
Increased nuclear translocation of NF-κB, through immune activation including TNFα
stimulation,232, 260, 261 drives HIV gene expression from the HIV long terminal repeat
(LTR).262, 263 Therefore, FAE-driven inhibition of NF-κB nuclear translocation and DNA
binding might further limit HIV-replication in vivo. Potent inhibition of HIV replication by
DMF and MMF pre-treatment in primary human monocyte-derived macrophages has been
demonstrated in vitro.54 The effect of FAEs on HIV replication in T-lymphocytes, the
primary targets of HIV infection, has not been reported. In addition, modification of the
oxidative state of immune cells such as increasing glutathione has been shown to interfere
with HIV particle assembly, infectivity, and release,233, 264 which suggests another possible
inhibitory effect of FAEs on the HIV life cycle.

d. FAEs as Suppressors of Oxidative Stress in HIV/AIDS: In addition to markers of
immune activation, markers of oxidative stress are consistently elevated and associated with
disease progression in HIV-infected patients. This role of oxidative stress and glutathione
depletion in HIV systemic disease pathogenesis and mortality served as the rationale for
treatment of HIV-infected patients with various direct antioxidants, including N-
acetylcysteine243, 265–268 and selenium.269–271 The largest selenium clinical trial was a
randomized controlled trial of 262 HIV-infected patients (192 receiving ART) that reported
that nine-months of selenium supplementation resulted in a significant increase in CD4+ T-
lymphocyte count and a decrease in viral load.271 Similar effects on increasing CD4+ T-
lymphocyte counts and decreased viral loads were seen in two of the N-acetylcysteine
studies.267, 268 These trials suggest that antioxidant therapies have the potential to modulate
HIV disease progression. However, numerous studies suggest that N-acetylcysteine,272–274

selenium,275 and other direct antioxidants276–278 actually suppress the endogenous Nrf2-
driven ARE (a pro-oxidative effect), likely due to their direct suppression of oxidative stress,
which serves as the main inducer of the Nrf2 translocation and subsequent ARE induction.
Furthermore complicating their clinical usefulness, direct antioxidants are expended to elicit
their antioxidant effects and thus are often short-lived and need to be replenished
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frequently.279 Therapies that induce sustained activation of the endogenous ARE might
provide greater protection against oxidative stress than direct antioxidants due to sustained
increased expression of multiple antioxidant effector proteins.

The monoamine oxidase B inhibitor selegiline, which had been shown decrease oxygen free
radicals and enhance the expression of antioxidant enzymes superoxide dismutase and
catalase,280–282 has been used to attempt to increase dopaminergic neurotransmission and
reduce neuronal injury caused by oxidative stress in Parkinson’s and Alzheimer’s
Disease.283, 284 In addition, selegiline has been shown to activate the Nrf2 pathway in
neuronal cell lines.285 Despite the success of selegiline in other neurocognitive diseases and
the evidence that selegiline may induce the ARE and limit oxidative stress, a 24-week
clinical trial of transdermal selegiline therapy (two doses) with a 24-week open-label
extension in HIV-infected patients failed to show neurocognitive improvement or positive
changes in brain or CSF biomarkers of oxidative stress.286–288 The reasons for the failure of
selegiline therapy to achieve positive outcomes in this trial are unclear. The 24-week
treatment duration was relatively brief and each treatment arm, including placebo, showed
no neurocognitive deterioration over 24 weeks of open-label follow-up. Some investigators
have suggested that augmenting dopaminergic signaling could enhance HIV infection of
macrophages and promote neuropathological disease progression in simian
immunodeficiency virus (SIV)-infected macaques.289, 290

Despite the clinical trial failure of transdermal selegiline, compelling evidence supports
oxidative stress as a major driving force in HIV neuropathogenesis. Furthermore, the partial
clinical efficacy of direct antioxidants (N-acetylcysteine, Selenium) strongly supports
further study of ARE-inducing therapies such as DMF for disease suppression in HIV
infected individuals.

e. Potential of FAEs in Treating Systemic HIV-Associated Comorbidities: Despite use
of cART therapy, HIV-infected individuals have an increased risk of progressive
dysfunction of major organs. Such HIV disease progression can involve the central nervous
system (brain/cognition, see section VI.B HIV CNS Disease; spinal cord/myelopathy),
peripheral nerves (neuropathy), heart (atherosclerosis, heart failure), liver (cirrhosis,
hepatocellular carcinoma), kidney (nephropathy, glomerulonephritis/sclerosis,
tubulointerstitial nephritis), and bone (osteopenia, osteoporosis) (reviewed in291–293). In
these comorbidities, inflammation and possibly the associated oxidative stress are thought to
play a significant role.

