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Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins
for DNA replication and gene expression. Hairpin ends link the two strands of the linear,
double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa
polymerase, a helicase–primase, a uracil DNA glycosylase, a processivity factor, a single-
stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family
protein participates in double-strand break repair. The DNA is replicated as long conca-
temers that are resolved by a viral Holliday junction endonuclease.

Poxviruses are large, enveloped, DNA viruses
that infect vertebrate and invertebrate spe-

cies and replicate entirely in the cytoplasm
(Moss 2007). Two poxviruses are human-spe-
cific: variola virus and molluscum contagiosum
virus. The former causes smallpox, a severe dis-
ease with high mortality that was eradicated
more than two decades ago; the latter is distrib-
uted worldwide and produces discrete benign
skin lesions in infants and extensive disease in
immunocompromised individuals. Other pox-
viruses that infect nonhuman species can be
transmitted to humans; monkeypox virus, for
one, causes lethal disease in Africa and has the
potential to spread geographically.

Vaccinia virus (VACV), the vaccine used to
prevent smallpox, is the prototype of the family,
and cited experiments relate to this virus unless
stated otherwise. The VACV genome, together
with viral enzymes and factors required for
transcription of the early subset of genes, is
packaged in the core of infectious virus particles

(Moss 2007). The DNA replication proteins, in
contrast to those involved in early transcription,
are not packaged in virions but are translated
from viral early mRNAs. DNA replication oc-
curs following release of the genome from the
core, and progeny DNA serves as the template
for transcription of intermediate- and late-stage
genes (Yang et al. 2011).

TIMING AND LOCATION OF VIRAL
DNA REPLICATION

Poxvirus DNA synthesis can usually be detected
within 2 h after infection and occurs in the
cytoplasm within discrete juxtanuclear sites
called factories that can easily be visualized by
staining with a fluorescent dye (Fig. 1). A virus
factory can form from a single virion, and the
number of factories is proportional to the mul-
tiplicity of infection (Cairns 1960; Katsafanas
and Moss 2007). However, coalescence of in-
dividual factories frequently occurs with time
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(Katsafanas and Moss 2007; Lin and Evans
2010). Factories are initially compact and sur-
rounded by endoplasmic reticulum membranes
(Tolonen et al. 2001); a role for membranes in
DNA replication has been suggested (Schramm
and Krijnse Locker 2005). The factory is also the
site of transcription and translation of viral
mRNAs in addition to virion assembly (Katsa-
fanas and Moss 2007).

POXVIRUS GENOME

Poxviruses have linear, double-stranded DNA
genomes that vary from 130 to 230 kbp. As
depicted in Fig. 2A, the two DNA strands are
connected at their termini and form a con-
tinuous polynucleotide chain (Geshelin and
Berns 1974; Baroudy et al. 1982a). The hairpin
termini exist in inverted and complementary
forms that are incompletely base-paired and
AT-rich (Fig. 2B). In the case of VACV, the hair-
pins are 104 nucleotides in length and contain
a 4-nucleotide loop and 10 extrahelical bases
on one strand and 2 on the other. The mainte-
nance of the extrahelical bases posits the exis-
tence of a double-stranded replication inter-
mediate that is subsequently resolved to form
the hairpin. The hairpin is at the end of a long
inverted terminal repetition containing sets of
short, tandemly repeated sequences (Fig. 2A)

(Wittek and Moss 1980; Baroudy and Moss
1982). A region of ,100 bp, between the end
of the hairpin and start of the short repeats,
contains a conserved sequence that is necessary
for concatemer resolution (see below).

DNA PRECURSOR METABOLISM

Many poxviruses encode one or more enzymes
involved in the synthesis of deoxyribonucleo-
tides, presumably to enhance genome replica-
tion in resting cells with suboptimal precursor
pools. The list (Table 1) includes thymidine ki-
nase, thymidylate kinase, thymidylate synthe-
tase, ribonucleotide reductase, dUTPase, and
deoxycytidine kinase (Moss 2007). The corre-
sponding deletion mutants are viable, although
they are generally attenuated in vivo.

