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Herpesvirus genes are temporally expressed during permissive infections, but how their expression is regulated at late
times is poorly understood. Previous studies indicate that the human cytomegalovirus (CMV) gene, UL79, is required for
late gene expression. However, the mechanism remains to be fully elucidated, and UL79 homologues in other CMVs have
not been studied. Here, we characterized the role of the conserved murine CMV (MCMV) gene M79. We showed that M79
encoded a protein (pM79) which was expressed with early-late kinetics and localized to nuclear viral replication compart-
ments. M79 transcription was significantly decreased in the absence of viral DNA synthesis but markedly stimulated by
pM79. To investigate its role, we created the recombinant virus SMin79, in which pM79 expression was disrupted. While
marker-rescued virus grew efficiently in fibroblasts, SMin79 failed to produce infectious progeny but was rescued by pM79
expression in trans. During SMin79 infection, representative viral immediate-early and early gene products as well as viral
DNA accumulated sufficiently. Formation of viral replication compartments also appeared normal. Pulsed-field gel elec-
trophoresis analysis indicated that the overall structure of replicating viral DNA was indistinguishable between wild-type
and SMin79 infection. Viral tiled array and quantitative PCR analysis revealed that many late transcripts sensitive to a vi-
ral DNA synthesis inhibitor (phosphonoacetic acid) were markedly reduced by pM79 mutation. This study indicates that
cytomegaloviruses use a conserved mechanism to promote transcription at late stages of infection and that pM79 is a criti-
cal regulator for at least a subset of viral DNA synthesis-dependent transcripts.

Cytomegalovirus (CMV) is the prototypical member of the be-
taherpesvirus subfamily. Human CMV (HCMV) is a ubiqui-

tous human pathogen which causes asymptomatic infection in
healthy adults. However, in immunocompromised hosts, such as
neonates, transplant recipients, persons with advanced AIDS, and
cancer patients, HCMV is a common cause of severe and even
life-threatening disease (1–4). The severity of medical problems
associated with HCMV in these vulnerable populations underlies
the necessity for developing safer and more effective antiviral
treatments and vaccine strategies to control its infection. HCMV
infection is limited to human hosts as the members of the CMV
family are species specific. Murine CMV (MCMV) infection pro-
vides a tractable small-animal model to study CMV biology.
MCMV shares conservation with HCMV in regard to its colinear
genome, gene expression program, tissue tropism, and pathology
(5, 6). Over 40% of MCMV genes have sequence or functional
homologues in HCMV (7). This conservation provides us with
excellent opportunities to explore MCMV as a tool to dissect the
mechanistic basis of shared features of viral replication and patho-
genesis. Furthermore, revealing the function of homologous viral
genes in their respective hosts will allow antiviral therapeutics or
vaccine candidates targeting these conserved genes to be tested in
the mouse model.

Gene expression during herpesvirus lytic infection is highly
coordinated and sequentially ordered such that viral genes are
traditionally divided into three kinetic classes: immediate early
(IE), early, and late. IE genes are transcribed following viral DNA
translocation to the nucleus and require only incoming virion-
associated proteins and cellular factors for their expression. Prod-
ucts of IE genes transactivate early genes and remodel the host cell
to be permissive for virus replication. Early gene transcriptions are
initiated prior to viral DNA synthesis, but some persist at late

times of infection, even after the onset of DNA synthesis. Early
gene products are required for both viral DNA synthesis and for-
mation of replication compartments, which are virus-induced
subnuclear structures where viral DNA synthesis occurs. Tran-
scription of late viral genes occurs after the onset of viral DNA
synthesis and peaks at late times of infection. Many late genes
encode structural proteins required for virion assembly, matura-
tion, and release. Largely consistent with this temporal regulation,
transcription of many IE and early genes is resistant to viral DNA
synthesis inhibitors, such as phosphonoacetic acid (PAA). Late
transcripts, defined by their abundant accumulation at late times
of infection and dependency on viral DNA synthesis, are largely
derived from late genes. In addition, some genes have both early
and late properties, as their expression initiates prior to DNA syn-
thesis, but the transcripts continue to accumulate to high levels at
late times in a DNA synthesis-dependent manner.

While IE and early transcription has been extensively studied
in herpesviruses, little is known about how viral late transcription
is regulated. Viral DNA synthesis is required in cis for viral late
promoter activity, but the precise mechanism remains elusive (8–
10). Herpes simplex virus (HSV), the prototypical alphaherpesvi-
rus, is perhaps the best studied example. Multiple HSV proteins
(ICP0, ICP4, ICP22, and ICP27) have been shown to regulate late
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expression (11–16). For some late genes, the TATA box as well as
DNA sequences downstream of the transcription start site are also
main determinants of transcription (17–19). However, a majority
of these HSV genes lack homologues in betaherpesviruses (20),
and evidence suggests that the requirement for these sequence
elements is not universal (17, 19, 21–23).

Understanding how CMV regulates late gene expression is im-
portant to understanding its biology and identifying novel targets
for antiviral therapeutics. The HCMV UL79 family is a viral gene
family conserved between beta- and gammaherpesviruses (24).
We along with others have recently shown that UL79 is required
for HCMV late gene expression (25, 26). However, the MCMV
homologue of UL79, M79, remains uncharacterized. Defining the
role of M79 will set the stage for using the MCMV model to elu-
cidate the mechanism of action for this CMV gene family and to
explore novel antiviral strategies targeting this viral factor.

In this study, we characterized M79 during MCMV infection.
We show that pM79, the protein product of M79, acts down-
stream of viral DNA synthesis to facilitate viral late transcription.
Importantly, viral oligonucleotide tiled array analysis reveals at
least two subsets of late transcripts. Both require viral DNA syn-
thesis for their expression, but they have different degrees of de-
pendence on pM79 for expression. As a result, abrogation of
pM79 results in a complete failure in virus growth. These results,
along with studies of HCMV UL79 and murine gammaherpesvi-
rus 68 (MHV-68) open reading frame 18 (ORF18) (24, 26), sug-
gest that divergent herpesviruses use similar mechanisms to pro-
mote late gene expression. Furthermore, our study provides
evidence to support the model that CMV late transcription is
tightly regulated beyond its dependency on viral DNA synthesis
and that pM79 is a key regulator for at least a subset of MCMV late
transcription, highlighting the complex regulatory mechanisms
governing CMV late transcription.

MATERIALS AND METHODS
Plasmids, antibodies, and chemicals. pYD-C245 and pYD-C571 were
retroviral expression vectors derived from pRetro-EBNA (27). pYD-C245
expressed the red fluorescent protein (DsRed) (28) from an internal ribo-
some entry site (IRES). pYD-C571 was derived from pYD-C245. It carried
the coding sequence of M79 with one copy of a FLAG tag (1�FLAG) at the
C terminus expressed together with DsRed as a bicistronic transcript.
pYD-C191 carried a kanamycin selection cassette bracketed by two Flp
recognition target (FRT) sites. pYD-C630 was derived from pGalK (29)
and carried an FRT-bracketed GalK/kanamycin dual selection cassette
(30). pYD-C746 was derived from pYD-C630, where a 3�FLAG sequence
preceded the FRT-bracketed selection cassette.