Cardiovascular Disease: HIV-infected patients have increased risk of atherosclerosis,
myocardial infarction, heart failure, and other vascular diseases.294, 295 Increased serum
levels of several markers of inflammation strongly predict cardiovascular disease and
mortality.296–298 Although HIV-infected cART-treated individuals are at lower risk for
cardiovascular disease than HIV-infected individuals not receiving cART, they are
nonetheless at higher risk than the general population. Risk factors for cardiovascular
disease in cART-treated individuals include low-level virus replication, chronic immune
activation associated microbial translocation, monocyte activation, and oxidative stress
(reviewed in299), each of which is a potential target of DMF therapy. Atherosclerosis in
particular is driven by persistent inflammation, macrophage and T-lymphocyte infiltration,
endothelial cell activation, and oxidative stress.300, 301 Furthermore, studies of transgenic
mice expressing HIV Tat, gp120, and Nef suggest that expression of these HIV-1 proteins,
independent of viral infection, can induce cardiac damage through oxidative stress.228 Such
damage is associated with elevated cystine/cysteine ratios and altered glutathione
metabolism in cardiac muscle.228 Similarly, cardiac tissue from Tatexpressing transgenic
mice showed decreased glutathione levels, mitochondrial damage, and cardiomyopathy.302
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Thus, the ability of DMF and MMF to decrease inflammation, immune cell activation and
invasion, endothelial cell activation, and injury due to oxidative stress suggest that DMF
formulations could decrease the elevated risk of cardiovascular events in cART-treated
individuals.

Bone Disease: Osteopenia and Osteoporosis: A recent meta-analysis showed that the
prevalence of osteopenia and osteoporosis in HIV-infected individuals was more than three
times higher than that in uninfected controls.303 This could reflect effects of chronic
inflammation and associated increased bone resorption304 as well as HIV-driven (and
potentially cART-driven) increases in osteoclast activity.305 DMF therapy, through limiting
systemic inflammation and viral replication, could potentially reduce these pro-osteoclast
signals. One such signal, NF-κB activity, regulates osteoclast differentiation and the
inflammatory cytokine TNFα that induces bone loss through stimulation of
osteoclasts.306–308 Therefore, DMF therapy through inhibition of NF-κB and TNFα release
from immune cells could have further efficacy in decreasing osteoclast activity.

Hepatic and Renal Disease: HIV-infected individuals also have increased risk of both
kidney309–311 and liver311–313 disease associated with viral replication, low peripheral
CD4+ T-lymphocyte count, and the use of certain antiretroviral drugs.314–319 Given these
correlations among renal and liver disease, viral replication (despite cART), and T-
lymphocyte counts, DMF therapy could potentially ameliorate HIV-associated liver and
kidney disease.

In summary, DMF therapy in HIV-infected patients could reduce disease progression by
limiting systemic immune activation and associated oxidative stress. Through induction of
the Nrf2/ARE and inhibition of NF-κB, DMF therapy could systemically: i) reduce immune
cell activation and cytokine release, ii) prevent leukocyte tissue infiltration; and iii) inhibit
HIV infection and replication. Each of these effects has been demonstrated in published
studies examining DMF. In addition, suggested possible effects of DMF therapy include the
following: i) limiting intestinal mucosal barrier damage and associated microbial
translocation, ii) reducing HIV-associated organ comorbidities, and iii) limiting oxidative
stress (reviewed in Figure 2). Thus, there is much promise for the use of oral DMF
formulations as adjunctive therapy for systemic disease progression and comorbidities in
cART-treated HIV-infected individuals.