INITIATION OF DNA REPLICATION

Experiments designed to locate putative origins
of replication instead showed that any circular
DNA molecule transfected into cells infected
with VACV or Shope fibroma virus replicates;
furthermore, replication is not enhanced by in-
sertion of any viral DNA fragment (DeLange
and McFadden 1986; Merchlinsky and Moss
1988). The replicated DNA is in the form of
unbranched head-to-tail concatemers, which

Figure 1. Poxvirus cytoplasmic factories. HeLa cells were simultaneously infected with two recombinant VACVs.
One expresses the A5 core protein fused to cyan fluorescent protein (A5-CFP) and the other expresses the A5 core
protein fused to yellow fluorescent protein (A5-YFP). The nuclei (N) and virus factories (F) were stained blue
with 40,6-diamidino-2-phenylindole (DAPI). A confocal microscopy image of a single cell in which individual
factories arose from separate viruses is shown. (Reprinted, with permission, from Katsafanas and Moss 2007.)
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could form by a rolling circle mechanism. “Or-
igin-independent” plasmid replication occurs
within viral DNA factories and depends on
each of the known viral proteins needed for
genome replication (De Silva and Moss 2005).

Analysis of [3H]thymidine incorporation
following a shift from nonpermissive to permis-
sive temperature in cells infected with a VACV
DNA-negative mutant suggested that synthesis
begins near the genome termini (Pogo et al.
1984). Experiments performed by transfecting
linear DNA minichromosomes with hairpin
ends indicated the presence of cis-acting replica-
tion-enhancing sequences within the terminal
200 bp (Du and Traktman 1996). The latter re-
sult suggested a specific replication initiation
site within the conserved sequence between the
hairpin loop and the direct repeats. However, the
latter region contains a well-defined sequence
required for concatemer resolution (described
below), raising the possibility that cleavage of
concatemers enhances replication or recovery
of linear minichromosomes. It may be that a

random nick can serve as a replication origin
but that nicking preferentially occurs near the
termini of intact genomes for reasons of specific
structure or sequence.

DNA REPLICATION PROTEINS

A characteristic of the replication proteins, as
well as the nucleotide metabolism enzymes, is
their early synthesis. This feature distinguishes
proteins involved in DNA synthesis from those
made at intermediate or late times that have
roles in DNA processing and packaging. We refer
to VACV genes by a letter and a number corre-
sponding to the open reading frame (ORF),
followed by R or L indicating the direction of
transcription; the direction is omitted when re-
ferring to the corresponding protein.

DNA Pol

The VACV E9L gene encodes a 117-kDa DNA
polymerase (Pol) (Jones and Moss 1984; Trakt-
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Figure 2. Structure of VACV genomic DNA. (A) Depiction of entire genome and an expansion of the 10-kbp
inverted terminal repetition showing tandem direct repeats. (B) Nucleotide sequences of inverted and comple-
mentary forms of the terminal loops. (A, Reprinted, with permission, from Moss et al. 1983; B, reprinted, with
permission, from Baroudy et al. 1982a.)
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man et al. 1984; Earl et al. 1986), orthologs of
which are found in all sequenced poxviruses.
Poxvirus DNA Pol is homologous with the cat-
alytic subunits of the DNA Pol of other viruses
as well as eukaryotic a and d DNA Pol (Wang
et al. 1989). Purified VACV DNA Pol catalyzes
primer- and template-dependent DNA synthe-
sis and possesses 30–50 proofreading exonucle-
ase activity (Challberg and Englund 1979). The
activity of purified DNA Pol is inherently dis-
tributive, adding ,10 nucleotides per primer–
template binding event, although a more pro-
cessive form exists in the cytoplasm (McDonald
et al. 1997). The DNA Pol can also catalyze sin-
gle-strand DNA annealing, which could gener-
ate branched molecules and thereby link DNA
synthesis and recombination (Willer et al. 1999,
2000; Hamilton and Evans 2005).

