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Abstract
In this manuscript we consider methods for the analysis of populations of electroencephalogram
(EEG) signals during sleep for the study of sleep disorders using hidden Markov models (HMMs).
Notably, we propose an easily implemented method for simultaneously modeling multiple time
series that involve large amounts of data. We apply these methods to study sleep disordered
breathing (SDB) in the Sleep Heart Health Study (SHHS), a landmark study of SDB and
cardiovascular consequences. We use the entire, longitudinally collected, SHHS cohort to develop
HMM population parameters, which we then apply to obtain subject-specific Markovian
predictions. From these predictions we create several indices of interest, such as transition
frequencies between latent states. Our HMM analysis of EEG signals uncovers interesting findings
regarding differences in brain activity during sleep between those with and without SDB. These
findings include stability of the percent time spent in HMM latent states across matched diseased
and non-diseased groups and differences in the rate of transitioning.
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1 Introduction
In this manuscript we introduce extensions of hidden Markov models (HMMs) for the
analysis of the Fourier power spectrum of the electroencephalogram (EEG) during sleep.
The two key accomplishments of the manuscript are as follows: first, we introduce a method
of combining (Dirichlet) HMMs that is specifically designed for populations of time series
and second, we give a detailed HMM analysis of electroencephalogram data recorded during
a full montage sleep study conducted in the home setting. In this analysis, we compare
parameters from the population-level model between a well matched subset of subjects with
and without sleep disordered breathing (SDB). Thus, we develop a method for the
application of HMMs in complex epidemiological studies, as well as illustrate the methods
on a unique data set created to study an important public health issue.
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The application under study involves SDB and its potential correlation with cortical activity.
Human sleep and its physiological and health correlates comprise extremely complex
biological phenomena. Rather than being simply inert, sleep is a highly dynamic process. In
children, sleep has been shown to be instrumental in physical and cognitive development.
Sleep is also crucial for memory consolidation and immune system repair. Research in sleep
continues to unravel the crucial role that sleep plays in health and well being [1]. SDB is a
chronic condition whereby subjects have repeated either complete (apneas) or partial
(hypopneas) collapses of the upper airway during sleep. SDB has been shown to have a
number of health consequences such as: daytime sleepiness, increased risk for motor vehicle
accidents, incident hypertension, cardiovascular disease, stroke, and mortality [2].

Electrophysiological measures are an objective means to characterize cortical electrical
activity in the brain during sleep. The electroencephalogram, along with a battery of other
biological signals, is collected as part of the overnight polysomnogram (PSG). In clinical
and research settings, the PSG is used to characterize sleep quality and assess the presence
of various disorders, such as SDB. The suite of biological signals of the PSG are also used in
concert by physicians for visual classification into sleep state hypnogram data, which
constitute a single, discrete-time, discrete-state process. We focus entirely on the EEG
signal, and consider the Fourier transform of the raw signal in thirty second bins. We further
summarize the Fourier transform by considering the power in bands of the spectrum, thus
simultaneously focusing on the core components of the signal of interest and greatly
alleviating computational concerns. Such bands have been established as key components of
the EEG signal and are important for understanding the overnight dynamics of sleep brain
activity and any possible alternation due to disease or behavior. Some example analyses
investigating correlates of sleep-EEG spectrum include: Crainiceanu et al. [3], Di et al. [4]
and Zhang et al. [5].

After preprocessing the EEG signal we employ HMMs on the spectral band powers. HMMs
comprise two components: an unobserved (hidden) Markov chain and an observed state–
dependent process. Each realization of the latter is assumed to be generated by one of N
distributions as determined by the state of an N-state Markov chain. The realizations are
assumed to be conditionally independent, given the states. For comprehensive accounts of
the theory of HMMs see Cappé et al. [6] and Zucchini and MacDonald [7]. The application
of hidden Markov models to EEG spectrum data is natural, since sleep in humans and many
other species is often characterized by sleep states. In humans, sleep is visually classified
into light sleep (Stage I and II), deep sleep (slow wave sleep) and rapid eye movement
(REM) sleep. Such sleep stage hypnogram data have been well studied in the clinical/
medical and statistical literature [8–20]. The present investigation does not focus on visually
classified sleep stage data, other than as partial motivation for using latent states via HMMs
to study sleep EEG behavior. Hence, our use of the term “state” always refers to latent
nominal classifications estimated via HMMs, not realizations of sleep stages, as it is used in
the medical literature. Further motivation for HMMs in this setting is given by the fact that
EEG spectrum data show high autocorrelation, which HMMs elegantly address. As argued
by Zhong and Ghosh [21], the raw EEG signal can be well modeled by HMMs. The general
benefits of using HMMs in the context of EEG classification have also been discussed by
Penny and Roberts [22]. In the context of sleep staging, such an approach has been taken
previously in Flexer et al. [23], but with different objectives than those of the current
investigation. Those authors attempt to reproduce the visually scored hypnogram via
automated scoring, which is distinct from the goals of the current manuscript.