The primary antibodies used in this study included the following:
anti-actin (clone AC15; Abcam); anti-FLAG polyclonal rabbit antibody
(F7425) and monoclonal mouse antibody (F1804) (Sigma); anti-MCMV
IE1 (CROMA101) and E1 (CROMA103) (generous gifts from Stipan Jon-
jic, University of Rijeka, Croatia); and anti-MCMV M44 (3B9.22A) and
gB (2E8.21A) (generous gifts from Anthony Scalzo, University of Western
Australia). The secondary antibody used for immunoblotting was horse-
radish peroxidase (HRP)-conjugated goat anti-mouse IgG (Jackson Lab-
oratory). The secondary antibodies used for immunofluorescence were
Alexa Fluor 594-conjugated goat anti-mouse IgG and Alexa Fluor 488-
conjugated goat anti-rabbit IgG (Invitrogen-Molecular Probes).

Other chemicals used in this study include phosphonoacetic acid
(PAA) (284270-10G; Sigma-Aldrich), L-(�)-arabinose (A3256-25G;
Sigma-Aldrich), and TO-PRO3 iodide (T3605; Invitrogen).

Cells and viruses. Mouse embryonic fibroblast 10.1 cells (MEF10.1)
(31) were propagated in Dulbecco modified Eagle medium supplemented

with 10% fetal bovine serum (FBS), nonessential amino acids, and 1 mM
sodium pyruvate. Cells were maintained at 37°C and 5% CO2 in a humid-
ified atmosphere. To create cell lines stably expressing FLAG-tagged M79
(10.1-M79flag), MEF10.1 cells were transduced three times with retrovi-
rus reconstituted from pYD-C571 and allowed to recover for 48 h. Clonal
cells expressing DsRed were isolated by limiting dilution and expanded to
produce stocks of cell lines. Individual clonal cell lines were tested by
transfecting them with the recombinant MCMV bacterial artificial chro-
mosome (BAC) clone pSMin79 (see below) and determining the titer of
reconstituted virus at 5 days posttransfection. The cell line that yielded the
highest titer was used in this study. Recombinant MCMV viruses SMgfp,
SMrev79, and SM79flag (see below) were reconstituted from electropora-
tion of corresponding BAC clones into MEF10.1 cells. Recombinant virus
SMin79 (see below) was reconstituted from electroporation of the BAC
clone pSMin79 into 10.1-M79flag cells.

BAC recombineering. Recombinant MCMV BAC clones used in this
study were derived from the self-excisable parental MCMV BAC clone,
pSM3fr, which carried a full-length genome of the MCMV Smith strain
(32). All recombinant MCMV BAC clones in this study were created using
the linear recombination-based BAC recombineering protocol that we
have previously established (30). Recombination was carried out in Esch-
erichia coli strain SW105 that harbored an MCMV BAC clone and ex-
pressed an arabinose-inducible flippase gene for transient expression of
Flp recombinase (29). We inserted the green fluorescent protein (GFP)
expression cassette at the C terminus of the IE2 loci within pSM3fr to
produce the BAC clone pSMgfp. This clone was used to produce wild-type
virus SMgfp as IE2 has been shown to be dispensable for MCMV infection
in vivo and in vitro (33–35). We independently confirmed that the inser-
tion of the GFP cassette at this locus had no deleterious consequences on
virus growth in our infection system (data not shown). The BAC clone
pSMin79 carried a frameshift mutation in the viral gene M79 (Fig. 1A). To
construct pSMin79, the FRT-bracketed GalK/kanamycin cassette was
PCR amplified from pYD-C630 and recombined into pSMgfp 403 nucle-
otides (nt) downstream of the start codon of the M79 coding sequence.
Transformants were selected by kanamycin resistance. The selection cas-
sette was removed by arabinose induction of Flp recombinase and subse-
quent Flp-FRT recombination (30), leaving an 88-nt insert within the
M79 coding sequence and creating a frameshift mutation. The BAC clone
pSM79flag contained a C-terminally 3�FLAG-tagged M79 (Fig. 1A). To
construct pSM79flag, a DNA fragment that contained the FRT-bracketed
GalK/kanamycin selection cassette preceded by a 3�FLAG sequence was
PCR amplified from pYD-C746 and recombined into the C terminus of
the M79 coding sequence. The selection cassette was subsequently re-
moved by Flp-FRT recombination, resulting in the 3�FLAG fused in
frame with the M79 coding sequence. The BAC clone pSMrev79 was de-
rived from pSMin79 and contained the repaired M79 coding sequence. To
create pSMrev79, a patched PCR fragment containing the wild-type M79
coding sequence followed by a FRT-bracketed kanamycin selection cas-
sette was recombined into pSMin79 to replace the M79 frameshift muta-
tion. The selection cassette was subsequently removed by Flp-FRT recom-
bination, leaving an 81-bp sequence insert after the stop codon of the M79
coding sequence, which had no deleterious effect on virus replication (Fig.
1D). All the final BAC clones were validated by restriction digestion, PCR
analysis, and direct sequencing as previously described (36).

To reconstitute recombinant viruses that did not require complemen-
tation to grow, confluent MEF10.1 cells were electroporated with 5 �g of
MCMV BAC DNA and plated on a 10-cm plate. Culture medium was
changed at 24 h posttransfection, and virus was harvested by collecting
cell-free culture medium after the entire monolayer of cells was lysed.
Alternatively, virus stocks were produced by collecting cell-free superna-
tant from infected culture at a multiplicity of infection (MOI) of 0.001.
Virus titers were determined in duplicate by a 50% tissue culture infec-
tious dose (TCID50) assay in MEF10.1 cells. To reconstitute, propagate,
and determine titers of SMin79 virus, 10.1-M79flag cells were used as
described above. In experiments where comparative analysis was per-
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formed between SMin79 and other recombinant viruses, titers of all vi-
ruses were determined in 10.1-M79flag cells.

Viral growth analysis. MEF10.1 cells were seeded in 12-well plates
overnight to produce a confluent monolayer. Cells were inoculated with
recombinant MCMV viruses for 1 h at an MOI of 2 for single-step or of
0.01 for multistep growth analysis. The inoculum was removed, the in-
fected monolayer was rinsed with phosphate-buffered saline (PBS), and
fresh medium was replenished. At various times postinfection, cell-free
virus was collected in duplicate by harvesting medium from infected cul-
tures. Cell-associated virus was collected by rinsing infected cells once
with PBS and scraping cells into fresh medium. Cells were lysed by one
freeze-thaw cycle followed by sonication. Lysates were cleared of cell de-
bris by low-speed centrifugation, and supernatants were saved as cell-
associated virus. Virus titers were determined by TCID50 assay.