Helicase–Primase

Temperature-sensitive (ts) mutants that map to
the D5R gene of VACV show a fast-stop DNA
replication phenotype (Roseman and Hruby
1987; Evans and Traktman 1992; Boyle et al.
2007). The D5R ORF encodes a 90-kDa protein
that has nucleic-acid-independent ability to
catalyze the hydrolysis of ribonucleotide tri-
phosphates (rNTPs) and deoxyribonucleotide
triphosphates (dNTPs) (Evans et al. 1995). D5
contains an ATP/GTP-binding motif in the
carboxy-terminal segment of the protein, which
is conserved in poxviruses and distantly related
large DNA viruses (Gorbalenya and Koonin
1989; Iyer et al. 2001). Targeted mutations
within the Walker A or B domains, the super-
family III helicase motif C, or the AAAþ motif

Table 1. Poxvirus DNA replication, processing, and packaging proteins

Protein Massa (kDa)

Conservationb

(VACV ORF)c Expression Essential?d

Precursor metabolism
Thymidine kinase 20 S (J2R) Early No
Thymidylate kinase 23 S (A48R) Early No
Ribonucleotide reductase 37, 88 S (F4L, I4L) Early No
dUTPase 16 S (F2L) Early No

Replication
DNA polymerase 117 A (E9L) Early Yes
Helicase–primase 90 A (D5R) Early Yes
Uracil DNA glycosylase 25 A (D4R) Early Yes
Processivity factor 49 A (A20R) Early Yes
Protein kinase 35 S (B1R) Early Host-dependent
Single-stranded DNA-

binding protein
30 C (I3L) Early Yes

DNA ligase 63 S (A50R) Early Host-dependent
FEN1-like nuclease 50 A (G5R) Early Impaired

DNA processing
Holliday junction resolvase 21 A (A22R) Intermediate Yes
Topoisomerase 37 A (H6R) Late Impaired

DNA packaging
ATPase 34 A (A32L) Intermediate Yes
Telomere-binding protein 1 36 C (I1L) Intermediate Yes
aCalculated mass of protein encoded by vaccinia virus (VACV) genome.
bA, all poxviruses; C, all chordopoxviruses; S, some poxviruses.
cOpen reading frame (ORF) names according to Copenhagen strain of VACV (http://www.poxvirus.org).
dIn most cases, essential nature is determined by severe defect of conditional mutant in tissue culture cells, and in some cases

by inability to isolate a deletion mutant; severity of defect is host- and temperature-dependent for protein kinase mutant.

Topoisomerase and FEN1-like nuclease deletion mutants replicate very poorly. Viral ligase can be complemented by cellular

ligase I.
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prevented in vivo complementation of VACV
infectivity, and the purified proteins were de-
fective in ATP hydrolysis. Multimerization of
D5 appeared to be a prerequisite for enzymatic
activity (Boyle et al. 2007).

An additional motif, present in the archae-
oeukaryotic primase superfamily, was discov-
ered in the amino-terminal domain of VACV
D5 and its orthologs in other poxviruses (Iyer
et al. 2005). Individual conserved aspartic acid
residues in the predicted primase active site
were required for in vivo complementation of
infectious virus formation as well as genome
and plasmid replication (De Silva et al. 2007).
Furthermore, purified recombinant D5 protein
was shown to catalyze the synthesis of oligori-
bonucleotides in vitro without stringent tem-
plate specificity. Mutagenesis studies showed
that the primase and NTPase activities of the
recombinant D5 protein could be independent-
ly inactivated (De Silva et al. 2007). The absence
of stringent template specificity suggests a role
for this enzyme in discontinuous lagging-strand
DNA synthesis (De Silva et al. 2009).

Uracil DNA Glycosylase

In eukaryotic and prokaryotic cells, uracil DNA
glycosylase (UDG) participates in the removal
of uracil from DNA, which can arise through
misincorporation of deoxyuridine monophos-
phate (dUMP) or deamination of cytosine.
UDG initiates base-excision repair by hydrolyz-
ing the glycosylic bond linking uracil to a de-
oxyribose sugar. Shope fibroma virus (Upton
et al. 1993) and VACV (Stuart et al. 1993) en-
code enzymatically active UDGs of 25 kDa, and
orthologs of the protein are conserved in all
sequenced members of the poxvirus family.
Because cellular UDGs function in repair and
are typically not essential for viability, it was
surprising to find that VACV D4R ts mutants
are unable to replicate DNA at the nonpermis-
sive temperature (Stuart et al. 1993; Millns et al.
1994) and that a D4R deletion mutant can only
replicate in a complementing cell line express-
ing the viral protein (Holzer and Falkner 1997).
VACV mutants with enzymatically inactive UDG
show no defect in DNA replication, however,

demonstrating that the essential role of the pro-
tein is unrelated to the repair function (De Silva
and Moss 2003). Nevertheless, mutants with en-
zymatically inactive UDG are attenuated in
mice, indicating that the repair function is ben-
eficial. D4 interacts with another essential repli-
cation protein, A20, suggesting a role as part
of a multisubunit replication–repair complex
(McCraith et al. 2000; Stanitsa et al. 2006; Boyle
et al. 2011).