B. HIV CNS Disease
In addition to systemic inflammation and oxidative stress, HIV infection is also associated
with persistent inflammation and oxidative stress within the CNS compartment. Because
HIV infection is associated with neurocognitive dysfunction even with individuals who
demonstrate complete or nearly complete suppression of HIV replication with cART,
adjunctive therapy for neuroprotection is clearly needed in HIV-infected individuals. HIV
infection causes varying degrees of cognitive, motor, and behavioral deficits collectively
known as HIV-associated neurocognitive disorders (HAND) in up to 50% of cART treated
individuals.320–324 HAND consists of three sub-classifications that span a
neuropsychological spectrum of impairment, from asymptomatic neurocognitive impairment
(ANI) and mild neurocognitive disorder (MND) to HIV-Associated Dementia (HAD), the
most severe form of HAND. cART has decreased the prevalence of HAD,325–327 however, a
significant proportion of patients on ART (30–50%) continue to develop neurocognitive
impairments, despite reduced plasma viremia, improved immunological parameters, and
decreased progression to AIDS.138, 326, 328–337 A recent study shows a significant increase
in the prevalence of the milder forms of HAND in the cART era.330 The high prevalence of
HAND and other neurologic manifestations of HIV-infection despite the introduction of
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cART underscores a critical need for adjunctive therapies that target the persistent
inflammation and oxidative stress within the CNS compartment.338–343

1. Macrophages/Microglia are Central Mediators of HAND Neuropathogenesis
—Systemic effects of HIV infection are likely driven by HIV replication in CD4+ T-
lymphocytes, while CNS effects of infection are predominantly driven by HIV infection of
macrophages/microglia. HIV entry into the CNS occurs early in infection,344–347 with
subsequent productive replication in the brain occurring primarily within perivascular
monocyte-derived macrophages (MDMs) and microglia, and restricted, non-productive
replication in astrocytes.348–351 Persistent CNS HIV infection drives immune activation of
resident macrophages/microglia, pervasive reactive astrocytosis, perivascular inflammation
and infiltration of monocytic cells,352 which can result in HIV-encephalitis (HIVE),
particularly in individuals not receiving cART.353 The introduction of cART has decreased
morbidity/mortality of HIV infection, the severity of neurocognitive impairment and
associated neuroinflammation in HAND, and the prevalence of encephalitis.354–359 Despite
these beneficial effects of cART, neuroinflammation and neuropathological damage
persists,354–358, 360, 361 and persistent systemic and CNS markers of monocyte/macrophage
activation predict neurocognitive impairment,362–370 even in individuals with excellent
virological suppression.371–377 Moreover, the clinical severity of HAND correlates more
strongly with monocyte infiltration and MDM/microglia activation than with CNS viral
antigen load or number of HIV-infected cells in the brain.377–381 In summary, current
research highlights the central role of macrophages/ microglia and persistent
neuroinflammation in HAND in individuals receiving cART.

2. Macrophages and Microglia Produce HAND-associated Neurotoxins—The
neuropathogenesis of HAND has been associated with decreased CNS neuronal synaptic and
dendritic density,380, 382, 383 neuronal apoptosis and necrosis,379, 384–386 and altered
neuronal physiology,387–395 linked to the aforementioned inflammation and oxidative stress.
This neuronal dysfunction is likely a consequence of neurotoxins released from HIV-
infected MDM (HIV-MDM) and immune activated MDM/microglia and astrocytes.396–399

Our laboratory and others have demonstrated that a major component of HIV-MDM
neurotoxins are small (<3 kDa), heat-stable, protease-resistant excitotoxins that act through
N-methyl-D-aspartate-receptor (NMDAR) activation, a finding supported by studies in
animal models of HIV neurotoxicity.400–402 Many candidate excitotoxins released from
HIV-MDM have been described including glutamate,403 quinolinic acid,404, 405 NTox,406

platelet activating factor,407 TNFα,408 and the viral proteins gp120409, 410 and
Tat402, 411, 412 among others. HIV-infected individuals express increased levels of
glutamate,413–415 quinolinic acid,416, 417 platelet activation factor,407 TNFα,418 and other
excitotoxins in their CSF, which correlate with increased severity of HAND and
neuroinflammation. Many of these neurotoxins released from HIV-MDM also dysregulate
astrocyte function, particularly glutamate homeostasis.