DNA and RNA analysis. Intracellular DNA was measured by quanti-
tative PCR (qPCR) as previously described (36). Briefly, MCMV-infected
cells were collected in a lysis buffer (200 mM NaCl, 20 mM Tris [pH 8.0],

20 mM EDTA, 0.2 mg/ml proteinase K, 0.4% sodium dodecyl sulfate
[SDS]) and lysed by incubation at 55°C overnight. DNA was extracted
with phenol-chloroform and treated with RNase A (100 �g/ml) at 37°C
for 1 h. Samples were extracted again with phenol-chloroform, precipi-
tated with ethanol, and resuspended in nuclease-free water (Ambion).
Viral DNA was quantified by qPCR using SYBR Advantage qPCR Premix
(Clontech) and a primer pair specific for the MCMV IE1 or M55 gene
(Table 1). Cellular DNA was quantified using a primer pair specific for the
mouse actin gene (Table 1) (37). A standard curve was generated using
serially diluted pSMgfp BAC DNA or DNA from infected cells and used to
calculate relative amounts of viral or cellular DNA in a sample. The
amount of viral DNA was normalized by dividing the number of IE1 or
M55 equivalents by the number of actin equivalents. The normalized
amount of viral DNA in SMgfp-infected cells at 2 h postinfection (hpi) was
set at 1.

Intracellular RNA was determined by reverse transcription-coupled
qPCR (RT-qPCR) as previously described (36). Total RNA was extracted

FIG 1 Gene M79 is essential for MCMV growth in fibroblasts. (A) Diagram depicting recombinant MCMV BAC clones used in this study. The BAC clone
pSM79flag carried a 3�FLAG tag that was fused in frame at the C terminus of the M79 coding sequence (indicated by the shaded region). The BAC clone pSMin79
carried an 88-bp insert (indicated by the black region) at 403 nt downstream of the start codon of the M79 coding sequence, resulting in a frameshift mutation.
See Materials and Methods for details. (B) Growth of SMin79 virus on MEF10.1 cells expressing FLAG-tagged M79 (10.1-M79flag). The left panel shows
virus-driven GFP expression in normal MEF10.1 cells or 10.1-M79flag cells at 7 days posttransfection with pSMin79. The right panel shows titers of wild-type
virus (SMgfp) and M79 mutant virus (SMin79) produced at 72 hpi in 10.1-M79flag cells that were infected at an MOI of 2. Shown is a representative result from
at least two reproducible, independent experiments. (C and D) Growth kinetic analysis of M79 recombinant viruses used in this study. Normal MEF10.1 cells
were infected at an MOI of 2, cell-free and cell-associated viruses were collected at indicated times, and viral titers were determined by 50% tissue culture
infectious dose (TCID50) assay in 10.1-M79flag cells. The detection limit of the TCID50 assay is indicated by a dashed line. Shown is a representative result from
two reproducible, independent experiments.
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by TRIzol reagent (Invitrogen) and treated with Turbo DNA-free reagents
(Ambion) to remove contaminating DNA. First-strand cDNA synthesis
was performed with a High Capacity cDNA Reverse Transcription Kit
using random hexamer primers with total RNA (Applied Biosystems).
Each sample also included a control without the addition of reverse trans-
criptase to determine the level of residual contaminating DNA. cDNA was
quantified using SYBR Advantage qPCR Premix (Clontech) and primer
pairs specific for viral genes or the mouse actin gene (Table 1). A standard
curve was generated for each gene using serially diluted cDNA from in-
fected cells and used to calculate the relative amount of a transcript in each
sample. The amounts of viral transcript were normalized by dividing the
number of viral transcript equivalents by the number of actin equivalents.
The normalized amount of transcript during SMgfp infection at 10 hpi in
the absence of PAA was set to 1.

Tiled array design, experimental procedure, and analysis. The array
was designed using Agilent’s eArray package. The array consisted of
103,347 60-mer oligonucleotide probes for each strand of the MCMV
genome, and each probe advanced 4 to 5 nt. In addition, the array also
contained probes complementary to Agilent’s RNA Spike-Ins and 400
negative-control probes against Arabidopsis with no homology to mouse
or MCMV genomes.

To prepare viral RNA, total RNA was harvested from infected
MEF10.1 cells at 20 hpi using TRIzol (Invitrogen), and mRNA was puri-
fied using RNeasy columns (Qiagen) according to the manufacturer’s
instructions. cDNA probes were synthesized, fluorescently labeled by ran-
dom hexamer-primed polymerization using a SuperScript Plus Indirect
cDNA Labeling module (Invitrogen), and hybridized to the array chip at
Genome Technology Access Center of Washington University School of
Medicine (GTAC). Agilent’s RNA Spike-In Kit was used to monitor the
linearity, sensitivity, and accuracy of the array.

The total signal intensity for each probe was log2 transformed, and the
mock signal was subtracted from the experimental signal after values were
normalized to each other using the spike-in RNA signals. To enable com-
parisons among samples, raw data from each MCMV-infected sample
were normalized using spike-in controls. This normalization was further
refined and validated using qRT-PCR data for several viral probes. Nor-
malized intensities of experimental probes were mapped back to the
MCMV genome, and mean fluorescence of each nucleotide was calculated
from all overlapping probes. Changes in fluorescence intensity greater
than 3-fold between compared samples were used for data interpretation.

MCMV open reading frames (ORFs) were annotated based on the studies
by Rawlinson and coworkers (7) and by Cheng and coworkers (38) and
updated with details from additional publications whenever possible.
Data were converted to gff3 file format and visualized using gBrowse (39).

PFGE and Southern blot analysis. Pulsed-field gel electrophoresis
(PFGE) was performed on a Bio-Rad CHEF Mapper XA pulsed-field elec-
trophoresis system. To prepare DNA from infected cells, MEF10.1 cells
were seeded onto a 60-mm dish at a density of 1.4 � 106 cells per dish and
infected at an MOI of 2. At 36 hpi, cells were scraped off the dish, collected
by centrifugation at 200 � g for 5 min, and resuspended in 180 �l of 55°C
1% low-melting-point agarose (NuSieve GTG Agarose, Lonza) in PBS.
Ninety microliters of cell suspension was cast into a disposable casting
mold (Bio-Rad) and solidified at 4°C for 15 min. To prepare DNA from
cell-free virions, liquid viral stock equivalent to 106 PFU was cast in one
low-melting-point agarose block. Agarose blocks were transferred into
lysis buffer (20 mM Tris-Cl, pH 8.0, 200 mM NaCl, 400 mM EDTA, 1%
SDS, 1 mg/ml proteinase K) to lyse imbedded samples by incubation at
37°C overnight. Blocks were then rinsed five times with TE buffer (10 mM
Tris-HCl, pH 8.0, 0.1 mM EDTA) at 50°C for 15 min each and stored in
TE buffer at 4°C.