Processivity Factor

The VACVA20R gene encodes a 49-kDa protein
that is conserved in all sequenced poxviruses but
has no cellular homolog. AVACV genome-wide
yeast two-hybrid analysis showed that the prod-
uct of the A20R ORF interacts with proteins
encoded by the D4R, D5R, and H5R ORFs,
two of which were known to be involved in
DNA replication (McCraith et al. 2000). Addi-
tional coimmunoprecipitation studies showed
that nonoverlapping regions of A20 bind D4,
D5, and H5, suggesting that these proteins can
interact simultaneously to form a multicompo-
nent complex (Ishii and Moss 2002). The early
expression of the protein and the phenotype of
conditional lethal A20 ts mutants supported a
role in DNA replication (Ishii and Moss 2001;
Punjabi et al. 2001). Cytoplasmic extracts of cells
infected with a ts A20 mutant show a defect in
processive DNA polymerase activity, and the
A20 protein copurifies with a processive form
of DNA Pol (Klemperer et al. 2001; Punjabi et al.
2001). Further studies suggest that A20 collab-
orates with D4 to enable processivityof DNA Pol
(Stanitsa et al. 2006)

Protein Kinase

The VACV B1R ORF encodes a 35-kDa serine/
threonine protein kinase that is packaged in vi-
rions (Banham and Smith 1992; Lin et al. 1992;
Rempel and Traktman 1992). ts mutants that
show a DNA replication-negative phenotype
were mapped to the B1R gene (Rempel et al.
1990). Comparative genomic analyses identi-
fied two sequence-related human putative ser-
ine/threonine protein kinases, VRK1 and VRK2

Poxvirus DNA Replication
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(Nezu et al. 1997; Nichols and Traktman 2004).
Human and mouse VRK1 genes can comple-
ment the replication defect of a VACV B1 mutant
(Boyle and Traktman 2004). A cellular cytoplas-
mic protein called barrier to autointegration
factor (BAF) acts as a potent inhibitor of pox-
virus DNA replication unless its DNA-binding
activity is blocked by B1-mediated phosphory-
lation (Nichols et al. 2006; Wiebe and Trakt-
man 2007). The DNA-binding and dimeriza-
tion capabilities of BAF are essential for its
antipoxviral function (Ibrahim et al. 2011). B1
may have an additional role in DNA replication
related to its interaction and phosphorylation
of the VACV H5 protein (Beaud et al. 1995;
McCraith et al. 2000), which interacts with the
processivity factor A20 (McCraith et al. 2000;
Ishii and Moss 2002).

Single-Stranded DNA-Binding Protein

An early 30-kDa phosphoprotein encoded by
the VACV I3L gene preferentially binds single-
stranded DNA (Davis and Mathews 1993; Ro-
chester and Traktman 1998). I3 forms octa-
meric complexes on DNA, similar to the Escher-
ichia coli single-stranded DNA-binding protein
(Tseng et al. 1999). Participation of I3 in DNA
replication is suggested by the presence of the
protein in punctate cytoplasmic inclusions con-
taining parental viral genomes (Domi and
Beaud 2000; Welsch et al. 2003). The inability
to isolate viable I3L deletion mutants indicates
that the corresponding protein is essential (Ro-
chester and Traktman 1998), although direct
evidence for a role in DNA replication and re-
combination has not yet been reported.