Our model represents an alternative way for summarizing the dynamics of sleep, in
particular for populations of EEG time series. There are, in principle, several different ways
to extend HMMs to the case of longitudinal data; the most popular such approaches can be
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viewed as particular cases of so-called mixed HMMs as defined by Altman [24]. Mixed
HMMs can incorporate subject-specific covariates and/or random effects. These models aim
at capturing heterogeneity across subjects. MacDonald and Zucchini [25], Wang and
Puterman [26] and Bartolucci et al. [27] incorporated subject-specific covariates in their
models. While the use of subject-specific covariates provides an elegant and easily
implementable approach for dealing with heterogeneous subjects, it requires that suitable
covariates are available. HMMs incorporating random effects were considered for example
by Seltman [28], Zucchini et al. [29] and Schliehe-Diecks et al. [30]. HMMs that involve
random effects are particularly attractive due to their flexibility and parsimony in terms of
parameters. In addition, they are relatively easy to interpret in many applications. However,
their implementation is very demanding in terms of computational effort; in the case of R
random effects, the likelihood function is given by an R-fold integral which, in general,
cannot be evaluated directly. Our application comprises large amounts of data and numbers
of model parameters, and there is no obvious means of how to employ subject-specific
covariates; mixed HMMs thus do not seem suitable for our problem. Thus, we propose a
different modeling strategy using a combination of population and subject-specific
parameters. This approach is relatively easy to implement and interpret while being very
flexible. No primacy claims are made with regard to inventing a new class of models –
instead we consider a combination of subject-specific HMMs and impose some constraints
on the parameters across subjects. This improves interpretability while making inferential
approaches computationally feasible.

2 Description of the data set
The Sleep Heart Health Study (SHHS) is a landmark study of sleep, sleep disorders and their
cardiovascular correlates [31]. In this study, over six thousand subjects underwent in-home
polysomnography with measurements of the EEG during sleep. Approximately four
thousand subjects had a repeat polysomnogram four years after the baseline sleep study. In
this analysis, we restrict ourselves to 102 carefully matched subjects with and without SDB.

Matching is appealing, as the data are observational and epidemiologic confounding of the
disease effect is of concern. The number of subjects in the SHHS dataset motivating this
manuscript allow for well populated, well selected sub-groups for the desired comparisons.
To assess the independent effects of SDB on sleep structure, strict exclusion criteria were
employed and included prevalent cardiovascular disease, hypertension, chronic obstructive
pulmonary disease, asthma, coronary heart disease, history of stroke, and current smoking.
For the purpose of this analysis, we will examine subjects with moderate to severe SDB as
assessed by a respiratory disturbance index (RDI) of at least 30 events/hour. Subjects
without SDB, were identified as those with an RDI < 5 events/hour. Propensity score
matching was utilized to balance the SDB and non-SDB groups on demographic factors and
to minimize confounding [32]. Subjects with SDB were matched with those without SDB on
the factors of age, BMI, race, and sex. Race and sex were exactly matched, while age and
BMI were matched using the nearest neighbor Mahalanobis technique, so that matches had
to be within a Mahalanobis distance (caliper) of 0.10, with multiple matches within the
caliper being settled by random selection [33].

The resultant match was 51 pairs (M = 102 individuals) that met the strict inclusion criteria
outlined above and exhibiting very low standardized biases, a vast improvement on the
imbalance of BMI between diseased and non-diseased groups from previous work on the
same data [20]. Selecting two groups that are polar opposites of each other in SDB severity
and both isolated from comorbidities increases the appropriateness of attributing results to
the independent effects of SDB on sleep continuity. The composition of the matched groups
is displayed in Table 1.
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The sleep EEG was processed in Matlab (Mathworks) as follows. Separately for each of two
nodes per subject, the signal was separated into non-overlapping 30 second bins. The fast
Fourier transform was applied to each bin. Band pass filters were applied to separate the
signal into four bands: δ (up to 4 Hz), θ (4 – 7 Hz), α (8 – 12 Hz) and β (12 – 30 Hz). The
Fourier coefficients were squared and summed to obtain the spectral power within each
band. For each 30 second bin the raw powers were then normalized by dividing individual
band power by the sum of power over the δ, θ, α and β bands, resulting in proportions of the
total power represented by each band. Therefore, the processed observations are points on
the unit 4-simplex for each 30 second epoch, as the normalized power in each band is a
positive number between 0 and 1 and the sum of the normalized power in the four bands is
equal to 1. The distance between the two EEG leads was 2 cm on the scalp, and given the
high correlation between the two nodes, we decided to analyze only one of the two resulting
series. Normalizing the spectrum was performed for a variety of reasons, including
alleviating inter-subject variability. Further descriptions of EEG processing for this data set
can be found in Crainiceanu et al. [3]. A repeat polysomnogram was made for 60 out of the
102 individuals, such that for the others only observations from one night are available. For
individual m (m= 1,…,M), we denote the number of observations available in night i (i
=1,2) by Tm,i. The average total number of observations available per individual is 1711 (the
minimum number is 798, the maximum number is 2526).