Restriction enzyme digestions were carried out by incubating one-
half of a block (�45 �l) in 200 �l of digestion buffer containing 50
units of PacI at 4°C overnight and then at 37°C for 6 h. Digested blocks
were loaded into wells of a 1% megabase agarose gel (Bio-Rad Pulse
Field Certified Agarose) in 0.5� TBE buffer (0.045 M Tris, pH 8.0,
0.045 M boric acid, 0.001 M EDTA, pH 8.0) and sealed with 1% low-
melting-point agarose in 0.5� TBE buffer. PFGE was performed at 6
V/cm at 14°C for 16 h, with a linear pulse increase from 0.26 to 20.01 s
over the course of the run.

Resolved viral fragments were analyzed by Southern blotting as previ-
ously described (40). Briefly, the gel was transferred to a Nytran SuPer-
Charge membrane as described in the Turboblotter transfer system pro-
tocol (VWR), and the membrane was air dried and cross-linked by UV at
125 mJ. The 32P-labeled probe was generated by random hexamer prim-
ing of pSMgfp BAC DNA using a Prime-It II Labeling Kit (Stratagene),
purified with ProbeQuant G-50 microcolumns (Amersham), and dena-
tured in 10 mM EDTA at 90°C for 10 min before use. The membrane was
prehybridized with 10 ml of ULTRAhyb solution (Ambion) at 42°C for 1
h and hybridized with 107 cpm of denatured probes at 42°C for 3 h. The
membrane was washed once with buffer I (2� SSC and 0.1% SDS [1�
SSC is 0.15 M NaCl plus 0.015 M sodium citrate]) for 10 min, followed by
two washes with buffer II (0.1� SSC and 0.1% SDS) for 15 min before
exposure on a Kodak film.

Protein analysis. Protein accumulation was analyzed by immuno-
blotting. Cells were washed, and lysates were collected in sodium dodecyl
sulfate (SDS)-containing sample buffer. Proteins were resolved by SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a
polyvinylidene difluoride (PVDF) membrane. Proteins of interest were
detected by hybridizing the membrane with specific primary antibodies
followed by horseradish peroxidase (HRP)-coupled secondary antibodies
and visualized by using SuperSignal West Pico enhanced chemilumines-
cent (ECL) substrate (Thermo Scientific).

Intracellular localization of proteins of interest was analyzed by im-
munofluorescence assay. Cells were seeded onto coverslips at 24 h prior to
infection. At various times, cells were washed with PBS, fixed and perme-
abilized with methanol (�20°C) for 10 min, and blocked with 5% FBS in
PBS at room temperature for 1 h. Cells were incubated with primary
antibodies for 30 min at room temperature and subsequently labeled with
secondary antibodies coupled to Alexa Fluor 488 or Alexa Fluor 594 (In-
vitrogen-Molecular Probes). Cells were counterstained with TO-PRO3
and mounted on slides with Prolong Gold antifade reagent (Invitrogen-
Molecular Probes). Confocal microscopic images were captured by a Zeiss
LSM510 Meta confocal laser scanning microscope.

Microarray data accession number. The data have been deposited in
the Gene expression Omnibus (GEO) database under series entry GSE47586.

TABLE 1 Primers used in quantitative PCR analysis

Primer name Primer sequence

MCMV IE1 forward 5=-CAGGGTGGATCATGAAGCCT-3=
MCMV IE1 reverse 5=-AGCGCATCGAAAGACAACG-3=
MCMV M25 forward 5=-AAGACATGTCACGCGACGGA-3=
MCMV M25 reverse 5=-CTATTGCCCATCATCGCCCG-3=
MCMV gB (M55) forward 5=-GCGATGTCCGAGTGTGTCAAG-3=
MCMV gB (M55) reverse 5=-CGACCAGCGGTCTCGAATAAC-3=
MCMV M74 forward 5=-AGGAGGCTGTGACTTTGAAA-3=
MCMV M74 reverse 5=-CTCATCAGCCGTTACTCGAG-3=
MCMV M79 forward 5=-CTACCTGATCGCCTGGAAAAAG-3=
MCMV M79 reverse 5=-TAGTCCTGGATCAGGAAGGAAAAG-3=
MCMV M112/113 (E1)

forward
5=-GAATCCGAGGAGGAAGACGAT-3=

MCMV M112/113 (E1)
reverse

5=-GGTGAACGTTTGCTCGATCTC-3=

MCMV M116 forward 5=-TCCTTGGTGGTGATGGCGGT-3=
MCMV M116 reverse 5=-GCATCCCGTACCTGACCACA-3=
MCMV M121 forward 5=-CCCGTTCGCTTCTGAAACTG-3=
MCMV M121 reverse 5=-GCTTCTCGAGGCAGCAGCAA-3=
Mouse actin forward 5=-GCTGTATTCCCCTCCATCGTG-3=
Mouse actin reverse 5=-CACGGTTGGCCTTAGGGTTCA-3=
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RESULTS
M79 is essential for MCMV replication. The homolog of M79 in
HCMV, UL79, is essential for virus replication (25, 26), but the
role of M79 has not been characterized. To investigate this, we
created a mutant BAC clone of the MCMV Smith strain, pSMin79,
by BAC recombineering. In this mutant clone, an 88-nt insertion
was introduced at 403 nt downstream of the start codon of the
M79 coding sequence, resulting in a frameshift mutation (Fig.
1A). We anticipated that this site of insertion made it unlikely to
interfere with expression of neighboring genes, particularly M80,
an essential gene that overlaps with M79 at its N terminus (41–43).

To reconstitute recombinant virus, both pSMin79 and its wild-
type parental clone, pSMgfp, were electroporated into 10.1 mouse
embryonic fibroblasts (MEF10.1). Cells transfected with pSMgfp
readily initiated virus production and spread. By 5 days posttrans-
fection, the monolayer of transfected cells demonstrated complete
cytopathic effect (CPE) and full virus spread, indicated by virus-
driven GFP. However, even though pSMin79 transfection was ef-
ficient, evidenced by the presence of individual GFP-positive cells
upon initial inspection at day 2, it repeatedly failed to produce any
CPE or GFP spread even at 2 weeks posttransfection (Fig. 1B).
Transfection of multiple independently isolated pSMin79 clones
yielded the same result, suggesting that M79 is essential for
MCMV replication.

To provide a means to propagate BAC-derived M79 mutant
virus, we created multiple clonal MEF10.1 cell lines (10.1-
M79flag) that stably expressed C-terminally FLAG-tagged M79 by
retroviral transduction. Transfection of pSMin79 into 10.1-
M79flag cells supported efficient virus reconstitution, producing
complete CPE and full spread of virus-driven GFP expression on
the monolayer (Fig. 1B). Importantly, transfection of pSMin79 in
10.1-M79flag cells produced virus with titers similar to the titer of
reconstituted wild-type virus, SMgfp (Fig. 1B).

Finally, to provide definitive evidence for the essential role of
M79 in MCMV infection, we performed growth curve analysis of
SMin79 in MEF10.1 cells. For this experiment, we also created
SMrev79, a marker-rescued virus of SMin79. The SMin79 virus
failed to produce cell-free or cell-associated progeny virus in both
multistep (data not shown) and single-step growth analyses (Fig.
1C). On the other hand, SMrev79 replicated indistinguishably
from wild-type virus (Fig. 1D). Together, our results indicate that
the defect of SMin79 is the direct result of M79 ablation and that
M79 is essential for MCMV replication at steps prior to virus
release.

