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Rapid advances in sequencing technology have changed the experimental landscape of microbial ecology. In the last 10 years, the
field has moved from sequencing hundreds of 16S rRNA gene fragments per study using clone libraries to the sequencing of mil-
lions of fragments per study using next-generation sequencing technologies from 454 and Illumina. As these technologies ad-
vance, it is critical to assess the strengths, weaknesses, and overall suitability of these platforms for the interrogation of microbial
communities. Here, we present an improved method for sequencing variable regions within the 16S rRNA gene using Illumina’s
MiSeq platform, which is currently capable of producing paired 250-nucleotide reads. We evaluated three overlapping regions of
the 16S rRNA gene that vary in length (i.e., V34, V4, and V45) by resequencing a mock community and natural samples from
human feces, mouse feces, and soil. By titrating the concentration of 16S rRNA gene amplicons applied to the flow cell and using
a quality score-based approach to correct discrepancies between reads used to construct contigs, we were able to reduce error
rates by as much as two orders of magnitude. Finally, we reprocessed samples from a previous study to demonstrate that large
numbers of samples could be multiplexed and sequenced in parallel with shotgun metagenomes. These analyses demonstrate
that our approach can provide data that are at least as good as that generated by the 454 platform while providing considerably
higher sequencing coverage for a fraction of the cost.

The last 10 years of microbial ecology research have involved a
profound shift in focus from observational phylogenetic anal-

yses of as-yet uncultured novel taxa (1) to experimental charac-
terization of the taxonomic shifts in communities through the use
of complex experimental designs (2). This shift in focus has been
driven by the advent of relatively inexpensive next-generation se-
quencing approaches and the development of robust bioinfor-
matic tools. The most commonly used sequencing platform has
been from 454 (3); however, there is growing interest in using the
IonTorrent (4), PacBio (5), and Illumina (6) platforms. This tran-
sition between platforms has not been painless, as there has been a
steady stream of concerns raised regarding the quality and mean-
ing of sequence data generated by the 454 sequencers (7, 8). Nu-
merous groups have worked to develop bioinformatic solutions
that make the 454 platform a robust approach to characterizing
microbial communities (9, 10). As other sequencing platforms
mature and perhaps replace 454 as the platform of choice for 16S
rRNA gene sequencing, it is critical to develop similar solutions so
that the field does not sacrifice high data quality for increased
sequencing throughput.

A number of considerations must be made when selecting a
platform for sequencing the 16S rRNA gene. We contend that
sequence quality is the most important consideration, as studies
that are built upon data that are unreliable are themselves unreli-
able (10). A second important consideration is the number of
reads that one can obtain per run and per dollar. This is signifi-
cant, because investigators can titrate the number of samples and
reads per sample using multiplexing strategies to fit the number of
overall reads. A third consideration for 16S rRNA studies is the
length of the sequences, as longer sequences are easier to assign to
a taxonomic group using a classifier (11). Finally, the customer
and technical support of the companies that manufacture the re-

agents and instrumentation and the availability of their platform
and reagents are significant factors. The goal of this study was
to assess the quality of MiSeq-generated data and to determine its
advantages and disadvantages compared to 454. Further studies
are necessary to make similar comparisons to other platforms.

Illumina-based strategies are able to generate the largest
amount of sequence data per dollar, using a chip-based bridge
amplification procedure followed by sequencing by synthesis us-
ing reversible terminator dye nucleotides (12). Depending on the
platform and reagents, one can currently obtain up to 300 and 500
cycles (i.e., nucleotides [nt]) of sequence data on HiSeq and MiSeq
platforms, respectively. These cycles are commonly split into two
reads, providing paired reads of the same DNA fragment. The
platforms also vary in their sequencing throughput, with HiSeq
2500 being capable of generating 600 Gbp using paired 100-nt
reads (i.e., 3 billion pairs of reads) or 180 Gbp using paired 150-nt
reads (i.e., 1.2 billion pairs of reads), and MiSeq was capable of
generating 8.5 Gbp using paired 250-nt reads (i.e., 17 million pairs
of reads). Because the HiSeq platform requires one to fill 16 se-
quencing lanes with the same reagents, logistically it is more dif-
ficult for an individual to fill a complete run with a 300-cycle kit
when the 200-cycle kit is more commonly used within the genom-
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ics field. Reagents for the HiSeq (300 cycle) are approximately
$1,500 per lane, and for the MiSeq they are approximately $1,000
per lane. The HiSeq 2500 and MiSeq instruments currently retail
for $740,000 and $125,000, respectively. The HiSeq platform has
become the standard approach for shotgun metagenomic se-
quencing because of its increased read depth; however, the MiSeq
has greater potential for use with 16S rRNA gene sequence studies,
because it generates longer sequence reads, and its performance
and cost are tractable to the needs of individual investigators (13).