3 Model description and estimation method
3.1 Introducing the combination of HMMs

For each time instant t, the vector of observations is an element of the unit 4-simplex

Here x1, x2, x3 and x4 represent the proportions of the δ−, θ−, α− and β−waves,
respectively, as obtained from the fast Fourier transforms of the EEG data. The Dirichlet

distribution  with density

is a convenient and flexible model to describe random samples from Δ4. In particular, D(λ)
is a member of the exponential family, has finite dimensional sufficient statistics and is often
used as a prior to the multinomial distribution [34]. Expectation and standard deviations of

the marginal distributions of λ) are  and  where
s≔λ1+λ2+λ3+λ4. Thus, a Dirichlet distribution with a fixed mean µ = (µ1,µ2,µ3,µ4) can
account for different levels of variability using a parameterization of the type D (c · λ) and
varying the positive scalar c. The parameter s – sometimes called concentration parameter –
is a measure of how concentrated the distribution D(λ) is around its mean; the larger s, the
less dispersed on Δ4 are the observed values.

To model the EEG spectral data using Dirichlet distributions, consider a hidden Markov
model with N-state (hidden) homogeneous Markov chain {St}t=1,2,… and (observed) state-
dependent process {Xt}t=1,2,…. The dependence structure of the model (for a single
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individual) is displayed in Figure 1 in a directed acyclic graph. A question of interest
concerns the choice of the number of states N. We discuss this in detail in Section 4.3.3.

The Markov chain is assumed to be of first order, i.e.

Moreover, given the current state, the distribution of Xt is assumed to be conditionally
independent of previous observations and states, i.e.

We summarize the probabilities of state switches in the (N × N)–transition probability
matrix (tp.m.) given by B = (bij) (for i,j = 1,…,N) where bij = ℙ(St = j | St−1 = i).

For the given time series of spectral band power proportions, we propose to use

 as approximating family of distributions for the state-dependent process
{Xt}t=1,2,…. We then have N different Dirichlet distributions D (λ(n)), n = 1,…,N – one for
each state of the Markov chain – and the current state of the Markov chain (the ‘sleep state’)
determines which of these distributions is selected:

If the underlying Markov chain is stationary, then the marginal distribution of the HMM at
each time t is given by

where π = ℙ(St = 1,…St = N) is the stationary distribution of {St}. This shows that the
observable part of the HMM, {Xt}, is a finite mixture. It is a dependent mixture due to the
influence of the Markov chain.

We want to employ HMMs to analyze and quantify the stochastic properties of the trajectory
of the EEG spectral data during sleep with regard to underlying latent, or hidden, state
processes. Furthermore, we want to compare these properties between groups of subjects
with and without SDB. Fitting a separate HMM to each individual would substantially limit
our ability to compare results across subjects or groups of subjects, because the Dirichlet
distribution parameters and thus the EEG states would have different interpretations (which
would make the individual-specific models essentially incommensurable). Thus, our
methods differ substantially from standard HMM methods, where the interest centers on
estimating and quantifying the underlying HMM in an individual time series. Here, we are
concerned with populations of time series. As pointed out in the introduction, HMMs
incorporating random effects are computationally too demanding to apply them to a data set
as complex as ours. Instead, we consider the following combination of HMMs, where we
assume that the Dirichlet parameters are variable across states but fixed across subjects and
that the transition probabilities across states are subject-specific. The common Dirichlet
parameters serve an analogous purpose as the common criteria of the polysomnography
signals in manual determination of sleep states.
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Fixing the state-dependent parameters across individuals enables us to compare different
individuals in terms of the different Markov chains resulting from the HMM fits.
Conditional on a particular state n, the distribution of {Xt}t =1,2,… for different individuals is
identical, what differs is the stochastic structure of the succession of states. Questions of
interest regarding the state sequence of an individual include: i) how much time on average
is spent in a particular latent state? ii) what is the expected total number of state changes per
hour? iii) what is the expected number of transitions between particular states? At the
population level, these questions investigate variations around population norms and
differences between sub-populations (diseased and nondiseased groups). We will return to
these questions in the course of the evaluation of the results in Section 4.