Proper functioning of glutamate uptake and metabolism by astrocytes is vital to prevent
glutamate-dependent excitotoxicity as astrocytes are the major regulator of glutamate in the
brain.419, 420 Astrocyte control of extracellular glutamate is regulated through multiple
mechanisms including direct uptake of glutamate, Ca2+-dependent release of glutamate, and
catabolism of glutamate by glutamine synthetase.419, 420 Each of these processes can be
perturbed through the actions of HIV coat protein gp120,421–424 TNFα,425–428 arachidonic
acid,421 prostaglandins,429 reactive oxygen species,430 and associated
neuroinflammation,420 each of which is also associated with HIV replication within CNS
macrophages and microglia. This further emphasizes the link between inflammation,
oxidative stress, and neurodegeneration in HIV CNS infection. Accordingly, the
identification of endogenous pathways that regulate HIV-MDM production of neurotoxins
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and factors that result in astrocyte dysfunction will provide novel therapeutic targets for
ameliorating neurodegeneration and neurocognitive impairment in HAND.

3. Macrophage/Microglia-Associated Oxidative Stress in HAND—HIV infection
can induce CNS oxidative stress235, 431–433 through chronic immune activation213–215 and
direct effects of HIV proteins. The HIV viral proteins gp120,216, 219, 434 Vpr,218, 435 and
Tat217, 219 have been directly implicated in the induction of oxidative stress in CNS-relevant
cell types. Oxidative stress drives NF-κB-driven HIV replication,232–234 inflammatory
cytokine release,232, 235–239 and neurotoxin production.236, 433, 436–440 Furthermore, in vivo
markers of oxidative stress correlate with neurocognitive impairment235, 439, 441 as well as
systemic disease progression240–242 in HIV-infected individuals. Protection against
oxidative stress is provided by the ubiquitous ARE pathway, which is the endogenous
cellular antioxidant pathway. The ARE response is driven by the Nrf2 transcription factor,
and gp120-induced oxidative stress and inflammation in astrocytes was reported to be
significantly higher when Nrf2 expression was suppressed by siRNA.236 The expression
profiles of Nrf2 and its ARE effector proteins in the CNS of patients with HAND has not
been reported. Finally, in addition to its role in HAND, oxidative stress has been implicated
in the pathogenesis of other neurodegenerative disorders, including Alzheimer’s disease,
Parkinson’s disease, and Huntington’s disease,438, 442–450 which emphasizes the broad
potential value of developing effective CNS therapies against oxidative stress.

4. FAE as Candidate Adjunctive Therapy for CNS Disease in cART-Treated
Individuals—As discussed, the oral DMF formulation BG-12/Tecfidera™ decreased
relapse rates and associated neuroinflammation in patients with multiple sclerosis in two
independent Phase III clinical treatment trials.2, 3 These studies clearly demonstrate efficacy
of oral DMF-treatment in the CNS and its efficacy against neuroinflammation and oxidative
stress may provide important adjunctive therapy for HIV-infected patients to prevent and
treat HAND.

a. FAEs as Inhibitors of HIV Viral Infection in Monocytes and Macrophages:
Pretreatment with DMF and MMF decreased HIV infection and TNFα secretion in HIV
monocyte-derived macrophages (HIV-MDM), likely due in part to inhibition of NF-κB
nuclear translocation and DNA binding.54 It is well established that TNFα exposure
increases HIV replication through increased nuclear translocation of NF-κB,260, 261 which
drives HIV gene expression from the HIV long terminal repeat (LTR).262, 263 However, in
addition to decreasing autocrine effects of TNFα secretion, there are other possible NF-κB
modulating effects of DMF and MMF associated with oxidative stress in HIV-MDM.
Oxidative stress has been shown to drive HIV replication,232–234 likely through NF-κB
activation,33–36 and Nrf2 nuclear translocation and activation of the ARE have been shown
to suppress NF-κB (described above).