Until recently, the most significant problem with the Illumina
platforms has been the ability to sequence samples with low ge-
netic diversity, such as that commonly found with 16S rRNA gene
amplicons. To artificially increase the genetic diversity, it has been
common to mix in a control library of genomic DNA from the
phage PhiX, such that 50% of the DNA was from PhiX. During the
course of this study, Illumina upgraded their image analysis soft-
ware to overcome this challenge, such that only 5 to 10% PhiX is
needed to sufficiently increase the genetic diversity. Another fac-
tor that can affect data quality is the amount of DNA loaded onto
the flow cell, as this affects the cluster density and the ability of the
image analysis software to discriminate between clusters. In this
study, we evaluate the effect of the new software on sequencing
error rates with various cluster densities.

Previous studies involving 16S rRNA gene sequencing on the
Illumina platforms have utilized two approaches. The first ap-
proach involves two PCR steps with different primer pairs (for an
example, see reference 6). In the first PCR step, the two primers
used contain an Illumina sequencing primer, an index (i.e., bar-
code) sequence, and the gene-specific primer. In the second PCR
step, two primers are used that contain the Illumina adapter and
sequencing primer sequence. Paired-end sequencing is performed
using the built-in Illumina sequencing primers. This approach is
limited, because it requires two rounds of PCR, increasing the
risks of artifacts commonly observed with large numbers of PCR
rounds, and because one must devote 20 to 25 nt to sequencing the
index and gene-specific primer. The second approach emulates
Illumina’s TruSeq genomic library construction protocol, in
which a single PCR is used (14). In this approach, the primers
contain the Illumina adapter sequence, an index sequence (only
for the reverse primer), a 10-nt pad to prevent hairpin formation,
a 2-nt linker that is noncomplementary to the 16S rRNA gene, and
a gene-specific primer. Sequencing proceeds by (i) using the com-
bined pad-linker-primer as the sequencing primer at the 5= end to
obtain a long read, (ii) using the reverse complement of the com-
bined pad-linker-primer as the sequencing primer at the 3= end to
sequence the index region, and (iii) using the combined pad-link-
er-primer as the sequencing primer at the 3= end to obtain a long
read. With the 500-cycle reagents, this results in an index sequence
and two 250-nt reads. A collection of 2,168 reverse primers with
different indices has been published for the V4 region of the 16S
rRNA gene (14). Considering these methods were developed us-
ing previous Illumina platforms that could only generate 200 or
300 nt and current technology can obtain 500 nt, with anticipated
further expansions in sequencing lengths, we sought to develop a
dual-index, paired-read approach that could easily be adapted to
other regions of the 16S rRNA gene or other genes. The advantage
of such an approach is that with dual indices, one could replace the
2,168 previously proposed V4 primers with a total of 94 primers.

The development of bioinformatic solutions for curating se-
quences generated on the Illumina platforms has been limited.

Several studies have insisted that extensive sequence curation and
contig formation is unnecessary (14, 15); however, these were
largely focused on analyzing the beta-diversity between commu-
nities and taxonomic classification to the genus level. These ap-
proaches are limited because of the limitations of existing data-
bases and the various levels of diversity across taxonomic lineages.
Caporaso and colleagues (14) have utilized a mapping procedure
where reads are mapped to a reference database of V4 reads that
are not more than 97% similar to each other; if a read is not more
than 97% similar to a sequence in the database, it is culled. Al-
though this is clearly a fast approach, a significant number of good
reads may be rejected, and it requires the creation of very special-
ized databases for each region being sequenced. Such a strategy
can be impossible should researchers attempt to adapt the se-
quencing strategy to poorly characterized genes. Others have at-
tempted to use the Phred/Phrap quality scores associated with
each base to trim sequence reads in combination with removing
rare taxa (16). Unfortunately, no error rates are provided follow-
ing their sequence-trimming procedure, and removal of rare taxa
could be problematic if one is interested in tracking rare popula-
tions. Finally, the only published attempt to develop a method of
curating paired sequence reads has suggested allowing various
numbers of mismatches between the overlapping sequence reads;
however, again, final error rates were not provided (6, 17). In the
current study, we resequence a mock treatment community where
we know the true 16S rRNA gene sequence to assess the effect of
various trimming and sequence assembly methods on the overall
error rates.

Here, we address several technical and bioinformatic chal-
lenges related to employing the MiSeq platform for sequencing of
the 16S rRNA gene. First, the recent release of the Illumina MiSeq
v. 2.0 platform provides 500 cycles that are typically applied by
obtaining paired 250-nt sequences per fragment. This allowed us
to determine whether the additional sequence length would allow
one to sequence longer regions of the 16S rRNA gene fragment
either as a single read or as paired reads. Furthermore, because the
sequencing platform is constantly evolving to provide more and
longer sequence reads, we developed a sequencing strategy that
could easily be adapted when longer reads are possible and reduce
the investment in buying large numbers of indexed primers. Sec-
ond, we evaluated the prospects of sequencing metagenomic shot-
gun libraries in parallel to 16S rRNA gene amplicons for situations
where deep sequencing coverage is not necessary. Third, we devel-
oped a sequence curation pipeline that results in a minimal num-
ber of sequence reads while producing sequences with error rates
comparable to those we have previously observed with 454 data
(10). Finally, we reanalyzed a large set of samples that we previ-
ously analyzed using the 454 platform using our MiSeq-based ap-
proach and observed similar results (18).