3.2 Parameter estimation for the proposed combination of HMMs
Fitting the combination of HMMs using numerical maximization of the joint likelihood is
infea-sible. For the 102 subjects selected from the SHHS, the number of parameters under
stationarity would be N · (N – 1) · 102 + 4 · N (where the first term corresponds to the
Markov chain parameters and the second term to the Dirichlet distribution parameters);
1,240 for a basic model with N = 4 states. An additional difficulty is the large size of the
data set, which contains roughly 170,000 observations. We also anticipate that the size and
complexity of data sets with similar structure will increase dramatically in the future. The
amount of data, but most of all the high dimensionality of the parameter space – with the
associated danger of not finding the global maximum of the likelihood – seriously hinder
standard HMM fitting approaches, both direct numerical likelihood maximization and the
expectation-maximization algorithm (but see the discussion of an EM approach in the
conclusions).

To circumvent these problems we consider the following pragmatic two-stage approach to
model fitting. In Stage I we calibrate the Dirichlet parameters which will be fixed in Stage II
to fit HMMs to all individuals. This strategy partitions the infeasible maximization problem
into several relatively simple maximization problems, each of them involving a small
number of parameters. The calibration of the Dirichlet parameters in Stage I is carried out by
fitting an independent mixture of N Dirichlet distributions to the observations from all
individuals (5·N – 1 parameters). By first considering independent rather than dependent
mixtures (i.e. HMMs), the complexity of the problem is reduced substantially. This
approach is likely to yield estimators similar to those that would be obtained from the HMM
fit considering all parameters simultaneously (for more details see Sections 4.1 and 4.2). In
Stage II the Dirichlet parameters are fixed and only the Markov chain parameters, i.e. the
entries of the t.p.m. B, are estimated for each individual (N . (N – 1) parameters for each
individual). This makes the entire approach computationally feasible.

In Stage I the likelihood to be maximized is a product of probability density functions of a
mixture distribution:

(1)

where  denotes the vector of observed proportions of δ-, θ-, α- and β-waves for
individual m at time t in night i, and γndenotes the weights of the Dirichlet distribution
associated with state n. The observations originate from a set of individuals (see 4.3.1 for
more details), and for each individual from two separate overnight recordings of the EEG.
Clearly the ordering of observations does not play any role in the likelihood computation.
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The likelihood given by (1) is maximized over the mixture component weights γi (With the

constraint γ1+…+γN = 1) and the Dirichlet parameter vectors 

In Stage II the likelihood to be maximized for individual m is

(2)

where

 denotes the t.p.m. of the Markov chain for individual m, and 1 is a
row vector of ones. The vector of probabilities π(m) = (π1

(m),…, πN
(m)) is the solution to the

linear system π(m)B(m) = π(m) subject to , i.e. the stationary distribution of the
fitted Markov chain, associated with individual m. The likelihood given by (2) is maximized
only over the parameters of the underlying hidden Markov chain of the model; the
parameters at the observation level, i.e. the Dirichlet parameters λ(n), are fixed at the values
obtained in Stage I.

Likelihood maximization in Stage I and II cannot be carried out analytically and a numerical
maximization algorithm was used instead. Note that the estimators for the Dirichlet
parameters are not the MLEs for the combination of HMMs. However, the estimates can be
very informative (see the results of the model fitting in Sections 4.1 and 4.2). Model fitting
was carried out using R. Both likelihood expressions, (1) and (2), are easy to compute and
the parameters can be estimated using numerical maximization. The risk of finding a local
rather than the global maximum was addressed by trying several different randomly chosen
initial starting points (50 in Stage I, and four in Stage II for each individual). Maxima were
not accepted before being identified by different sets of initial values. We applied the
unconstrained minimization algorithm nlm(), which required transformation from a
constrained to an unconstrained maximization. Techniques to deal with this problem are

standard. For instance, in the combination of HMMs the Dirichlet parameters  have to be

positive, but the parameters  are unconstrained. We thus reparametrize the model
in terms of unconstrained “working parameters” and then maximize the likelihood with
respect to those parameters. Approximate confidence intervals for the “natural parameters”,

e.g. , can be obtained by first estimating confidence intervals or the working parameters
from the inverse of the estimated information matrix, and then applying the inverse
transformations, back to the natural parameter space, to the interval boundaries for the
working parameters. In the two-stage approach confidence intervals for the Dirichlet
parameters are obtained in Stage I, while those for the Markov chain parameters are
obtained in Stage II. If the true model is indeed a combination of HMMs, than the model
fitted in Stage I of the two-stage method is incorrect, such that in particular the validity of
resulting confidence intervals for Dirichlet parameters needs to be checked (e.g., using
simulation experiments).