DMF and MMF induce activation of the ARE and suppress HIV infection at concentrations
that are consistent with CSF MMF concentrations in vivo (4.4 µM).70 However, inhibition
of NF-κB may require higher DMF and MMF concentrations (>15 µM),54 which suggests
other ARE-mediated, NF-κB-independent effects of DMF and MMF on HIV infection.
These effects could include suppression of HIV entry into monocytes and macrophages and
disruption of virion assembly and release from infected cells. It has been reported that
antioxidants can decrease the stability of CXCR4 and CCR5 mRNA transcripts in human
monocytes.451 Because CCR5 and CXCR4 are the major cellular co-receptors for HIV, such
antioxidant effects of DMF and MMF could limit HIV entry into monocytes and
macrophages. Furthermore high intracellular glutathione levels in macrophages were
associated with defective HIV particle assembly and decreased virion infectivity and
release.233 Thus, DMF and MMF activation of the ARE may limit HIV infection of
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monocytes and macrophages at several steps in the HIV life cycle (entry, replication, and
particle assembly).

b. FAEs as Inhibitors of Macrophage Neurotoxin Release: One consequence of HIV
infection and/or immune activation of macrophages and associated inflammation is the
production and release of soluble neurotoxins. Beyond promoting HIV-replication, elevated
TNFα levels associated with immune activation increase monocyte entry into the brain and
drive associated inflammatory cascades; one consequence is the production and release of
soluble neurotoxins from macrophages, microglia, and astrocytes.452 Activation of the ARE
pathway decreases macrophage and microglia activation,54, 453–456 probably through ARE-
mediated inhibition of NF-κB signaling. Work from our laboratory demonstrated that DMF
and MMF treatment reduces neurotoxin release from HIV-MDM and associated neuronal
death in an HIV neurotoxicity model system.54 We further demonstrated that the decrease in
HIV-MDM neurotoxin release was partly dependent on the ability of DMF and MMF to
induce the expression of the Nrf2/ARE effector and cytoprotective protein heme-
oxygenase-1 (HO-1).54 HO-1 is the inducible, rate-limiting enzyme that degrades pro-
oxidative and cytotoxic heme to bilirubin and carbon monoxide, each of which has well-
documented antioxidant and antiinflammatory effects.54, 457–460 We showed that HIV-
infection of MDM in vitro drastically decreases HO-1 protein expression and that induction
of HO-1 in HIV-MDM lowered neurotoxin production independent of viral replication; in
contrast, inhibition of HO-1 enzymatic activity in HIV-MDM increased neurotoxin
production.54 These data strongly suggest that HO-1 suppression in HIV-MDM plays a
pivotal role in macrophage-mediated neurotoxin production during HIV infection and that
rescuing this suppression with DMF or MMF might suppress neurodegeneration in HAND.

c. FAEs as Modulators of Immune Cell CNS Infiltration and Blood Brain Barrier
Integrity: In addition to suppression of MDM activation and neurotoxin production, DMF
and MMF reduced monocyte chemotaxis driven by CCL2,54 thus potentially limiting
transendothelial migration of monocytes into the CNS during HIV infection. Less monocyte
trafficking into the CNS could limit HIV access to the brain and subsequent
neuroinflammation. Complementing this effect, DMF can decrease endothelial cell adhesion
molecule (ICAM-1, VCAM-1, and E-selectin) expression, thereby decreasing leukocyte
rolling and diapedesis.66, 67 This could potentially further limit immune cell trafficking into
the CNS and its complications in HAND. HIV infection also impairs blood brain barrier
(BBB) permeability, possibly through actions of released viral proteins, induction of
oxidative stress, or induction of systemic inflammation (reviewed in461). Each of these can
disrupt the structural integrity of the BBB in part through breakdown of tight junctions,
thereby increasing microbial invasion and immune cell infiltration.461 Recent studies of
post-traumatic brain injury462 and subarachnoid hemorrhage463 in mice suggested that
activation of the Nrf2/ARE antioxidant and detoxifying enzymes preserve BBB and tight
junction integrity. Moreover, Nrf2/ARE activation in choroid plexus cells preserved the
blood-CSF barrier after oxidative stress injury.464 Therefore, DMF therapy could further
protect the CNS compartment more globally from microbe and immune cell invasion and
other systemic insults through direct protection of the BBB and blood-CSF barrier through
its antioxidants effects.