MATERIALS AND METHODS
Overall strategy and primer design. Our dual-index paired-end sequenc-
ing approach is analogous to the single-index approach described else-
where (13, 14). As shown in Fig. 1, each primer consists of the appropriate
Illumina adapter, an 8-nt index sequence, a 10-nt pad sequence, a 2-nt
linker, and the gene-specific primer. The index sequences were selected to
be at least 2 nt different from all other indices in use, and when combined,
they provide an equal intensity in the two light channels used by the
sequencer (i.e., green channel [G/T] and red channel [A/C]). The index
sequences were also at least 2 nt different from the indices that accompany
the Nextera library construction kit. The 2-nt linker sequence was selected
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to not be complementary to the homologous positions in a large collec-
tion of 16S rRNA gene sequences (19). Finally, the pad sequence was
selected so that the combined pad, linker, and gene-specific primer se-
quences had an estimated melting temperature between 60 and 65°C. For
the development of our method, we used gene-specific primers to amplify
the V34, V4, and V45 regions from the bacterial 16S rRNA gene that have
been described elsewhere (14, 20). The complete primers were each 63 to
68 bp long.

Two sequence reads, two index reads, and three sequence primers
were necessary to sequence each DNA fragment. The first sequence read
(250 nt) was obtained using the Read 1 primer, which was the same as the
sequence of the combined pad, linker, and gene-specific primer at the 5=
end of the region. The first index, located at the 3= end of the fragment, was
sequenced using the Index primer. The Index primer was the reverse
complement of the combined pad linker and gene-specific primer se-
quence at the 3= end of the region. After this index read, the platform flips
the fragment. The second index read then was performed to obtain the
index sequence at the 5= end of the fragment using the adapter lawn on the
surface of the sequencing flow cells. Finally, the second sequence read (250
nt) was obtained using the Read 2 primer, which was the same as the
sequence of the combined pad linker, and gene-specific primer sequence
at the 3= end of the region. The overall process of cluster generation,
sequencing, image processing, demultiplexing, and quality score calcula-
tion was performed on the MiSeq in approximately 40 h.

Community DNA. In the initial studies to develop our sequencing
approach, we utilized genomic DNA isolated from four communities that

were then sequenced as three technical replicates. The first was termed a
“mock community” composed of genomic DNA from 21 bacterial iso-
lates. This mock community is similar to the one that we used previously
to assess error rates in 454-generated sequence data: Acinetobacter bau-
mannii ATCC 17978, Actinomyces odontolyticus ATCC 17982, Bacillus ce-
reus ATCC 10987, Bacteroides vulgatus ATCC 8482, Clostridium beijer-
inckii ATCC 51743, Deinococcus radiodurans ATCC 13939, Enterococcus
faecalis ATCC 47077, Escherichia coli ATCC 70096, Helicobacter pylori
ATCC 700392, Lactobacillus gasseri ATCC 33323, Listeria monocytogenes
ATCC BAA-679, Neisseria meningitidis ATCC BAA-335, Porphyromonas
gingivalis ATCC 33277, Propionibacterium acnes DSM 16379, Pseudomo-
nas aeruginosa ATCC 47085, Rhodobacter sphaeroides ATCC 17023,
Staphylococcus aureus ATCC BAA-1718, Staphylococcus epidermidis
ATCC 12228, Streptococcus agalactiae ATCC BAA-611, Streptococcus mu-
tans ATCC 700610, and Streptococcus pneumoniae ATCC BAA-334. The
genomic DNAs were pooled to have an equimolar concentration of 16S
rRNA gene copies per genome with a final concentration of 5 ng/�l. Mock
community DNA is available through BEI Resources (HM-278D v3.1).
Genomic DNAs from the three other communities were obtained using
the MO BIO PowerSoil DNA extraction kit with material from mouse and
human feces and soil from a residential area. To demonstrate the ability to
scale up our method and recapitulate previous results, we reused the DNA
from a previous study in which DNA was isolated from mouse feces using
the Roche MagnaPure DNA extraction kit. All fecal samples were ob-
tained using protocols that were reviewed and approved by the University

V4 Region of the 16S rRNA gene 
.............CTTCCACTTAAATGAGACTT GTGCCAGCMGCCGCGGTAA.................ATTAGAWACCCBDGTAGTCC ATACAGGTGAGCACCTTGTA... +Strand 
.............GAAGGTGAATTTACTCTGAA CACGGTCGKCGGCGCCATT.................TAATCTWTGGGVHCATCAGG TATGTCCACTCGTGGAACAT... -Strand 
 
Forward primer construct 
.............GAAGGTGAATTTACTCTGAA CACGGTCGKCGGCGCCATT.................TAATCTWTGGGVHCATCAGG TATGTCCACTCGTGGAACAT... -Strand 
    <p5 adapter><i5><padF><linkF> GTGCCAGCMGCCGCGGTAA-> 
 