Expression of M79 gene products is markedly enhanced by
viral DNA synthesis and protein pM79. To better understand the
function of the M79 gene, we first characterized its potential pro-
tein product (pM79). M79 is predicted to encode a protein of 258
amino acids (aa) with a molecular mass of 29 kDa. As no specific
antibody to the M79 protein was available, we created a recombi-
nant virus, SM79flag, in which the M79 coding sequence was
tagged with 3�FLAG at the C terminus (Fig. 1A). SM79flag was
reconstituted efficiently from BAC transfection and grew indistin-
guishably from wild-type virus (Fig. 1D), indicating that the
3�FLAG tag did not interfere with M79 function. To determine
expression of pM79 during infection, we infected MEF10.1 cells
with SM79flag and analyzed the accumulation of FLAG-tagged
pM79 over the course of a single viral replication cycle by immu-
noblotting (Fig. 2A). FLAG-tagged pM79 migrated at an apparent

molecular mass of 31 kDa, consistent with the predicted size, and
was detected at 24 to 36 h postinfection (hpi) (Fig. 2A). We then
profiled M79 transcription by reverse transcription-coupled
quantitative PCR analysis (RT-qPCR) to more precisely charac-
terize M79 expression (Fig. 2B). When viral DNA synthesis was
inhibited by PAA, low levels of M79 transcription persisted and
increased modestly from 10 hpi to 30 hpi, suggesting that a small
amount of M79 transcript was produced independent of viral
DNA synthesis. Importantly, however, the majority of M79 tran-
scription was inhibited by PAA, and in the absence of PAA, M79
transcript levels accumulated to high abundance at late times
postinfection (20 to 30 hpi). Together, our results indicate that
low levels of M79 expression occur independent of viral DNA
synthesis but that the majority of its expression requires viral DNA
synthesis, similar to the previously described viral gene expression
pattern of early-late kinetics (10).

It was interesting that during SMin79 infection, M79 transcript
levels were drastically reduced relative to the levels of SMgfp virus
infection (Fig. 2B). As the small insertion mutation in SMin79 was
designed to abolish only the M79 protein but not its transcript, we
interpreted this to suggest that pM79 enhances its own transcrip-
tion, particularly at late times of infection, correlating with the

FIG 2 Expression of M79 gene products is markedly enhanced by viral DNA
synthesis and protein pM79. (A) Accumulation of the M79 protein product
during MCMV infection. MEF10.1 cells were infected with SM79flag virus at
an MOI of 2, and total cell lysates were collected at indicated times and ana-
lyzed by immunoblotting. The M79 protein was detected with anti-FLAG an-
tibody. Actin was used as a loading control, and viral proteins IE1, E1, and gB
were used as representative immediate-early, early, and late proteins, respec-
tively. Shown is a representative result from three reproducible, independent
experiments. (B) Accumulation of the M79 transcript during MCMV infec-
tion. MEF10.1 cells were infected with SMgfp in the presence or absence of viral
DNA synthesis inhibitor phosphonoacetic acid (PAA) (200 �g/ml) or with
SMin79 at an MOI of 2. Total RNA was isolated at the indicated times, and the
amount of M79 transcript was measured by reverse transcription-coupled
quantitative PCR (RT-qPCR) analysis with the primers listed in Table 1. The
values were normalized to those of actin, and the normalized amount of M79
transcript during SMgfp infection at 10 hpi in the absence of PAA was set to 1.
Shown is a representative result from three reproducible, independent exper-
iments.
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previous report of its homolog UL79 during HCMV infection
(26).

M79 protein localizes to viral nuclear replication compart-
ments. We next examined the intracellular localization of pM79
during infection of SM79flag using a rabbit anti-FLAG antibody.
At 24 hpi, FLAG staining was found exclusively in the nucleus,
closely colocalized with the viral polymerase processivity factor
pM44 in the nuclei of infected cells (Fig. 3A). As pM44 is a widely
used marker of viral replication compartments, this result indi-
cates that the nuclear pM79 localizes within replication compart-
ments. The rabbit anti-FLAG antibody also produced a diffuse,
weak cytoplasmic staining, which was likely nonspecific as it was
also present in SMgfp-infected control cells (Fig. 3A). To test this,
a separate set of infected cells was stained with a mouse anti-FLAG
antibody even though this strategy precluded us from costaining
cells with the mouse anti-pM44 antibody to mark replication
compartments (Fig. 3B). Nonetheless, in these cells there was only
specific staining in the nuclei resembling replication compart-
ments, and there was no cytoplasmic background staining ob-
served. Collectively, we conclude that pM79 is a nuclear protein
that localizes to replication compartments during MCMV infec-
tion.

M79 is not required for viral DNA synthesis or development
of nuclear replication compartments. As pM79 localized to viral
replication compartments during infection, we next determined if
this protein was involved in viral DNA replication processes, par-
ticularly the ability of the virus to synthesize its genome and form
nuclear replication compartments. To test if pM79 was required
for viral DNA synthesis, we first examined the kinetics of viral
DNA accumulation during SMin79 infection by quantitative PCR
(qPCR) analysis. Viral DNA accumulation over the course of
SMin79 infection was comparable to that in SMgfp infection, in-
dicating that pM79 is not required for the virus to synthesize its
DNA (Fig. 4A).

To probe if its overall structure was altered in the absence of
pM79, viral DNA from infected cells was analyzed by pulsed-field
gel electrophoresis (PFGE) (Fig. 4B). SMgfp-infected cells pro-
duced both concatemeric replicating viral DNA, which was re-
tained in the well, and cleaved 232-kb monomeric viral genome,
which migrated into the gel (Fig. 4B, lane 2). In addition, a minor
population of viral DNA with an apparent molecular size greater
than 232 kb also migrated into the gel, likely representing poly-
meric DNA intermediates. In contrast, SMin79-infected cells pro-
duced only concatemeric viral DNA and polymeric DNA interme-
diates without any monomeric viral genomes (Fig. 4B, lane 3).
This suggests either a failure of the mutant virus to cleave replicat-
ing viral DNA into mature viral genomes or altered viral DNA
structures that prevent monomeric viral genomes from migrating
into the gel. To differentiate these possibilities, intracellular viral
DNA was digested with PacI, a restriction enzyme that cuts the
MCMV genome four times. As expected, PacI cut the 232-kb
monomeric virion genome (Fig. 4B, lane 7) into linear fragments
of 92.8 kb, 90.3 kb (which comigrated together), 43.0 kb, 1.3 kb,
and 4.2 kb (the last two run off the gel) (lane 8). Furthermore,
PacI-digested intracellular DNA from SMgfp-infected cells pro-
duced an additional 135.8-kb linear fragment that resulted from
joint ends within concatemeric viral DNA (Fig. 4B, lane 5). PacI
digestion of SMin79-infected cells released the same fragments of
90.3 kb and 135.8 kb from concatemeric DNA but did not produce
the monomer-derived fragments (lane 6). Therefore, the overall
structure of replicating viral DNA produced by pM79-deficient
virus was not appreciably different from that of wild-type virus.
Together, our data indicate that loss of M79 does not have a del-
eterious effect on viral genomic amplification.