4 Fitting the combination of HMMs to sleep EEG data
We now fit the combination of HMMs to simulated data and to the sleep EEG data acquired
at the SHHS. We begin by looking at a simple four-subject example which is supposed to
illustrate the (SHHS) data and to compare the proposed estimation method to the
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conventional maximum likelihood approach (Section 4.1). Section 4.2 provides more
insights into the performance of the proposed estimation method by applying it in a
simulation study. Subsequently, Section 4.3 discusses the model fitting results for the whole
set of matched pairs as described in Section 2 (i.e. 102 subjects).

4.1 An illustrative and method-comparative example
Figure 2 displays the EEG spectral power proportions of the δ-, θ-, α- and β-bands that were
observed in the SHHS for four subjects (two with SDB and two without SDB, and in each
case for two nights). Each time t refers to a 30-second interval.

The combination of HMMs was fit to these data in two different ways, 1) by maximizing the
joint likelihood and 2) by using the two-stage approach as described in Section 3.2. Table 2
compares: i) the computational time needed to perform the model fits; ii) the estimated
Dirichlet parameters λ(n) and the associated 95% confidence intervals (with n denoting the
associated state of the Markov chain); iii) the associated expected spectral band power
proportions µ(n); and iv) the stationary Markov chain distributions for the four subjects, i.e.
π(m), m = 1,2,3,4 (where m refers to the subjects).

As pointed out above, method 1) (conventional ML estimation) is infeasible for large
populations. The two-stage method is feasible for very large populations and is substantially
faster already for smaller populations. Moreover, the second step of the method can be
implemented in parallel, as each subject fit can be done on a different processor. This makes
our two-stage method scalable to essentially any number of subjects using parallel
computing. As can be seen in Table 2, the two-stage method yields reasonable results in the
sense that they are close to those obtained by joint maximization of the likelihood. In
particular, the expected spectral band power proportions differ by at most 0.04 (β-waves in
state 4, which here is the least frequented state, i.e., the one with least observations in the
sample). These findings indicate that the two-stage method provides reasonable estimates in
cases where both the joint likelihood and the two-stage approaches are feasible.

Most of the Dirichlet parameter estimates are found to be higher when using the two-stage
approach than when using conventional ML estimation. We believe that this is because the
latter approach takes into account the autocorrelation of the sequence, whereas the two-stage
approach neglects it. For example, assume that a couple of successive observations strongly
suggest that they are associated with the same underlying state, except that one of the
observations (somewhere in the middle of the sequence) is an outlier. If that underlying state
is relatively persistent (i.e., if it is associated with a relatively high self-transition
probability), then the conventional ML procedure may try to accommodate the outlying
observation within that state by estimating a higher variance of the corresponding Dirichlet
distribution than the two-stage method does (and a higher variance of the Dirichlet
distribution can be achieved by lower Dirichlet parameters), since the two-stage procedure
would be more likely to assign the outlying observation to a different state.

The fit to the four-subject example indicates that the fitted hidden Markov chains have
different characteristics across subjects. Indeed subject 1 (healthy) spends about half of the
night in state 3, whereas for example subject 4 (diseased ) spends only about a fourth of the
night in that state. Section 4.3 will concentrate on the quantitative analysis of such
differences for a large population containing 51 healthy subjects paired to 51 sleep apneics.

4.2 A simulation study
In order to better evaluate the performance of the two-stage estimation method we
conducted a simulation study. We simulated from the model for sleep EEG outlined in
Section 3.1, generating T = 800 observations – each drawn from one of N = 2 possible
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Dirichlet distributions as selected by an underlying Markov chain – for each of M = 4
individuals. To these four time series we then fitted the combination of HMMs by 1)
maximizing the joint likelihood (conventional ML) and 2) using the two-stage approach.
This exercise was repeated 500 times, and the comparison of the two methods is based on
point and interval estimates of the Dirichlet parameters. We decided to simulate from a
model with two (sleep) states only because more states would make the joint fitting method
(MLE) too time-consuming for a simulation study (but see the web-based supporting
material for another simulation study which considers more states). We provide detailed
results only for the state-dependent distributions to focus on the first stage of the two-stage
method. The second stage is expected to perform very well when the first stage parameters
are well estimated.