Reverse primer construct 
.............CTTCCACTTAAATGAGACTT GTGCCAGCMGCCGCGGTAA.................ATTAGAWACCCBDGTAGTCC ATACAGGTGAGCACCTTGTA... +Strand 
                                   <-TAATCTWTGGGVHCATCAGG <linkR><padR><i7><p7 adapter> 
V4 Amplicon        
AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTATGGTAATTGTGTGCCAGCMGCCGCGGTAA..............ATTAGAWACCCBDGTAGTCCGGCTGACTGACTNNNNNNNNATGACGTATGCCGTCTTCTGCTTG 
TTACTATGCCGCTGGTGGCTCTAGATGTGNNNNNNNNATACCATTAACACACGGTCGKCGGCGCCATT..............TAATCTWTGGGVHCATCAGGCCGACTGACTGANNNNNNNNTAGAGCATACGGCAGAAGACGAAC 

 

TTACTATGCCGCTGGTGGCTCTAGATGTGNNNNNNNNATACCATTAACACACGGTCGKCGGCGCCATT..............TAATC 
                                     TATGGTAATTGTGTGCCAGCMGCCGCGGTAA-> 

GCCATT..............TAATCTWTGGGVHCATCAGGCCGACTGACTGANNNNNNNNTAGAGCATACGGCAGAAGACGAAC 
                    ATTAGAWACCCBDGTAGTCCGGCTGACTGACT-> 

TTACTATGCCGCTGGTGGCTCTAGATGTGNNNNNNNNATACCATTAACACACGGTCGKCGGCGCCATT..............TAA 
AATGATACGGCGACCACCGAGATCTACAC-> 

Denature, chip-based PCR 
on flow cell, and first 
sequencing read (250 nt) 

First index sequencing read 
is performed (8 nt) 

Second index read using 
oligomers on the flow cell 
surface (8 nt) 

GTTCGTCTTCTGCCGTATGCAGTANNNNNNNNTCAGTCAGTCGGCCTGATGDBCCCAWAGATTA................AATGGC 
                                AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-> 

After sequences are flipped 
on the flow cell, the second 
sequencing read is 
performed (250 nt) 

T

G

T
A

G

Flow 
cell 

surface 

TT

G

T
A

G

Flow

FIG 1 Design of dual-index sequencing strategy and schematic describing the four sequencing reads. The primers specific to the 16S rRNA gene are shown in
boldface black text, linkers are in blue, pads are in green, the index region is in red, and the adapters are underlined. This schematic is demonstrated using the
V4-specific primer sequences and linkers. The PCR and sequencing primers for each of the three regions are provided in the supplemental material.
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Committee on Use and Care of Animals and the Institutional Review
Board at the University of Michigan.

Amplicon library construction and sequencing. 16S rRNA gene li-
braries were constructed using the primers described above to amplify the
V34, V4, and V45 regions. Amplicons were generated using a high-fidelity
polymerase (AccuPrime; Invitrogen) and then were purified using a mag-
netic bead capture kit (Ampure; Agencourt) and quantified using a fluo-
rometric kit (QuantIT PicoGreen; Invitrogen). The purified amplicons
were then pooled in equimolar concentrations using a SequalPrep plate
normalization kit (Invitrogen), and the final concentration of the library
was determined using a SYBR green quantitative PCR (qPCR) assay with
primers specific to the Illumina adapters (Kappa). Libraries were mixed
with Illumina-generated PhiX control libraries and our own genomic li-
braries and denatured using fresh NaOH. A detailed protocol with primer
and index sequences is provided in the supplemental material. We per-
formed 11 sequencing runs for this study. Tables S1 and S2 in the supple-
mental material provide results from seven sequencing runs performed
using Real Time Analysis software (RTA), v. 1.16.18 and 1.17.22, MiSeq
Control software (MCS), v. 2.0.5 and 2.1.13, various amounts of a PhiX
genomic library control, and various cluster densities. Four sequencing
runs were performed with RTA v. 1.17.28, MCS v. 2.2.0, a target of 5%
PhiX, and various cluster densities (Table 1).

Shotgun library construction. DNA (2.5 ng) from the mock and hu-
man fecal communities used in our amplicon experiments, plus genomic
DNA from two Clostridium clostridioforme strains (D4 and CIP110249),
were used to generate four shotgun libraries using a customized Nextera
XT genomic library construction protocol (Illumina). Our customization
involved increasing the amount of input DNA and the amount of trans-
poson-based tagmentation. This modified protocol allowed us to reduce
the number of PCR cycles to 10 instead of the recommended 12 while still
obtaining a sufficient yield for sequencing. DNA concentration and the
length of the fragments were assessed using an Agilent BioAnalyzer. The
metagenomes were pooled in equal molar quantities, and the two ge-
nomes were pooled at one-half the concentration of the metagenomes.
Metagenomic and genomic libraries were quality trimmed using Sickle
(https://github.com/najoshi/sickle), assembled using ABySS (21), and fil-
tered to remove contigs smaller than 500 bp.