DNA Ligase

An ATP-dependent DNA ligase encoded by the
VACVA50R ORF is conserved in many but not
all chordopoxviruses (Kerr and Smith 1989).
The ligase repairs nicked duplex DNA substrates
consisting of a 50-phosphate-terminated strand
and a 30-hydroxyl-terminated strand annealed
to a bridging template strand (Shuman 1995).
Adenylyltransferase and DNA ligation activi-
ties are in the amino-terminal one-third of the

VACV ligase (Sekiguchi and Shuman 1997).
Poxvirus mutants with deleted ligase genes are
able to replicate (Colinas et al. 1990; Kerr and
Smith 1991) but show host-range defects (Parks
et al. 1998) and reduced pathogenicity (Kerr
et al. 1991). The ability of VACV to replicate in
the absence of the viral DNA ligase was recently
shown by small interfering RNA knockdown
experiments to depend on cellular DNA ligase
I but not other cellular ligases (Paran et al.
2009). Ligase I is recruited to the viral DNA
factories in the cytoplasm. Furthermore, repli-
cation of ligase-deficient VACV was greatly re-
duced and delayed in quiescent cells, which have
low levels of ligase I. However, synthesis of ligase
I was induced within several hours after infec-
tion (Paran et al. 2009). By encoding its own
ligase, VACV can accelerate DNA synthesis in
resting cells and enhance replication.

CONCATEMER RESOLUTION

Head-to-head and tail-to-tail telomere junc-
tions, detected by restriction enzyme analysis
of viral DNA from infected cells, indicated the
presence of concatemers (Moyer and Graves
1981; Baroudy et al. 1982b). The junction con-
tains a precise duplex copy of the hairpin loop at
the ends of the mature viral genome (Merchlin-
sky et al. 1988). When transfected into cells
infected with VACV or Shope fibroma virus,
circular plasmids containing concatemer junc-
tions are resolved into linear minichromosomes
with hairpin termini (Delange et al. 1986; Mer-
chlinsky and Moss 1986). The sequence 50-T6-
N7 – 9-T/C-A3-T/A-30 in an inverted repeat
orientation on either side of a concatemer junc-
tion was found to be required for resolution
(DeLange and McFadden 1987; Merchlinsky
1990). In supercoiled plasmids, the junction
can form a cruciform structure resembling a
four-way Holliday junction (HJ) recombina-
tion intermediate (Dickie et al. 1987; Merchlin-
sky et al. 1988). Bioinformatic analyses led to
the discovery of motifs and structural elements
that are critical for activity of E. coli RuvC HJ
resolvase in ORFs that are conserved in all pox-
virus genomes (Aravind et al. 2000; Garcia et
al. 2000). The RuvC homolog encoded by the

B. Moss

6 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a010199



VACVA22R gene was found to cleave four- and
three-stranded junctions and also have branch
nuclease activity (Garcia et al. 2000, 2006;
Culyba et al. 2006, 2007). Mutation of either
of two conserved acidic amino acids abrogated
the catalytic activity of the viral protein with-
out affecting HJ DNA binding (Garcia et al.
2000). Like RuvC, the A22 protein is a dimer
in solution and when bound to HJ structures
(Garcia et al. 2006). AVACV-inducible A22 null
mutant was defective in processing concatemers
into unit-length genomes with hairpin ends un-
der nonpermissive conditions, indicating that
the enzyme is required for resolution, although
additional proteins may also be involved in
determining site specificity (Garcia and Moss
2001).

The VACV-encoded type 1 topoisomerase
(Shaffer and Traktman 1987; Shuman and Moss
1987) cleaves and ligates a variety of DNA struc-
tures in vitro, including an HJ (Sekiguchi et al.
1996; Palaniyar et al. 1999). Studies with a VACV
topoisomerase deletion mutant suggest a role
for the enzyme in enhancing early gene expres-
sion within the confines of the virus core (Da
Fonseca and Moss 2003).

DNA REPLICATION MODELS

Self-priming, primer-dependent, and recom-
bination models of poxvirus DNA replication
have been considered. DNA hairpins at the
ends of the poxvirus genome suggest a self-
priming model of DNA replication (Fig. 3), re-
sembling the rolling hairpin strand-displace-
ment mechanism for parvoviruses (Muzyczka
and Berns 2001). In the poxvirus variation of
this model, a nick on one strand proximal to the
hairpin by an unidentified nuclease generates
a 30 OH end to which deoxynucleotides can be
added (Moyer and Graves, 1981; Baroudy et al.
1982a,b). Because of self-complementarity, the
strands fold back and the replication complex
continues deoxynucleotide addition to the dis-
tal hairpin and around it. The result is the for-
mation of a concatemer, and reiteration of the
process could lead to higher-order concatemers.
Finally, resolution of the concatemers by the HJ
resolvase results in unit genomes.