d. FAEs as Astrocyte and Neuron Protectants From Inflammation and Oxidative
Stress: In addition to macrophages and microglia, astrocytes and neurons are also possible
CNS targets for FAEs. DMF has been shown to decrease astrocyte activation and the release
of inflammatory cytokines,69–71 which could further dampen CNS neuroinflammation. DMF
treatment also decreased macrophage and microglia activation55 and associated release of
TNFα release54 and likely other HIV-MDM factors421–430 through ARE induction, which
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have been shown to impair astrocyte glutamate homeostasis and promote glutamate-
mediated excitotoxicity. TNFα in particular can suppress astrocyte glutamate scavenging
through impairment of their high affinity glutamate transporters, which are critical for
regulation of extracellular glutamate levels.420, 465 Furthermore, TNFα released into
supernatants of HIV-infected macrophage cultures can induce nitric oxide synthase and
nitric oxide production and release by exposed astrocytes;466 such a process could amplify
CNS oxidative stress and associated injury during HIV infection. Although such possible
effects of DMF and MMF on HIV-MDM-mediated astrocyte dysfunction have not been
studied, DMF treatment has been shown to directly protect both astrocytes and neurons from
oxidative injury and glutamate toxicity through Nrf2/ARE induction.69–71 Because
glutamate mediated excitotoxic injury has been implicated in the pathogenesis of HAND,
these studies suggest DMF might project neurons directly from HIV-mediated neurotoxicity
as well as indirectly by preventing astrocyte dysfunction.

In summary, DMF therapy in HAND patients could have both direct and indirect
neuroprotective effects through inhibition of NF-κB activity and Nrf2/ARE induction in
different CNS cell types (reviewed in Figure 2). Direct effects could occur through induction
of neuronal cytoprotective antioxidant responses. Indirect effects could occur through DMF/
MMF actions in macrophages/microglia, astrocytes, endothelial cells, and choroid plexus
cells. Confirmed macrophage effects of DMF and MMF54 include: i) suppressing neurotoxin
production; ii) limiting HIV infection; iii) impairing monocyte chemotaxis; iv) inhibiting
TNFα release; and v) inhibiting NF-κB nuclear translocation. Proposed astrocyte effects
include: i) inhibiting release of TNFα and other proinflammatory cytokines; ii) preserving
glutamate scavenging and glutamate homeostasis; iii) limiting production of nitric oxide and
associated pro-oxidants. Additionally, indirect neuroprotective effects of DMF and MMF
could also occur through actions in endothelial cells, which maintain the BBB. Confirmed
effects in endothelial cells include: i) reducing adhesion molecule expression; and ii)
promoting BBB structural integrity. Finally, DMF therapy could preserve the blood-CSF
barrier integrity through actions in choroid plexus cells. Thus, there is much supporting
evidence for the study of DMF as an adjunctive therapy for neuroprotection against HAND
in cART-treated HIV-infected individuals.

C. Safety of FAE Immunomodulatory Therapy in HIV-infected Individuals
The clinical safety of long-term use of oral FAE therapy in humans is supported by a lack of
clear evidence of serious adverse events after more than 17 years of its widespread use for
the treatment of psoriasis, and its recent use in Phase III multiple sclerosis treatment trials
involving more than 2600 patients (see section III. Safety and Adverse Events for long term
clinical safety data and recent PML case reports). Nonetheless, its use in HIV-infected
individuals has not been established, and the potential risks of this application must be
considered. Among these concerns is the possibility that immunosuppressive FAE therapy in
HIV-infected patients would increase their risk for opportunistic infections, malignancy,
acceleration of HIV infection, and mortality.467, 468 However, potent immunosuppressive
therapy has been used successfully in HIV-infected individuals undergoing organ
transplantation for nearly two decades, with no significant increase in risk for these
complications in comparison with such complications in HIV-negative transplant
recipients.469–472 Several studies have reported that HIV viral loads and CD4+ T-
lymphocyte counts were well-maintained after kidney and liver transplantation in HIV-
infected patients.473–475 Moreover, the largest prospective study of cART-treated HIV-
infected recipients of kidney transplantation (n = 150) receiving standard
immunosuppressive therapy reported one and three year survival rates to be 94.6% and
88.2%475, respectively, which is not significantly different from current kidney transplant
survival rates as reported by the U.S. Scientific Registry of Transplant Recipients.476
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Furthermore, the increased risk of de novo or recurrent malignancy in HIV-infected patients
undergoing solid-organ transplantation and subsequent immunosuppressive therapy was
low.477