Bioinformatic analysis and data availability. All development was
carried out using custom Perl and C�� software. The functions required
to implement the overall analysis pipeline are available within the mothur
software package (v. 1.30) and are illustrated on the mothur website (http:
//www.mothur.org/wiki/MiSeq_SOP) (22). Contigs between read pairs
were assembled as described in this study, and any contigs with an ambig-
uous base (i.e., N) were culled, as were those sequences where there was no
meaningful overlap between sequences. Sequences then were aligned to a
reference alignment, and those sequences that did not align to the correct
region were culled (23–25). The ends of the sequences were trimmed so
that the sequences all started and ended at the same alignment coordinates
(25). After identifying the unique sequences and their frequency in each
sample, we utilized a preclustering algorithm to further denoise sequences

within each sample (10). The resulting sequences were screened for chi-
meras using UCHIME (26). We then used a naive Bayesian classifier to
classify each sequence against the Ribosomal Database Project (RDP) 16S
rRNA gene training set (version 9) that was customized to include rRNA
gene sequences from mitochondria and Eukaryota. We required an 80%
pseudobootstrap confidence score (11). Those sequences that either did
not classify to the level of kingdom or that classified as Archaea, Eukaryota,
chloroplasts, or mitochondria were culled. Finally, sequences were split
into groups corresponding to their taxonomy at the level of order and
then assigned to operational taxonomic units (OTUs) at a 3% dissimilar-
ity level; previous experience indicates that the OTU assignments by this
approach are equivalent to not splitting the sequences by taxonomic order
and has the advantage of parallelization and reduced memory usage (27).
Calculations of sequencing error rates and identification of chimeras
based on the mock community data were performed as previously de-
scribed (10). The sequence data used in this study are available at http:
//www.mothur.org/MiSeqDevelopmentData.html.

RESULTS AND DISCUSSION
Customization of Illumina’s MiSeq platform. The primary ob-
jective in customizing the MiSeq platform was to create a dual-
index sequencing approach that would allow us to generate a large
number of high-quality sequences while minimizing the cost of
long, customized primers. To test this platform, we generated an
amplicon library using template DNAs isolated from a mock com-
munity of genomic DNA with known 16S rRNA gene sequences
and natural samples from human feces, mouse feces, and soil. For
each sample, we amplified the V4 (length, ca. 250 bp), V34 (ca. 430
bp), and V45 regions (ca. 375 bp). The primers described in Fig. 1
were designed to include the appropriate P5 and P7 Illumina
adapter sequences, an 8-nt index sequence, a 10-nt pad sequence,
a 2-nt linker sequence, and the gene-specific primer. The 2-nt
linker sequence was selected to share a minimum amount of ho-
mology with sequences in a reference database (19). The pad se-
quence was selected so that the combined pad, linker, and gene-
specific primer would have a melting temperature over 60°C.
When the pad sequence was not included, the sequencing runs
failed because of the high annealing temperatures used within the
sequencer. We selected 8-nt index sequences that differed by at
least 2 nt, and we ensured that each position contained at least one
A or C and at least one G or T. This was necessary because the
sequencer utilizes two light channels that must be excited in each
cycle of sequencing. When we did not utilize both light channels
across each base of the index sequences, the sequencing runs
failed. For the preliminary analysis we utilized 2 index sequences
in the 5= primer and 6 index sequences at the 3= end of the se-
quence. This allowed us to sequence each of the four DNA samples
in triplicate to evaluate the effects of different cluster densities on
error rates and develop a sequence curation pipeline.

Error profile. We next sought to develop a strategy to reduce
the observed error rates for the two sequencing reads. For all re-
gions of the 16S rRNA gene, the error rates increased over the
length of the reads, with the second read having a higher error rate
than the first (Fig. 2); substitutions were the primary source of
error (99.4%), followed by ambiguous base calls (0.2%), deletions
(0.2%), and insertions (0.2%). We were unable to detect a repro-
ducible substitution bias between bases, and all bases were equally
likely to be inserted or deleted. To explore whether the quality
scores could be used as a reliable surrogate for sequence quality,
we categorized each quality score by whether its base call was the
expected base (i.e., a match), a substitution, an insertion, or an

TABLE 1 Summary of operating conditions for various MiSeq
sequencing runs and machine-reported quality metricsa

Run
[DNA]
(pM)

Cluster
density
(103/mm2) % PhiX

% of
bases
�Q30b

Reported
machine
error (%)

No. of 16S
rRNA pairs
(�106)

130401 10.0 1,313 3.8 63.7 1.31 12.6
130403 5.0 1,094 3.2 70.5 0.89 12.4
130417 3.0 839 6.2 74.6 0.92 10.5
130422 1.8 690 8.0 80.1 0.65 9.0
a The four runs were performed using RTA v. 1.17.28 and MCS v. 2.2.0. Data for runs
performed using previous versions of the software are provided in Tables S1 and S2 in
the supplemental material.
b Percentage of bases with a quality score of at least 30.
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ambiguous base (Fig. 2). As expected, errors were associated with
low-quality scores and rarely had a quality score above 21. Finally,
when we performed a regression of the sequencer-generated
Phred quality scores (Q) against the observed error rate (P), we
observed the expected log-linear relationship (i.e., Q � �10 log10

P) with slopes of �11.7 and �14.3 for the first and second read,
respectively. The single-read data indicated that without signifi-
cantly trimming the length of the reads, it was not possible to
obtain the quality of data possible with 454 sequencing; however,
the error rates could be improved using the quality scores and
building consensus sequences from the paired reads.

