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A novel human Middle East respiratory syndrome coronavirus (MERS-CoV) caused outbreaks of severe acute respiratory
syndrome (SARS)-like illness with a high mortality rate, raising concerns of its pandemic potential. Dipeptidyl peptidase-4
(DPP4) was recently identified as its receptor. Here we showed that residues 377 to 662 in the S protein of MERS-CoV spe-
cifically bound to DPP4-expressing cells and soluble DPP4 protein and induced significant neutralizing antibody re-
sponses, suggesting that this region contains the receptor-binding domain (RBD), which has a potential to be developed as
a MERS-CoV vaccine.

As of 17 June 2013, WHO had been informed of 64 laboratory-
confirmed cases of infection with a novel human coronavirus

(hCoV), Middle East respiratory syndrome (MERS) CoV (MERS-
CoV; previously known as hCoV-Erasmus Medical Center
[hCoV-EMC]) (1, 2), including 38 deaths (3). Human-to-human
transmission of MERS-CoV has occurred in household, work en-
vironment, and health care settings (4, 5), raising concerns of its
potential to cause a pandemic similar to that caused by severe
acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in
2002 to 2003 (6).

In 2003, Farzan and colleagues successfully identified the re-
ceptor of SARS-CoV, angiotensin-converting enzyme 2 (ACE2)
(7), and a 193-amino-acid fragment in the spike (S) protein (res-
idues 318 to 510) as the receptor-binding domain (RBD) (8). We
found that SARS-CoV S-RBD contains a critical neutralizing site
(9) which induces potent neutralizing antibodies and protection
against SARS-CoV infection in an animal model (10).

Since MERS-CoV is genetically related to SARS-CoV (1), we
compared their S protein sequences and predicted that the RBD of
MERS-CoV might be located in the region spanning residues 377
to 662 of the S1 subunit (Fig. 1). Using the Swiss-Model Work-
place homology modeling server (11) and basing our work on the
X-ray crystal structure of the SARS-CoV S-RBD (Protein Data
Bank [PDB] identification no. 2DD8) (12), we predicted the con-
formational structure of the region consisting of residues 377 to
662 in the S1 subunit of the MERS-CoV S protein (13). We no-
ticed that the SARS-CoV S-RBD and the predicted MERS-CoV
S-RBD possessed similar core structures but had an extended sec-
ondary structure consisting predominantly of the receptor-bind-
ing motifs (RBM) (12, 14). The extended region in MERS-CoV
S-RBD is much longer than that in SARS-CoV S-RBD, suggesting
that MERS-CoV and SARS-CoV use different receptors. Indeed, it
has been proven that dipeptidyl peptidase-4 (DPP4; also known as
CD26) is the functional receptor of MERS-CoV (15).

We then constructed MERS-CoV S-RBD based on the synthe-
sized codon-optimized MERS-CoV S sequences (GenBank acces-
sion no. AFS88936.1) and fused it to Fc of human IgG using
pFUSE-hIgG1-Fc2 expression vector (here named Fc) (Invivo-

Gen, San Diego, CA). The SARS-CoV S-RBD-Fc was constructed
by fusing RBD of codon-optimized SARS-CoV S sequence into
the Fc vector referred to above as a control (Fig. 1) (16). The
S-RBD-Fc proteins were expressed in 293T cell culture superna-
tant and purified by protein A affinity chromatography (GE
Healthcare, Piscataway, NJ) (17). We found that both MERS-CoV
and SARS-CoV S-RBD-Fc proteins were highly purified from
transfected culture supernatants (Fig. 2A, panel a). MERS-CoV
S-RBD-Fc could be recognized by an MERS-CoV S-specific poly-
clonal antibody (1:1,000), while SARS-CoV S-RBD-Fc could not
react with this antibody, as detected by Western blotting (Fig. 2A,
panel b).

Using analysis performed by Western blotting, we found that
DPP4 was highly expressed in Huh-7 cells but not in COS-7 cells
(ATCC, Manassas, VA) and ACE2/293T cells (293T expressing
SARS-CoV receptor ACE2) (Fig. 2B, panel a). However, ACE2 was
highly expressed in ACE2/293T cells but not in COS-7 cells. There
was a weak expression of ACE2 in Huh-7 cells (Fig. 2B, panel b).
We then tested the binding of MERS-CoV S-RBD to DPP4-ex-
pressing Huh-7 cells as well as blockage of this binding using flow
cytometry. Huh-7 and COS-7 (2 � 105) cells (control) were incu-
bated with MERS-CoV and SARS-CoV S-RBD-Fc (5 �g/ml), re-
spectively, at 37°C for 10 min and then continued to incubate at
4°C for 30 min. After washes, cells were incubated with DyLight-
488-labeled goat anti-human IgG antibody at 4°C for 30 min be-
fore analysis. The competitive binding assay was performed by
incubating soluble human DPP4 (sDPP4; 5 �g/ml) with MERS-
CoV S-RBD-Fc (5 �g/ml) followed by the same procedure as de-
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scribed above. MERS-CoV S-RBD-Fc protein failed to interact
with COS-7 cells, which have no DPP4 expression (Fig. 3A, panel
a), but it strongly bound Huh-7 cells expressing the DPP4 recep-
tor. No binding of SARS-CoV S-RBD-Fc with Huh-7 cells was
revealed (Fig. 3A, panel b). The binding of MERS-CoV S-RBD-Fc
to Huh-7 cells could be blocked by sDPP4 (Fig. 3A, panel c), sug-
gesting that residues 377 to 662 of MERS-CoV S protein might
contain the RBD.