For each of the 500 simulation runs we used Dirichlet distributions with parameter vectors
λ(1) = (4,3,2,1) and λ(2) = (1,2,3,4) for states 1 and 2, respectively. For each run and
individual the diagonal entries of the t.p.m. of the underlying two-state Markov chain were
drawn from a uniform distribution on [0.85,0.95]. This choice was made to allow for
different state-switching dynamics for different individuals. The diagonal entries were
chosen to be large, such that the independent mixture model fitted in Stage I is the wrong
model because it neglects the high within-subject autocorrelation.

Table 3 provides the following summary statistics for the estimates of the Dirichlet
parameters: sample means of the estimates, sample standard errors of the estimates,
coverage proportions of the associated 95% confidence intervals, and mean absolute
deviation between estimates obtained via conventional ML and those obtained via the two-
stage method. Confidence intervals were obtained based on the Hessian of the log-likelihood
for the parameter estimates. All confidence intervals, both those obtained using conventional
ML and those obtained using the two-stage method, have coverage proportions close to the
desired value 0.95. There is also no indication of bias for either of the two methods. For both
methods, the estimates of the Markov chain parameters also showed no indication of bias,
with the standard deviations of the estimates being marginally higher in the case of
conventional ML estimation (likely due to the uncertainty in the Dirichlet parameter
estimates being neglected in Stage II of the two-stage method). These results indicate that
the two-stage method is a sensible way of reducing the computational burden when fitting
HMMs to multiple time series. The only notable effect of using the simpler procedure was
slightly higher standard errors of the estimators for the Dirichlet parameters; as a
consequence, the resulting CIs were also slightly wider. In several other simulation
scenarios we found similar results (not shown). In particular, the two-stage method also
yielded unbiased estimates and valid coverage in a scenario with N = 5 states and parameter
as estimated in Sections 4.3.1 and 4.3.2 below – see the web-based supporting material to
this manuscript.

4.3 Results for matched subset of the SHHS
In this section we use the proposed two-stage method to fit the combination of HMMs to the
whole population of matched pairs (i.e. to M = 102 subjects). We provide the results and
interpretations using N = 5 states for the Markov chain. (Section 4.3.3 discusses this choice
and the associated consequences.)

4.3.1 Stage I — Calibrating the state-dependent distributions—In this first stage,
the state-dependent parameters are estimated by fitting an independent mixture of N = 5
Dirichlet distributions to the EEG data. The first task was to choose the calibration sample,
i.e. the set of individuals to which the mixture is to be fitted. We chose all individuals,
including those with SDB, to avoid potential biases induced by their patterns. However, the
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parameters may be substantially different in the two populations. To address this potential
problem we repeated Stage I for the healthy and diseased subjects separately. The EEG
recordings from both nights made in the SHHS were taken into account. In Table 4 the
estimated Dirichlet parameters and the associated expected spectral band power proportions
for the diseased and non-diseased subgroups, as well as for the whole group, are displayed.

The two group analyses led to similar results. The largest difference in the state-dependent
expected spectral band powers can be observed for state 5, probably because it is the least
frequented state (see the discussion of the sleep architecture below), which leads to unstable
estimates. The variances of the fitted Dirichlet distributions are quite different for the
different states. The lowest concentration parameter s(n) was estimated for state 5 (2.76 for
the healthy and 3.33 for the diseased subgroup). This could be an indication that the make-
up of this sleep state differs largely across individuals. Indeed, a model with fixed Dirichlet
parameters across individuals would try to capture this heterogeneity by estimating a small
concentration parameter. As the two fits led to similar results, we will subsequently use the
parameters estimated from the set of all individuals.

4.3.2 Stage II — Individual state switching probabilities—After fixing the Dirichlet
parameters at the values obtained from the calibration fit performed above, we fitted a five-
state Dirichlet HMM for each of the 102 individuals. Of interest is the stochastic structure of
the resulting Markov chains, which we analyze in two different ways. First, we discuss sleep
architecture by looking at the stationary distributions of the Markov chains. Second, we
analyze the estimated transition probabilities using the resulting expected frequencies of
transitions.

Sleep architecture: We start by investigating the stationary distributions π(m), m = 1,…,
102, which provide the estimated average proportions of time spent in the different states by
each subject. In the following the indices m = 1,…,51 correspond to the healthy individuals
while those with the indices m = 52,…,102 correspond to the diseased ones (and the
matched pairs are (1,52), (2,53), …, (51,102)). We obtain

and

Thus, according to the fit of the combination of HMMs, the EEG-derived sleep architecture,
i.e. the average proportion of time the individuals spend in the different HMM states, is
similar for healthy and diseased subjects. This confirms findings of papers dealing with
sleep architecture analyses based on the hypnogram [17, 20]. The most frequented HMM
state is state 4 in which about 37 – 40% of the night is spent. The least frequented HMM
state is state 5 in which about 9% of the night is spent.