We also tested if pM79 was involved in the development of
replication compartments, virus-induced nuclear structures crit-
ical to successful viral DNA replication (44). We infected cells with
wild-type or M79-deficient virus and monitored the formation

FIG 3 pM79 localizes to replication compartments during infection. MEF10.1 cells were mock infected or infected with SMgfp or SM79flag at an MOI of 2. At
24 hpi, cells were fixed with methanol (which quenches GFP fluorescence) and stained with either rabbit polyclonal (A) or mouse monoclonal (B) anti-FLAG
antibody for detection of the tagged M79 protein (green). In the experiment shown in panel A, cells were costained with antibody to pM44 to mark replication
compartments (red). Images in the last row of panel A are magnified views of an infected nucleus where the M79 protein (pM79) localized. Cells were
counterstained with TO-PRO3 to visualize the nuclei (blue). Scale bar, 20 �m. Shown is a representative result from four reproducible, independent experiments.
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and maturation of replication compartments marked by pM44
staining. pM44 staining became evident at 12 hpi indicating the
formation of multiple small nuclear foci (i.e., prereplicative
compartments), and these foci coalesced into larger and fewer
mature replication compartments at 24 hpi (Fig. 5). Importantly,
no appreciable difference was observed in this temporal progres-

sion of replication compartments between infections of SMgfp
and SMin79 virus (Fig. 5). Therefore, pM79 does not appear to
play a role in the development of replication compartments.

These data taken together suggest that the defect seen in
SMin79 infection occurs downstream of viral DNA synthesis.
Moreover, the failure of mutant virus to process replicating viral
DNA into monomeric genomes suggests that the defect occurs at
or prior to genome cleavage and packaging, such as the step of late
gene expression or capsid assembly.

M79-deficient virus is defective in the efficient accumulation
of representative late viral gene products. To continue to define
the stage of the viral replication cycle where pM79 acts, we ana-
lyzed the accumulation of representative viral proteins from each
kinetic class: immediate-early protein IE1, early protein E1
(M112/113), and late protein gB (M55). M79-deficient virus dem-
onstrated two defects in viral protein accumulation (Fig. 6A). One
was a modest delay in IE1 and E1 protein accumulation, whereas
the other was the complete loss of gB. As this modest delay in IE1
and E1 had no deleterious consequence on viral DNA synthesis
(Fig. 4), it was unlikely responsible for defects in events beyond
viral DNA synthesis, such as late protein accumulation and ulti-
mately virus growth. The delay in IE1 and E1 expression might be
due to the characteristics of the mutant viral stocks, such as tegu-
mentation or virion composition, which could be slightly differ-
ent from wild-type stocks because of the efficiency of complemen-
tation. To rule out any effect of IE1 and E1 expression, we infected
cells with SMin79 at an MOI of 5 and SMgfp at an MOI of 1 to
compensate for IE1 and E1 expression levels. Despite elevated IE1
and E1 accumulation in SMin79 infection under this condition,
gB remained absent even after 48 hpi (Fig. 6B). We interpreted this
result to indicate that the major defect of SMin79 was the inability
to express viral gene products at late times of infection.

To test if this defect was at the transcriptional level, we analyzed
the accumulation of E1 and M55 transcripts during wild-type and
M79 mutant virus infection. E1 transcript accumulated at compa-
rable levels during SMin79 and SMgfp infection, particularly at
early times (10 hpi) (Fig. 6C). In contrast, accumulation of M55
transcript in SMin79-infected cells was effectively reduced to lev-
els comparable to those under PAA treatment. All transcripts de-
tected were specific and were not the result of genomic DNA con-
tamination as mock cells and reactions done in the absence of
reverse transcriptase failed to produce any products (data not
shown). This result supports the hypothesis that both pM79 and
viral DNA synthesis are required for efficient viral late transcrip-
tion.

pM79 regulates the accumulation of a subset of viral late
transcripts. The failure of SMin79 to express a representative
late transcript could be due to a global downregulation of MCMV
late transcription, or it could be due to a downregulation of only a
subset of late transcripts. To differentiate these two possibilities,
we profiled the entire MCMV transcriptome with or without
pM79. We designed a high-density oligonucleotide tiled array
with probes to both the forward and reverse strands of the MCMV
genome, allowing us to measure transcription across the entire
viral genome. We first determined viral regions where transcrip-
tion was dependent on viral DNA synthesis. To test this, MEF10.1
cells were infected with MCMV in the presence or absence of PAA.
At 20 hpi, RNA was harvested, converted to fluorescently labeled
cDNA, and hybridized to the MCMV DNA array. The normalized
mean intensity of probes across the genome was plotted as shown

FIG 4 pM79 is not required for viral DNA synthesis. (A) Accumulation of
viral DNA during pM79-deficient virus infection. MEF10.1 cells were infected
with SMgfp or SMin79 at an MOI of 2, and total DNA was harvested from
infected cells at indicated times. Viral DNA accumulation was analyzed by
qPCR using primers specific for viral genes IE1 or M55 (Table 1 gives primer
sequences), and the values were normalized to the value of actin. The normal-
ized values of viral DNA during SMgfp infection at 2 hpi were set to 1. Shown
is a representative result from five reproducible, independent experiments. (B)
PFGE analysis of intracellular viral DNA during M79-deficient virus infection.
MEF10.1 cells were infected with SMgfp or SMin79 at an MOI of 2 and col-
lected at 36 hpi. Cell-free virions or infected cells were suspended in a low-
melting-point agarose block, lysed, digested with PacI, and subjected to
pulsed-field gel electrophoresis. The gel was then transferred to a membrane
and hybridized with a 32P-labeled probe specific to the entire SMgfp BAC
sequence. The positions of wells, high-molecular-weight viral DNA (HMW
DNA), 232-kb monomer viral DNA, and prominent digested viral DNA frag-
ments are indicated. Shown is a representative result from two reproducible,
independent experiments. The top panel shows the schematic diagram of
monomer and concatemer viral DNA with PacI sites (P) indicated.
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in Fig. 7. The sensitivity of viral transcription to PAA was variable
across the genome, ranging from no change to a greater than 100-
fold reduction. Although most viral regions exhibited some sen-
sitivity to PAA, many regions that were highly regulated did not
correspond to annotated ORFs. To minimize false positives, we
considered a region of transcription to be dependent on viral DNA

synthesis only if the intensity of the PAA-treated sample was at
least 3-fold lower than that of the untreated sample in this analysis.
By this criterion, among viral regions corresponding to the 172
annotated ORFs examined, efficient transcription of 115 ORFs
was dependent on viral DNA synthesis (Table 2). Among them, 80
ORFs have been previously analyzed for their temporal expres-

FIG 5 pM79 is not required for the maturation of viral replication compartments. MEF10.1 cells were infected with SMgfp or SMin79 virus at an MOI of 2. At
12 and 24 hpi, cells were fixed with methanol and stained with antibody to pM44 to mark replication compartments (red). Cells were also counterstained with
TO-PRO3 to visualize the nuclei (blue). Scale bar, 20 �m. Shown is a representative result from three reproducible, independent experiments.