Denoising via consensus. Building upon the observation that
the quality scores provided meaningful information, we devel-
oped a denoising strategy that utilized that quality score informa-
tion. Furthermore, by sequencing the three regions we were able
to explore the value of building consensus sequences with various
lengths of overlap. The entire V4 region was covered by two reads,
and the V45 and V34 regions had 125 and 70 overlapping nucle-
otides, respectively. To assess the error rates of these three regions,
we removed any consensus sequences that contained an ambigu-
ous base call or that were considerably shorter than predicted. In
the rare cases where the alignment of the two reads suggested a
putative insertion or deletion, we required the quality score to be
greater than 25; if it was less than this threshold, then the base was
erased. To resolve differences in base calls in the overlapping re-
gion, we defined a parameter, �Q, which represented the differ-
ence in the quality scores of the two reads at that position in the
sequence. Based on the empirical definition of the quality scores,
we expected the fold reduction in the error rate of the base in
question (�P) to be proportional to 10(�Q/10). We varied the min-
imum �Q between 0 and 10, and if the observed �Q value fell
below the specified minimum, the read was culled from the data

set. When this approach was applied to the V4 region (Fig. 3), we
observed a significant reduction in the error rate as we increased
�Q. The error rate did not change by more than 0.01% for values
of �Q greater than 6, for a theoretical 4-fold reduction in the error
rate. For the V4 data set, the basic error rate (i.e., �Q � 0) was
proportional to the cluster density (range, 0.25 to 1.08%); how-
ever, when the value of �Q was set at 6, the error rate dropped to
0.05 to 0.06% (Table 2). For the V34 and V45 data sets, the initial
error rate again varied with cluster density. Applying the same �Q
to data from the V34 and V45 data sets reduced the error rates to
0.29 and 0.58%, respectively, when the lowest cluster density was
used (Table 2). It was surprising that the shorter V45 region actu-
ally had a larger error rate than the V34 region. One hypothesis is
that this was due to the number of sites within the V34 (43 forward
and 51 reverse) and V45 (81 forward and 29 reverse) regions that
lacked heterogeneity between the two imaging channels. Taken
together, these data demonstrate that for the V4 data, the fraction
of sequences retained and length of sequences (i.e., ca. 250 nt) was
comparable to our previous results using the PyroNoise algorithm
on 454 flowgrams trimmed to 450 flows (i.e., ca. 260 nt) (10).

Preclustering sequences. We previously showed that a pre-
clustering step could further reduce the sequencing error and
number of unique sequences (10). Briefly, sequences are sorted in
decreasing abundance and then are sequentially compared to each
of the rarer sequences. If a rare sequence is less than a specified
number of bases different from the more abundant sequence, the
rare sequence is removed from the data set and its abundance is
added to the more abundant sequence. We found that allowing a
1-nt difference per 100 nt of sequence was the most appropriate
threshold. For the V4 data, the error rate decreased to 0.01% for
each of the four cluster densities, and it was reduced to between
0.10 and 0.21% for the V34 data set and to between 0.36 and

FIG 2 Profile of sequencing errors in the first and second read (A and C) and the quality scores associated with different types of errors in the first and second
read (B and D) using data from run 130403.
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0.64% for the V45 data set (Table 2). Again, the error rates for the
V4 data were at least as good as what we have observed using these
approaches with 454 data (10).

OTU assignment. Our analysis focused on optimizing a se-
quence curation pipeline to minimize error rates. Another popu-
lar metric of sequence quality is the number of spurious OTUs
that were generated compared to the number of OTUs that would
have been generated using perfect sequences (7, 8). Application of
this approach is generally flawed, because the number of spurious
OTUs is a product of the complexity of the mock community and
the number of sequence reads being analyzed. Regardless, we per-
formed two OTU-based analyses, expecting 20 OTUs from each

region in the absence of any sequencing errors or chimeras. In the
first analysis, we rarefied the data to 5,000 sequences per sample
and assumed perfect removal of all chimeras. Using the V4 data
set, we observed between 22.8 and 23.5 OTUs (i.e., 2.8 to 3.5
spurious OTUs). In the second analysis, we used UCHIME to
identify chimeric sequences and rarefied the data to 5,000 se-
quences per sample. We observed between 37.2 and 43.4 OTUs
(i.e., 17.2 to 23.4 spurious OTUs) (Table 2). When we replicated
this analysis for the V34 and V45 data sets, we observed signifi-
cantly more OTUs (Table 2). In general, the number of spurious
OTUs was correlated with the error rate of the data set.