The stationary distributions of the individuals show sizeable variation. Indeed, in each of the
states 1–4 almost all individuals have stationary probabilities substantially larger than zero,
i.e. > 0.01 (the only exception being one diseased individual who, according to the fitted
model, never switches to state 3). State 5 is visited very infrequently by some individuals.
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Indeed, for 19 individuals (eight healthy and eleven diseased) the stationary probability of
being in state 5 was estimated to be less than 0.01. We emphasize that our analyses do not
consider night-to-night variation within an individual, but rather variation within a night and
variation across individuals.

Expected number of transitions: We also analyze the state transition probabilities. The
expected number of transitions of individual m from state i to state j in a series of T
observations is equal to [29]

Table 5 displays the averaged values of the expected numbers of transitions per hour, from
state i to state j, for the two groups of interest (healthy and diseased individuals), i.e.

for i, j = 1,2,3,4,5.

Summing up the off-diagonal elements from the tables yields the averaged expected total
numbers of cross-state transitions:

and

Not considering the group averages, and instead applying a two-sided Welch’s t-test to the
(51) pairwise differences, yields a p-value of 0.0005, indicating that there is strong evidence
of difference in the average expected number of cross-state transitions between the diseased
and healthy groups.

In summary, diseased individuals tend to switch significantly more often between various
states. Most of the switches occur between states 2 and 4, followed by the switches between
states 1 and 2. The most striking difference between the groups is in the number of switches
between states 1 and 2, which occur about 57% more often in the diseased group.

Not captured by this analysis of the group averages is the heterogeneity within the groups.
Although the difference between the average expected numbers of cross-state transitions is
substantial, there are large fluctuations within the groups. This can be seen in Figure 3,
where histograms and kernel density estimators of the expected numbers of cross-state
transitions per individual, i.e. the values
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separated in the groups of healthy and diseased individuals, are displayed. The apparent
substantial heterogeneity in the state switching behavior, both across groups and within
groups, underlines the need for using individual-specific Markov chains in the suggested
combination of HMMs.

The plot does not suggest that the distribution for the set of diseased individuals is simply
shifted. Instead, according to this plot about four-fifths of the diseased individuals do not
show an anomalously high number of cross-state transitions: only for 11 (17) out of 51
diseased individuals the expected number of cross-state transitions exceeds the empirical
99%-quantile (95%-quantile) of the corresponding numbers obtained for the healthy
individuals. There seems to be a subgroup in the diseased group of diseased individuals
leading to the strong difference observed.

4.3.3 Number of states—We have shown results for a combination of HMMs with five
states each. This number is in agreement with the sleep states stipulated by the American
Academy of Sleep Medicine (AASM) manual from 2007 (REM, wake and Non-REM stages
I-III). In the light of the possibility that classical sleep staging is playing a key role in the
determination of the HMM states, both models with five and six states seem reasonable. One
might conjecture that the simpler layout possibly corresponds to the decomposition in three
Non-REM states plus waking and REM, while the six-state model considers a fourth Non-
REM state, as stipulated in the standard manual for scoring of sleep stages [35].

Because our choice is arbitrary, it is interesting to investigate the differences in results
between the five- and the six-state model. Table 6 provides the expected band power
proportions associated with the states obtained in the combination of HMMs with five and
six states each, respectively.

All states of the fitted five-state HMM combination are altered only slightly when moving to
the six-state model, and all main conclusions obtained for the five-state model remain
practically unchanged when assuming six states (results not shown). The additional
inclusion of a sixth state simply provides a more detailed distinction between different sleep
characteristics.

5 Conclusions
In this manuscript we considered a combination of HMMs which can easily and
conveniently be fitted using a novel two-stage fitting process. The method is easy to use and
scales up well to large studies. Numerical studies demonstrate good agreement between our
ad hoc fitting method and full maximum likelihood, while also demonstrating large scale
decreases in computing time.

Via simulations we have in particular demonstrated that the two-stage method performs well
in the scenario represented by the SHHS (see the web-based supporting material to this
manuscript). In potential cases where simulation experiments indicate unsatisfactory
behavior of the Dirichlet parameter estimators based on Stage I of the two-stage method, we
recommend considering the option of additionally running an EM algorithm, using the
estimates obtained from the two-stage method as initial values. An EM algorithm for the
suggested combination of HMMs would involve – in each iteration – 1) applying the
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forward-backward algorithm to obtain the conditional probabilities of all states and pairs of
consecutive states, given the current parameter estimates and the observations (the E step;
note this can be applied to each subject separately, such that parallelization is possible), and
2) computing the new estimates of the initial state distributions and transition probability
matrices from those conditional probabilities, and a numerical maximization to obtain the
new estimates of the Dirichlet parameters (the M step).