Other immunosuppressive drugs including prednisolone244, 245 and cyclosporine248, 249

have also been studied in clinical trials in cART-treated HIV-infected patients and these
trials revealed no increased risk for opportunistic infections, increased viral load, or disease
progression. These studies demonstrate that potent immunosuppressive regimens are
generally safely used in cART-treated HIV-infected individuals and they further suggest that
DMF formulations could also be safely used in HIV-infected cART-treated individuals.

VII. CONCLUSIONS
DMF formulation therapy reduces inflammation, immune activation, and oxidative stress in
numerous cell lineages in vitro, particularly cells of the immune system, and such therapy
has potent clinical efficacy in psoriasis and multiple sclerosis, likely through limiting
inflammation and associated oxidative stress and immune cell infiltration in these diseases.
Based on these effects, this review proposes DMF as a potential adjunctive therapeutic in
cART-treated HIV-infected individuals for improving morbidity and mortality by
ameliorating immune activation and associated microbial translocation, systemic oxidative
stress, and HIV-associated comorbidities, particularly HIV-associated neurocognitive
disorder (HAND).
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Abbreviation List

AIDS acquired immunodeficiency syndrome

ARE antioxidant response element

BBB blood brain barrier

cART combination antiretroviral therapy

CCL CC chemokine ligand

CCR CC chemokine receptor

CD cluster of differentiation

CNS central nervous system

CXCL CXC chemokine ligand

CXCR CXC chemokine receptor

DMF dimethyl fumarate

FAEs fumaric acid esters

HAND HIV-associated neurocognitive disorder

HIV human immunodeficiency virus

HO-1 heme oxygenase-1

HD Huntington’s Disease
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HSK Herpe Stromal Keratitis

HSV herpes simplex virus

ICAM intercellular adhesion molecule

IFN interferon

IL interleukin

LPS lipopolysaccharide

MDM monocyte-derived macrophages

MEF monoethyl fumrate

MMF monomotheyl fumarate

Nrf2 nuclear factor erythroid-2 related factor-2

NF-κB nuclear factor κB

PBMC peripheral blood mononuclear cells

TNF tumor necrosis factor
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Figure 1.
Effects of the fumaric acid esters (FAEs) DMF and MMF on the Nrf2-dependent antioxidant
response and NF-κB pathways. Flat head on a line instead of an arrow head indicates a
negative or inhibitory relationship. Abbreviations used: antioxidant response element
(ARE), CC chemokine ligand (CCL), CXC chemokine ligand (CXCL), cysteine/glutamate
transporter (xCT), dimethyl fumarate (DMF), ferritin heavy chain 1 (FTH1), γ-glutamate
cysteine ligase catalytic subunit (GCLC), glutathione (GSH), glutathione peroxidase-1
(GPX1), glutathione S-transferase (GST), heme oxygenase-1 (HO-1), intercellular adhesion
molecule (ICAM), interferon (IFN), interleukin (IL), monomethyl fumarate (MMF),
NAD(P)H quinone oxidoreductase-1 (NQO1), nuclear factor E2-related factor 2 (Nrf2),
nuclear factor κB (NF-κB), reactive oxygen species (ROS), thioredoxin reductase 1
(TrxR1), tumor necrosis factor (TNF).
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Figure 2.
Potential effects of dimethyl fumarate (DMF) therapy on systemic and CNS HIV-disease
pathogenesis. Oral DMF, primarily through its active in vivo metabolite monomethyl
fumarate (MMF), might have potent anti-inflammatory and anti-oxidative effects (marked
by numbers 1 – 13 in figure) in HIV-infected cART-treated individuals thereby limiting both
systemic and CNS chronic immune activation and oxidative stress. This could result in
decreased HIV-disease progression and associated comorbidities. Abbreviations used:
monomethyl fumarate (MMF), dimethyl fumarate (DMF), blood brain barrier (BBB),
macrophage/microglia (M/M)
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Table 1

Effects of dimethyl fumarate (DMF) and monomethyl fumarate (MMF) on different cell lineages relevant to
HIV infection.