We next applied our sequence curation procedures to DNA
isolated from soil and feces collected from a mouse and a human.
In general, the relationships we saw with the mock community
data held for these natural communities. Interestingly, the three
regions did not provide consistent relationships between the sam-
ples. Comparing the mouse and human samples suggested that
the mouse had more OTUs than the human within the V4 region,
the human had more OTUs than the mouse in the V45 region, and
they had similar numbers of OTUs in the V34 region. These dif-
ferences could be due to previously described variation in rates of
evolution between the regions or differences in error rates (23). In
spite of these differences, it was clear that the numbers of OTUs
per community generally were consistent. These data indicate that
the method is robust across numerous environments and that
caution is necessary before comparing data collected from differ-
ent regions.

Scaling up. The advantage of the dual-index approach is that a
large number of samples can be sequenced using a number of
primers equal to only twice the square root of the number of
samples. To fully evaluate this approach, we resequenced the V4
region of 360 samples that were previously described by sequenc-
ing the distal end of the V35 region on the 454 GS-FLX Titanium
platform (18). In that study, we observed a clear separation be-
tween murine fecal samples obtained from 8 C57BL/6 mice at 0 to
9 (early) and 141 to 150 (late) days after weaning, and there was
significantly less variation between the late samples than the early
samples. In addition to the mouse fecal samples, we allocated 2
pairs of indices to resequence our mock community. We gener-
ated 4.3 million pairs of sequence reads from the 16S rRNA gene
with an average coverage of 9,913 pairs of reads per sample (95%
of the samples had more than 2,454 pairs of sequences) using a
new collection of 8-nt indices (see the supplemental material).
Although individual samples were expected to have various am-
plification efficiencies, analysis of the number of reads per index
did not suggest a systematic positive or negative amplification bias
that could be attributed to the indices. The combined error rate
for the two mock communities was 0.07% before preclustering
and 0.01% after (n � 14,094 sequences). When we used UCHIME
to remove chimeras and rarefied to 5,000 sequences, there was an
average of 30.4 OTUs (i.e., 10.4 spurious OTUs). Similar to our
previous results, ordination of the mouse fecal samples again
showed the separation between the early and late periods and
increased stabilization with age (Fig. 4) (Mantel test coefficient,
0.81; P � 0.001). These results clearly indicate that our approach
can be scaled to multiplex large numbers of samples.

Titrating the number of 16S rRNA sequence reads. With 384
samples there is the potential to obtain an average of more than
20,000 sequences per sample. For some studies, this may be an
excessive amount of sequence coverage. If the investigator does

FIG 3 Relationship between the error rate and the fraction of sequences kept
as a function of the �Q value for the V34, V4, and V45 regions using data from
run 130403.
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not have access to additional samples, one option would be to
replace this coverage with metagenomic shotgun libraries. As a
proof of concept, we pooled Nextera-based shotgun libraries con-
structed from the genomic DNAs of the mock community, hu-
man feces, and two cultured isolates from mouse feces. We then
repeated the scaled-up analysis using a target of 5% PhiX, 50% V4
amplicons, and 45% metagenomes with a cluster density of
718,000 clusters/mm2. The increased fraction of sequencing allo-
cated to the V4 amplicons allowed us to have an average library

coverage of 13,980 pairs of reads per sample (95% of the samples
had more than 3,437 pairs of sequences). The mock community
amplicons again gave a final error rate of 0.01%, and the V4 anal-
ysis was unchanged. The assemblies of the four shotgun samples
demonstrated that excess 16S rRNA gene sequencing coverage
could be replaced by sequencing several bacterial genomes or one
or two metagenomes (Table 3). Although the HiSeq platform is
considerably more efficient for sequencing metagenomes, this ap-
plication demonstrates that genome and metagenome sequencing
on the MiSeq platform can be used to complement 16S rRNA gene
sequencing.

Conclusions. The results of our analysis allowed us to evaluate
Illumina’s MiSeq (v. 2.0) platform as an alternative to the 454
platform for sequencing the 16S rRNA gene. First, we showed that
MiSeq-generated 16S rRNA gene sequence data can be curated to
be at least as good as the data we are able to obtain using the 454
platform (10). Second, the 10-fold increase in read depth provided
by Illumina’s MiSeq platform over 454’s GS-FLX Titanium plat-

TABLE 2 Summary of the error rates and number of observed OTUs for the sequencing runs described in Table 1

Region and run

Error rate (%) for:
% reads remaining
from basic
(�Q � 0)

Average no. of OTUsa

Basic �Q � 6 Precluster Mockb Mockc Soil Mouse Human

V34
130401 2.14 0.37 0.21 10.3 26.9 49.6 1,110.6 175.1 187.5
130403 1.30 0.26 0.12 27.6 31.1 47.8 1,095.8 158.2 164.1
130417 1.12 0.24 0.10 27.9 35.1 52.2 1,038.6 ND 142.6
130422 0.91 0.29 0.17 47.5 41.4 54.3 1,053.0 162.5 145.1