Subsequently, we conducted a coimmunoprecipitation as-
say to analyze the interactions between MERS-CoV S-RBD-Fc
and DPP4 in the Huh-7 cell lysates and between SARS-CoV
S-RBD-Fc and ACE2 in the ACE2/293T cell lysates. The Huh-7
cell lysates (5 � 107/ml in 1 ml lysis buffer containing 0.3% N-de-
cyl-�-D-maltopyranoside–phosphate-buffered saline [PBS]) were

incubated with MERS-CoV S-RBD-Fc protein (20 �g) plus
protein A Sepharose beads (50% [vol/vol], 200 �l) at 4°C for 1
h (15). After being washed with lysis buffer and PBS, beads
were subjected to SDS-PAGE and Western blot analysis for
detection of DPP4 using anti-DPP4 MAb. A clear band (corre-
sponding to the size of DPP4 at �110 kDa) was detected from
the beads that were preincubated with the mixture of MERS-
CoV S-RBD-Fc and Huh-7 cell lysates but was not detected
from the beads preincubated with the mixture of MERS-CoV
S-RBD-Fc and COS-7 or the mixture of SARS-CoV S-RBD-Fc
and Huh-7 cell lysates (Fig. 3B, panel a). A band of similar size
(�120 kDa) corresponding to ACE2 was detected from the
beads preincubated with the mixture of SARS-CoV S-RBD-Fc
and ACE2/293T cell lysates by the use of anti-ACE2 MAb (Fig.
3B, panel b). Using an enzyme-linked immunosorbent assay
(ELISA), we further detected the binding of MERS-CoV S-
RBD-Fc protein to sDPP4 in a dose-dependent manner and no
significant binding of SARS-CoV S-RBD-Fc with sDPP4 (Fig.
3C, panel a). These results were consistent with those detected
by flow cytometry, which showed the dose-dependent binding
of MERS-CoV S-RBD-Fc protein to DPP4-expressing Huh-7
cells (Fig. 3C, panel b). The data presented above confirm the
binding specificity of MERS-CoV S-RBD-Fc to its receptor
DPP4.

To detect the immunogenicity of MERS-CoV S-RBD-Fc, we
used the purified protein to immunize BALB/c mice in the pres-
ence of Montanide ISA 51 adjuvant (Seppic, Fairfield, NJ) and
collected mouse sera 10 days after the second vaccination to detect
antibody responses and neutralizing activity against MERS-CoV
and SARS-CoV. MERS-CoV S-RBD protein without Fc was con-
structed by fusing MERS-CoV S-RBD plus a 6�His tag and stop
codon into the Fc vector and purified from 293T cell culture su-
pernatant by the use of nickel-nitrilotriacetic acid (Ni-NTA) Su-
perflow resin (Qiagen, Valencia, CA) (17, 18). The antibodies re-
acted strongly with MERS-CoV S-RBD with or without Fc, but
they had only background binding to SARS-CoV S-RBD (18) (Fig.
4A). The mouse antisera against MERS-CoV S-RBD could effec-
tively neutralize MERS-CoV infection in cell cultures in vitro with
a neutralizing antibody titer of 1:240 � 139, a level of neutralizing
antibodies similar to that detected in MERS-CoV-infected pa-
tients (19), while, at the same time, these antisera neutralized
SARS-CoV infection only marginally, with a low titer (�1:40)
(Fig. 4B). These data suggest that MERS-CoV S-RBD could in-
duce significant neutralizing antibody responses to MERS-CoV.
However, MERS-CoV S-RBD-specific antibodies did not cross-
react with or cross-neutralize SARS-CoV or vice versa (20).

Notably, the titers (�1:240) of MERS-CoV neutralizing anti-

FIG 1 Schematic representation of MERS-CoV S protein and constructs of MERS-CoV and SARS-CoV S-RBD-Fc proteins. SP, signal peptide; RBD, receptor-
binding domain; FP, fusion peptide; HR1, heptad repeat 1; HR2, heptad repeat 2; TM, transmembrane domain; CP, cytoplasmic domain.