FIG 6 pM79 is required for efficient expression of a representative viral late gene. (A) Accumulation of representative viral proteins during pM79-deficient virus
infection. MEF10.1 cells were infected with SMgfp or SMin79 at an MOI of 2, and the accumulation of viral proteins IE1, E1, and gB at indicated times was
analyzed by immunoblotting. Shown is a representative result from five reproducible, independent experiments. (B) Failure of gB accumulation during
pM79-deficient virus infection cannot be rescued by elevating expression of viral early genes. Cells were infected with SMgfp or SMin79 at an MOI of 1 or 5,
respectively, so that SMin79-infected cells expressed E1 protein at levels comparable to those in SMgfp-infected cells. Cell lysates were collected at indicated times
and analyzed by immunoblotting. Shown is a representative result from three reproducible, independent experiments. (C) Accumulation of viral transcripts
during pM79-deficient virus infection. Cells were infected with SMgfp in the presence or absence of 200 �g/ml PAA or with SMin79 as described for panel A. Total
RNA was isolated at indicated times, and amounts of viral E1 and M55 transcript were measured by RT-qPCR with the primers listed in Table 1. Shown is a
representative result from at least three reproducible, independent experiments. The values were normalized to that of actin, and normalized values of viral
transcript during SMgfp infection at 10 hpi in the absence of PAA were set to 1.
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FIG 7 Tiled array analysis of genome-wide transcription during MCMV infection. MEF10.1 cells were infected with SMgfp in the presence or absence of PAA
or with SMin79 at an MOI of 2. Total RNA was isolated at 20 hpi and reverse transcribed, and labeled cDNAs were hybridized to an oligonucleotide tiled array
of the MCMV genome. The mean fluorescence of probes overlapping each nucleotide position is plotted on a log2 scale underneath the annotated viral genomic
sequence. Blue or red arrows represent annotated open reading frames on the positive or negative strand of the viral genome, respectively. The colored lines
represent the transcriptional signals from SMgfp infection (black), SMgfp infection with PAA (red), and SMin79 infection (blue). These probe intensities were
compared on a nucleotide-by-nucleotide basis between SMgfp infections with and without PAA treatment or between infections of SMgfp and SMin79. Regions
in which the fluorescence intensity was reduced by greater than 3-fold by PAA treatment (PAA) or mutation of M79 (in79) are plotted on a linear scale as fold
reduction below the transcriptional intensity plots. Genomic sequences are as follows: 1 to 80 kb (A), 80 to 160 kb (B), and 160 to 230 kb (C). Shown is a
representative result from two reproducible, independent experiments.
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TABLE 2 M79-dependent expression of MCMV ORFs

ORF Stranda

Downregulation by:b

KineticscPAA treatment M79 mutation

m011 Y Y L
m012 Y Y L
m014 Y Y L
M032 C Y Y L
M035 Y Y L
m039 C Y Y L
m040 C Y Y ND
M046 C Y Y
M053 Y Y L
M055 C Y Y L
M056 C Y Y L
M072 C Y Y L
M073 Y Y L
M074 C Y Y L
M075 C Y Y L
M076 Y Y ND
M077 Y Y L
M080 Y Y L
M084 C Y Y ND
M085 C Y Y L
M086 C Y Y L
M096 Y Y L
M100 C Y Y L
M104 C Y Y L
M114 C Y Y L
M115 C Y Y L
M116 C Y Y L
M118 C Y Y L
m119.1 C Y Y L
m131 C Y Y L
m155 C Y Y L
m156 C Y Y L
m157 C Y Y ND
m158 C Y Y ND
m159 C Y Y L
m160 C Y Y L
m161 C Y Y L
m162 C Y Y L
m163 C Y Y
m165 C Y Y
m168 Y Y L
m164 C N Y
m166 C N Y
m001 C Y N ND
m002 Y N ND
m003 Y N
m007 Y N L
m015 Y N L
m016 Y N L
m018 C Y N
m019 Y N ND
m021 Y N ND
m022 Y N ND
M023 C Y N
m023.1 Y N ND
M024 C Y N ND
M025 Y N L
m025.1 C Y N L
m025.2 C Y N L
m025.3 C Y N ND
m025.4 C Y N ND
M026 C Y N
M027 C Y N
m029 Y N

TABLE 2 (Continued)

ORF Stranda

Downregulation by:b

KineticscPAA treatment M79 mutation

m030 Y N
M031 Y N
M031b Y N ND
M033 Y N ND
M044.1 Y N ND
M044.3 Y N ND
m045.2 C Y N ND
M050 C Y N L
M052 Y N L
m069.1 Y N ND
M071 Y N L
M073x2d Y N ND
M082 C Y N L
M083 C Y N L
M087 Y N
M088 Y N
M089x1 C Y N L
m090 C Y N L
M091 Y N
M092 Y N
M093 Y N L
M094 Y N L
M095 Y N L
M097 Y N
M098 Y N
M099 Y N L
M103 C Y N L
m106 C Y N L
m106.1 C Y N ND
m106.3 C Y N ND
m107 Y N L
m108 C Y N L
m117 C Y N ND
m117.1 Y N ND
m119.5 Y N L
M121 C Y N L
m123x2 C Y N ND
m124 Y N L
m124.1 C Y N ND
m125 Y N ND
m126 Y N ND
m127 C Y N ND
m128x3 Y N
m129 C Y N L
m130 Y N ND
m134 Y N ND
m136 C Y N ND
m137 C Y N
m144 C Y N ND
m148 Y N L
m149 Y N ND
m167 C Y N L
m170 C Y N L
a C, complementary strand; blank entries, forward strand.
b The mean intensity of a transcriptional region was (Y) or was not (N) reduced by at
least 3-fold in array analysis.
c Transcription of an ORF is considered to be late kinetics (L) when it is elevated by at
least 50% from 12 to 24 hpi, as described by Marcinowski and coworkers (46), or
absent at 6.5 hpi but detectable at 24 hpi, as described by Lacaze and coworkers (45).
Blank entries, early kinetics. ND, kinetics class has not been previously described.
d x, exon.
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sion, and 61 have been found to be expressed at elevated levels at
late stages of MCMV infection (i.e., late genes) (45, 46). Therefore,
transcripts of a large set (76%) of annotated ORFs sensitive to PAA
are also known to be highly expressed at late times, consistent with
the notion that most viral DNA synthesis-dependent transcripts
are derived from late genes.