V4
130401 1.08 0.06 0.01 44.2 23.5 43.4 1,248.2 136.1 115.4
130403 0.67 0.05 0.01 60.1 23.5 40.9 1,261.8 133.9 117.8
130417 0.40 0.05 0.01 69.3 22.8 37.5 1,257.3 135.5 117.2
130422 0.28 0.05 0.01 78.4 23.2 37.2 1,256.2 132.8 117.3

V45
130401 4.60 0.87 0.64 13.5 191.9 271.7 1,462.8 198.0 312.9
130403 3.31 0.79 0.56 32.3 180.4 246.1 1,519.7 213.3 324.0
130417 2.38 0.66 0.43 36.5 110.8 158.3 ND 180.4 242.1
130422 1.67 0.58 0.36 56.4 98.0 131.6 1,403.3 186.3 227.2

a The average number of OTUs is based on rarefaction of each sample to 5,000 sequences per sample; cells labeled ND reflect samples that did not have at least one replicate with
more than 5,000 sequences.
b Number of OTUs in the mock community when all chimeras were removed; in the absence of chimeras and sequencing errors, there should be 20 OTUs for all three regions.
c Number of OTUs in the mock community when chimeras were removed using UCHIME.

FIG 4 Principal coordinate ordination of �YC values (28) relating the com-
munity structures of the fecal microbiota from 12 mice collected on days 0
through 9 (Early) and days 141 through 150 (Late) after weaning.

TABLE 3 Summary of assemblies using shotgun sequence data
generated in parallel to 16S rRNA gene sequences

Library

No. of
reads
(�106)

No. of
bases
(�106 bp)

No. of
contigs
(�500 bp
each)

N50a

(�103 bp)

Reads that
mapped
to contigs
(%)

Clostridium
clostridioforme
D4

1.44 360 317 37.88 97

C. clostridioforme
CIP110249

1.54 380 323 43.80 96

Mock community 2.40 600 31,946 1.46 66
Human feces 5.79 1,450 27,321 1.00 49
a The contig length where all contigs of that length or longer contain more than 50% of
the bases found across all contigs.
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form would allow one to either obtain 10-fold more sequences per
sample or to sequence 10-fold more samples. That the MiSeq re-
agents and instrumentation are considerably cheaper than the
454’s would allow even more depth per dollar. Finally, our expe-
riences with 454 and Illumina have shown that both have difficul-
ties maintaining reagent quality; however, the simplicity of MiSeq
library construction compared to the emulsion PCRs required by
454 make MiSeq a clear favorite. Thus, the MiSeq platform satis-
fies the desire for economically generating a large number of high-
quality sequence reads that can easily be distributed across a large
number of samples.

Determining the amount of DNA to load onto the flow cell to
achieve a desired cluster density, as well as the PhiX concentration,
is an empirical process that appears to be dependent on the se-
quencer software and fragment length. This underscores the im-
portance of resequencing mock communities to identify the
proper parameters that will minimize the error rate and maximize
the number of reads generated. We observed that the fraction of
sequences remaining after applying the �Q value was inversely
proportional to the cluster density, and that the error rate ob-
served after preclustering was independent of the cluster density
for the V4 data. To assess the trade-off between number of usable
reads and cluster density, we multiplied the number of 16S rRNA
gene sequences (Table 1) by the percentage of reads that passed the
threshold (Table 2). This demonstrated that the actual number of
sequences obtained when the cluster density was between 690 and
1,094 K clusters/mm2 yielded 7.0 to 7.5 million contigs. If this
sequencing depth were achieved when sequencing 384 samples,
one would expect an average of 18,000 to 20,000 reads per sample.
Subsequent experience sequencing samples from other projects
suggests that the low complexity of the mock community artifi-
cially reduces the number of reads that pass the criteria laid out in
the present analysis. Thus, this yield represents a low end to what
would be expected for sequencing runs with only samples from
natural communities.

Previous demonstrations of the Illumina-based platforms have
focused primarily on quantifying the beta-diversity between com-
munities using database-dependent methods (13–15). Although
beta-diversity is an important metric for comparing communities,
its use is limited to comparisons where there are clear differences
between communities, and it does little to inform one of the de-
tails of the differences between the communities. Considering the
deep coverage of individual samples, database-dependent meth-
ods are limited, because they will not have sufficient representa-
tion of many rare and novel populations that the extended cover-
age will likely detect. The OTU-based approach described here has
been facilitated by reducing the sequencing error rate from 1.08 to
0.01%, resulting in a reduction in the number of unique sequences
that need to be processed. As sequence lengths continue to in-
crease, it will become possible to reliably sequence longer regions
of the 16S rRNA gene fragment; however, based on this analysis, it
is critical that the fragments fully overlap. Although clearly an
idealized community, the sequencing and analysis of mock com-
munity DNA in parallel with the biological samples of interest has
allowed us to optimize our curation steps and choice of variable
region within the 16S rRNA gene by minimizing the overall error
rates. We encourage others to include mock community samples
as a standard control in all sequencing analyses.
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