Cell Type DMF/MMF Cytokine/Receptor
Expression changes

Effects References

T-cells

DMF
↑ IL-4, IL-10 ↔ CCR4, IL-5 ↓ NF-κB DNA

binding, INFγ, CXCR3 CXCR10, IL-6,
TGFα, CD25, CLA

TH1 → Th2 shift ↓ endothelial
rolling, firm adhesion, & tissue

infiltration ↓ binding to E-selectin,
P-selectin, and VCAM-1 47–51, 53

MMF ↑ IL-4, IL-5 ↔ NF-κB DNA binding, INFγ,
IL-2

Th1 → Th2 shift ↓ dendritic cell
differentiation

PBMCs
DMF ↓ CXCL8,CXCL9, CXCL10

Th1 → Th2 shift ↓ macrophage
inflammatory cytokine production

↓ leukocyte rolling 47, 52, 53

MMF ↑ IL-4, IL-10, IL-5 ↔ INFγ, IL12, IL-2 Th1 → Th2 shift

Monocyte/Macrophages

DMF ↑ Nrf2 ↓ NF-κB nuclear translocation &
DNA binding, TNFα, CCR2

↑ Antioxidant response, ↑ HO-1 ↑
superoxide anion ↓ CCL2-induced

chemotaxis
54, 57

MMF ↑ Nrf2 ↓ NF-κB nuclear translocation
↑ Antioxidant response, ↑ HO-1 ↑
superoxide anion ↓ CCL2-induced

chemotaxis

Dendritic Cells

DMF ↑ IL-10 ↓ NF-κB activity (less free p65),
IL-12, IL-6, IL-23

↑ Type II dendritic cells
↓Monocyte dendritic cell

differentiation ↓ intracellular
glutathione levels

59–63

MMF ↓ NF-κB activity (less free p65), IL-12,
IL-10, TNFα, IFNγ

↑ Type II dendritic cells
↓Monocyte dendritic cell

differentiation ↓ effectiveness in
stimulating Th1 cytokine

production in T cells

Endothelial cells

DMF ↔NF-κB DNA binding ↓NF-κB nuclear
entry, E-selectin, VCAM-1, ICAM-1

↓ TNFα indicated cytokine release
↓ leukocyte rolling and firm

adhesion 64–67

MMF ↔ NF-κB DNA binding, E-selectin,
VCAM-1, ICAM-1 ?

Microglia
DMF ↑ Nrf2 expression ↓ IL-1β, IL-6, TNFα,

iNOS
↑ Antioxidiant response, ↑ HO-1 ↓

Nitrites 55,56

MMF ↑ Nrf2 ↑ Antioxidant response, ↑ HO-1

Astrocytes

DMF ↑Nrf2 expression, nuclear entry, and DNA
binding ↓ IL-1β, IL-6, TNFα

↑ Antioxidant response, ↑ HO-1 ↑
Viability after oxidative stress

55, 69, 70

MMF ↑Nrf2 expression, nuclear entry, and DNA
binding

↑ Antioxidant response, ↑ HO-1 ↑
viability after oxidative stress

(Nrf2-depdent)

Neurons

DMF ↑Nrf2 nuclear entry ↔ NF-κB nuclear entry
↑ Antioxidant response ↑ viability

post oxidative & glutamate
toxicity (Nrf2-dependent)

69–71

MMF ↑Nrf2 nuclear entry

↑ Antioxidant response ↑ viability
post oxidative stress (Nrf2-
dependent) ↔ viability post

glutamate toxicity
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