Reports of VACV DNA covalently linked to
RNA and the chasing of short DNA into larger
molecules raises the possibilities of RNA prim-
ing and semidiscontinuous DNA replication
(Olgiati et al. 1976; Esteban and Holowczak
1977). This model has acquired new interest
with the recent findings of a poxvirus primase
(De Silva et al. 2007) and the requirement for
either a viral or cellular DNA ligase (Paran et al.
2009).

DNA RECOMBINATION

There is evidence that the DNA polymerase
participates directly in recombination and that
the 30 exonuclease and DNA-joining activities
are involved (Hamilton and Evans 2005; Ham-
ilton et al. 2007; Gammon and Evans 2009). In
addition, the protein encoded by the G5R gene,
which is conserved in all poxviruses and ex-
pressed early in infection, belongs to the FEN1
family of exo-/endonucleases (Da Silva et al.
2006; Iyer et al. 2006). Although the amount
of viral DNA produced in the absence of G5 is
similar to that made by wild-type virus, the
mean size is approximately one-fourth of the
genome length and the defective virions pack-
age little or no DNA (Senkevich et al. 2009).
Experiments with transfected plasmids show
that G5 is required for double-strand break re-
pair by homologous recombination, suggesting
a similar role during VACV genome replication
(Senkevich et al. 2009). Double-strand breaks
commonly occur at replication forks, consistent
with the semidiscontinuous model of poxvirus
DNA replication.

The chordopoxviruses, except for avipoxvi-
ruses, encode homologs of serine recombinases
(Afonso et al. 2006). However, only the croco-
dile poxvirus contains all amino acids that com-
prise the catalytic active site, and deletion of the
VACV F16 homolog had no effect on replication
in cultured cells (Senkevich et al. 2011).

DNA PACKAGING

Electron microscopic images suggest that DNA
nucleoids enter the spherical immature virion
before their closure (Morgan 1976; Griffiths
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et al. 2001). The protein encoded by the A32L
gene has sequence similarity to the products of
gene I of filamentous single-stranded DNA bac-
teriophages and to the IVa2 gene of adenovirus,
both of which are ATPases involved in DNA
packaging (Koonin et al. 1993). Repression of
A32 synthesis prevents genome packaging (Cas-

setti et al. 1998). DNA packaging also fails to
occur under nonpermissive conditions in cells
infected with a ts mutant mapped to the I6 telo-
mere-binding protein of VACV (DeMasi et al.
2001; Grubisha and Traktman 2003). Although
concatemer resolution is required for DNA
packaging (Garcia and Moss 2001), the two
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processes are not coupled (Merchlinsky and
Moss 1989) and neither the A32 nor I1 mutant
has a defect in concatemer resolution. It seems
likely that binding of I6 occurs after resolution
and precedes interaction of the genome with
A32 or other packaging proteins.

DNA REPLICATION TARGETS FOR
ANTIVIRAL THERAPY

Poxvirus-encoded DNA replication proteins are
prime targets for antivirals. Cidofovir and oral
derivatives are acyclic nucleoside analogs that
are incorporated into the growing DNA strand
and inhibit the 50-to-30 chain extension and 30-
to-50 exonuclease activities of poxvirus DNA
polymerase (Andrei and Snoeck 2010; Rice
et al. 2011).

FUTURE DIRECTIONS

The following are but a few of the many out-
standing questions. (1) Does DNA replication
initiate by a self-priming mechanism at a nick,
via a primer, or both? If nicking occurs, is there
sequence or structural specificity to the site of
the nick and what enzyme catalyzes nick for-
mation? (2) Is the entire genome replicated by
strand displacement, or does discontinuous syn-
thesis occur, as suggested by the findings of a role
for primase and DNA ligase? (3) Does DNA rep-
lication become recombination-dependent at
late stages? (4) Is the HJ endonuclease sufficient
for concatemer resolution? (5) How is DNA
packaged?
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