We have not implemented EM in this work for two reasons: first, given the good
performance of the two-stage method in the conducted simulation studies, there seems to be
no need to additionally grapple with the complexity of an EM algorithm. Compared to EM,
the crucial advantages of the two-stage method clearly are computational speed and its
accessibility to users. In particular, it will usually be straightforward to apply the two-stage
method in other (similar) HMM settings, whereas any EM approach is likely to involve
nontrivial modifications whenever the structure of the model is altered. Second, in scenarios
with high-dimensional parameter spaces, in general neither EM nor standard numerical
maximum likelihood will stand alone, since extremely good starting values need to be
available. Such starting values can relatively easily yet objectively be obtained via the two-
stage approach. Thus, our simple method can be a very useful tool even in cases where
MLEs are desired. For these reasons we decided to focus exclusively on the two-stage
method in the present manuscript.

We applied the suggested combination of HMMs to a novel study of sleep and its correlates.
Our results confirm findings based on visual inspection of sleep hypnograms, despite being
based entirely on the EEG signal. We found that the percentage of time spent in HMM-
derived EEG states is equivalent across carefully matched diseased (sleep apnea) and non-
diseased subgroups. That is, subjects with SDB, despite repeated arousals during the night,
manage to obtain a consistent percentage of time spent in sleep states (generally defined) as
subjects without SDB.

However, we also identified interesting differences in the transitions between states.
Specifically, we identified and quantified differences in the (HMM-derived) state transition
rates between diseased and non-diseased subjects as well as the variability in these transition
processes. These differences confirm results based on hypnograms [17, 20]. However, our
approach is entirely automated, does not require human scoring, and requires only the
processed EEG signal.

In summary, HMMs are useful to extract features and study sleep phenomena for
epidemiological studies. Given the utility of the proposed models, important future research
would include covariate adjusted and nonhomogeneous variations of the model. In particular
the latter issue is important, since brain activity during sleep can depend on the time of night
through Circadian and other processes. Also assuming more flexible distributions for the
duration of stay in particular states is likely to improve the fit; corresponding extensions are
straightforward to apply since corresponding models can be framed as HMMs [36].
Variations incorporating random effects could also be worthwhile, provided that the
computational burden can be decreased. The semiparametric approach proposed by Maruotti
and Rydén [37] might offer a way forward in that direction.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Dependence structure of an HMM for a single individual.
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Figure 2.
Observations of four subjects acquired at SHHS1 (initial polysomnogram) and SHHS2
(repeat polysomnogram, four years later); dark gray segments: δ-band spectral power prop.,
white segments: θ-band spectral power prop., black segments: α-band spectral power prop.,
light gray segments: β-band spectral power prop..
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Figure 3.
Histogram and kernel density estimator (kde) for the expected total number of cross-state
transitions. Bandwidths for the kde were obtained via cross-validation (4.0 and 4.7 in the
cases of healthy and diseased subjects, respectively), and the Epanechnikov kernel was used.
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Table 1

Demographic covariates and sleep variables, means of the two groups. All measures are not significantly
different (RDI is different by design).

Variable SDB no-SDB p-value

RDI (events/hour) 40.532 2.114 0.000

BMI (kg/m2) 30.275 30.247 0.972

Age (years) 61.804 61.804 1.000

Race (% white) 92.160 92.160 1.000

Sex (% male) 66.667 66.667 1.000

Total Sleep Time (min.) 351.397 357.466 0.593

% Total Sleep Time asleep 81.941 83.364 0.743
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Table 6

Expected band power proportions in the combination of HMMs with five and six states; in each case the
estimates were obtained using the two-stage method.

5-state model

state expec. band power prop.

n δ θ α β

1 0.83 0.09 0.05 0.03

2 0.72 0.15 0.09 0.04

3 0.34 0.21 0.27 0.17

4 0.56 0.19 0.15 0.09

5 0.28 0.19 0.19 0.34

6-state model

state expec. band power prop.

n δ θ α β

1 0.84 0.09 0.05 0.02

2 0.72 0.15 0.09 0.04

3 0.36 0.21 0.26 0.17

4 0.56 0.21 0.15 0.09

5 0.26 0.20 0.19 0.35

6 0.68 0.09 0.10 0.12
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