We then examined the transcriptome profile in SMin79 infec-
tion. Overall, the effect of pM79 mutation on viral transcription
was less pronounced than that of PAA (Fig. 7). Compared to PAA
treatment, fewer regions of transcription were reduced by greater
than 3-fold in the absence of pM79 in array analysis. Interestingly,
many unannotated regions of RNA expression were affected by
PAA but not by pM79 mutation. Transcription from regions cor-
responding to 43 ORFs was reduced by greater than 3-fold in the
absence of pM79 by array analysis, and 41 of them (95%) were also
reduced by PAA treatment (Table 2). Transcription from the re-
gions corresponding to the remaining 74 PAA-sensitive ORFs was
less affected by pM79 mutation, based on the criterion used in our
analysis. These results suggest that at least a subset of DNA syn-
thesis-dependent viral transcripts also have a high dependence on
pM79 for their expression.

This differentiated dependency of late transcripts on pM79 was
validated by RT-qPCR analysis. Transcription of M74 and M116,
which showed a greater dependency on pM79 in array analysis
(Table 2), was reduced by 9.8- and 37.7-fold by pM79 mutation in
qPCR analysis (Fig. 8A). Conversely, transcription of M25 and
M121 was reduced by only 5.5 and 4.5-fold, respectively, in pM79
mutant virus infection (Fig. 8B), consistent with the result of array
analysis (Table 2) and thus showing relatively less dependency on
pM79.

Together, our results show that M79 is critical for the accumu-
lation of at least a subset of DNA synthesis-dependent viral late
products (Fig. 8). These results, along with the observations of
UL79 in HCMV and ORF18 in MHV-68 (24–26), underscore a
conserved function of the UL79 family of genes in beta- and gam-
maherpesvirus replication cycles.

DISCUSSION

MCMV is the commonly used model virus for HCMV, so reveal-
ing HCMV genes that are functionally conserved in MCMV will
allow the use of the robust mouse genetic system to elucidate their
role and test novel antivirals targeting these products. Previously,
we have found that the HCMV gene UL79 regulates viral late gene
expression (26). Here, we characterized the function of its MCMV
sequence homologue, M79, by analyzing mutant MCMV virus in
which pM79 expression was disrupted. pM79 accumulated with
early-late kinetics in nuclear viral replication compartments and,
if disrupted, abrogated the ability of MCMV to replicate. In par-
ticular, we showed that pM79 was critical for MCMV to promote
expression of a set of late transcripts. Moreover, not only was
MCMV DNA synthesized efficiently in the absence of pM79, but
PFGE analysis also showed that the overall structure of replicating
viral DNA was unimpaired. The development of viral replication
compartments during mutant virus infection was indistinguish-
able from that during wild-type virus infection. This body of evi-
dence further excludes the involvement of pM79 in viral DNA
synthesis or other events preceding viral late transcription. Fur-
thermore, the failure of pM79-deficient virus to cleave viral con-
catameric replicating DNA is consistent with its defect in late viral
transcription. For example, genes required for genomic cleavage

(e.g., M56 and M104) or capsid assembly (e.g., M80, M85, and
M86) are downregulated during SMin79 infection (Table 2). Our
work, together with reports of the role of the pM79 homologues,
including pUL79 in HCMV and ORF18 in MHV-68 (24–26), sug-
gests a common mechanism governing late transcription among
beta- and gammaherpesviruses. How viral late transcription is
regulated remains largely unknown, and viral/host factors in-
volved are poorly defined. The pM79/pUL79 protein family rep-
resents an invaluable tool to gain insight into this key viral process.

Our oligonucleotide tiled array analysis has identified a set of
annotated genes whose transcription is substantially reduced at
late stages of virus infection when pM79 is abrogated (Fig. 7).
Comparative analysis of viral transcriptomes among MCMV in-
fections with PAA, without PAA, or in the absence of pM79 leads
to two interesting observations. First, while viral DNA synthesis is
required for transcription from genomic regions containing many
previously reported late genes, it also facilitates the continued

FIG 8 RT-qPCR analysis of representative PAA-sensitive transcripts in
MCMV infection. MEF10.1 cells were infected with SMgfp in the presence or
absence of 200 �g/ml PAA or with SMin79 at an MOI of 2. Total RNA was
isolated at the indicated times, and amounts of indicated late transcripts were
measured by RT-qPCR with the primers listed in Table 1. The values were
normalized to the value for actin, and normalized values of viral transcript
during SMgfp infection at 10 hpi in the absence of PAA were set to 1.

MCMV pM79 Regulates Viral Late Transcription

August 2013 Volume 87 Number 16 jvi.asm.org 9145

http://jvi.asm.org


transcription from genomic regions containing several previously
reported early genes at late times of infection. Second, viral tran-
scripts that are dependent on viral DNA synthesis also have a
dependency on pM79 for their accumulation. There seems to be a
striation in dependence, such that without pM79 some transcripts
are markedly reduced, whereas others are reduced to a much less
extent. Thus, pM79 is a key viral regulator of late transcription in
MCMV infection. In future studies, similar transcriptome analysis
should be applied to other viral genes known or predicted to be
regulators of late gene expression. Examples are HCMV UL79 and
MHV-68 ORF18, as well as MCMV M87 and M95 (homologues of
HCMV UL87 and UL95). Such analysis will reveal whether these
viral regulators control an overlapping or distinct set of viral late
gene expression.

How does pM79 regulate expression of late transcripts? A late
transcript regulator could be involved in epigenetic regulation of
replicating viral DNA. For instance, viral DNA-associated his-
tones are modified when herpesviruses replicate their genomes,
and this may render late promoters accessible for transcription
(47–49). However, the pM79 coding sequence does not resemble
those of histone-modifying enzymes, such as histone acetyltrans-
ferase or histone deacetylase (data not shown). If pM79 had a role
in epigenetic regulation of gene expression, it would likely act
indirectly, for instance, by recruiting modification enzymes to hi-
stones associated with late viral promoters. Late regulators may
also act as transcription factors. However, pM79 does not contain
any identifiable putative DNA binding domains (data not shown).
Therefore, in this capacity pM79 would have to act as a modulator
of cellular and viral transcriptional regulators or RNA polymerase
to facilitate viral late gene transcription. Finally, it is tempting to
speculate that regulation of late gene expression may function as a
switch to decide a lytic or latent viral infection. Cellular or viral
repressors may associate with viral late promoters by default to
keep them silent, but viral regulators such as pM79 could displace
these repressors to favor a productive, lytic infection. Work is
under way to identify viral and cellular binding partners of pM79
in order to reveal the mechanism of its activity.

The identification of pM79 as a protein essential for MCMV
late transcription indicates that it is a functional homologue of
HCMV pUL79. MCMV infection in mice is an important model
for preclinical evaluation of antiviral compounds, most of which
have been directed at highly conserved viral DNA replication pro-
teins. The pM79/pUL79 protein family presents an attractive, al-
ternative target for therapeutic intervention in CMV disease. The
functional conservation between pM79 and pUL79 justifies
MCMV as a credible model to test this novel antiviral strategy in
vivo.
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