FIG 2 Characterization of MERS-CoV S-RBD-Fc and detection of DPP4 ex-
pression in cells. (A) SDS-PAGE and Western blot analysis of MERS-CoV
S-RBD-Fc. The protein molecular mass markers (kDa) are indicated on the
left. SARS-CoV S-RBD-Fc was included as the control. MERS-CoV S-specific
polyclonal antibodies were used for Western blot (WB) analysis. (B) Detection
of expression of MERS-CoV’s receptor DPP4 and SARS-CoV’s receptor ACE2
in Huh-7, COS-7, and ACE2/293T cells by SDS-PAGE and Western blot (WB)
analysis. Anti-DPP4 (a) and anti-ACE2 (b) monoclonal antibodies (MAbs)
(R&D Systems, Minneapolis, MN) at 1 �g/ml were applied for the detection.
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body elicited by MERS-CoV S-RBD-Fc protein were relatively
lower than those of SARS-CoV neutralizing antibody induced by
SARS-CoV S-RBD-Fc (�1:1,000) (9, 16), suggesting that the im-
munogenicity of the MERS-CoV S-RBD is not as strong as that of
SARS-CoV S-RBD. Nevertheless, previous studies in S-based
SARS vaccines have revealed that mean neutralizing antibody ti-
ters as low as 1:284 could protect vaccinated animals against
SARS-CoV challenge (21). The neutralizing antibody responses
induced by MERS-CoV S-RBD-Fc protein may be strong enough

to protect vaccinated animals against MERS-CoV infection.
Therefore, further evaluation of the in vivo protective effect of
MERS-CoV S-RBD-based vaccine is essential.

In conclusion, we found that a 286-amino-acid fragment (res-
idues 377 to 662) of the MERS-CoV S protein contains the viral
RBD, which mediates binding of MERS-CoV to its receptor DPP4
and serves as a critical target for the development of vaccines to
prevent MERS-CoV infection and combat any future pandemic of
this SARS-like disease.

FIG 3 Specific binding of MERS-CoV S-RBD to DPP4. (A) Flow cytometric analysis of MERS-CoV S-RBD binding to DPP4-expressing Huh-7 cells and
blockage of the binding with DPP4. (a) The MERS-CoV S-RBD-Fc did not bind to COS-7 cells that express no DPP4 (red line). Mock-incubated COS-7 cells
(gray shading) and SARS-CoV S-RBD-Fc (blue line) were used as controls. (b) MERS-CoV S-RBD-Fc (red line) bound strongly to Huh-7 cells that express a high
level of DPP4, while SARS-CoV S-RBD-Fc did not bind to Huh-7 cells (blue line). Mock-incubated Huh-7 cells were used as a control (gray shading). (c) Binding
of MERS-CoV S-RBD-Fc to Huh-7 cells (red line) was blocked by sDPP4 (green line). Mock-incubated Huh-7 cells were used as a control (gray shading). (B)
Coimmunoprecipitation analysis of interactions between MERS-CoV S-RBD-Fc and DPP4. The interactions between MERS-CoV S-RBD-Fc and DPP4 in the
Huh-7 cell lysates and between SARS-CoV S-RBD-Fc and ACE2 in the ACE2/293T cell lysates were detected by coimmunoprecipitation analysis, using
anti-DPP4 (a) and anti-ACE2 (b) MAbs at 1 �g/ml, respectively. COS-7 cells expressing neither DPP4 nor ACE2 were used as a control. (C) Detection of
dose-dependent binding of MERS-CoV S-RBD-Fc to sDPP4 (2 �g/ml) by ELISA (a) and of DPP4-expressing Huh-7 cells by flow cytometric analysis (median
fluorescence intensity [MFI]) (b). SARS-CoV S-RBD-Fc was included as a control.
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FIG 4 Immunogenicity of MERS-CoV S-RBD-Fc and neutralization of
MERS-CoV and SARS-CoV by antibodies against MERS-CoV S-RBD-Fc. (A)
Binding of antibodies to MERS-CoV S-RBD-Fc, MERS-CoV S-RBD, and
SARS-CoV S-RBD in sera of mice immunized with MERS-CoV S-RBD-Fc
detected by ELISA. (B) Neutralization of MERS-CoV and SARS-CoV infection
in Vero E6 and FRhK4 cells by antisera of mice immunized with MERS-CoV
S-RBD-Fc. The titers were determined as the highest serum dilutions that
completely prevented cytopathic effect (CPE) in at least 50% of the wells and
are expressed as means � standard deviations.
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