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Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm
formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene
mutants and evaluated the immune responses induced by these mutants. One of these mutations, �(wza-wcaM)8, which
deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic
traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine
strain with the deletion mutation �(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen
and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the
�(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized
with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better
gamma interferon (IFN-�) responses than the strain without this deletion at doses of 108 and 109 CFU. Thus, the mutation
�(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from
Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial
pathogens.

Colanic acid (CA) is a common exopolysaccharide (EPS) struc-
ture loosely associated with the surfaces of a wide variety of

bacteria (1), especially in the Enterobacteriaceae, which are nor-
mally found as inhabitants of the intestine. The CA structure con-
tains repeating subunits of D-glucose, L-fucose, D-galactose, and
D-glucuronic acid sugars that are decorated with O-acetyl and
pyruvate side chains and are assembled by essentially identical
processes as lipopolysaccharide (LPS) O antigen (1–5). The CA
biosynthetic gene cluster is composed of 20 genes in Escherichia
coli and Salmonella (6, 7). The complex transcriptional regulation
of CA production is controlled through the Rcs (regulation of
capsule synthesis) proteins, Lon protease and RpoS (8–12). Over-
expression of CA caused by either rcsB or lon mutation causes a
mucoid colony phenotype on agar surfaces and attenuation (13).

CA is normally produced in small amounts constitutively,
whereas large amounts can be synthesized in response to specific
mutations or environmental factors (14). It is generally not pro-
duced at temperatures above 30°C in typical laboratory media;
however, E. coli K92 is able to produce CA even at 42°C (15),
suggesting a role of CA when E. coli is outside mammalian hosts. A
substantial amount of the CA produced by a culture is secreted
into the growth medium (5, 16). The biological role of CA lies
primarily outside the host (14), especially in regard to the bacterial
survival under adverse physicochemical and environmental con-
ditions (17–19). CA biosynthesis genes are coordinately regulated
in response to a variety of environmental factors that modulate or
damage cell envelope structure (5), such as temperature (15), des-
iccation (20), �-lactam antibiotics (21–23), osmotic shock (18, 24,
25), oxidative stress, acid and heat stress (15, 18, 26, 27), metal ion
exposure (28), growth on solid surfaces (29), carbon and nitrogen
sources (15), and a combination of different factors. In E. coli K-12
and uropathogenic E. coli, CA synthesis is not important for at-

tachment to abiotic surfaces but is critical to bacteria growing in
biofilms on abiotic surfaces at 30°C (17, 29–33). CA can attach
through a covalent linkage to LPS to form a novel LPS glycoform
containing CA repeats, which respond to certain environmental
stimuli (34).

CA has no known role in virulence in E. coli (14, 35). The
inability to produce CA in an extraintestinal pathogenic E. coli
(ExPEC) strain showed no effect on resistance to the bactericidal
effects of serum and bactericidal/permeability-increasing protein
in vitro or on virulence in an abscess model or in a systemic infec-
tion model in vivo (35). The CA-deficient E. coli strain had less
viability in the human gastrointestinal tract environment and
upon exposure to acid but not to bile (36). Most of this research on
CA was carried out with E. coli strains (5), such as different labo-
ratory K-12 strains, including MC4100, MG1655, and W3310 (6,
8, 17, 30, 31, 37–40), K1 (41), K5 (41), K92 (42), extraintestinal
isolate O4/K54/H5 (35, 43), different O8 and O9 pathovars (44),
enterohemorrhagic E. coli O157:H7 (18, 26, 27, 36, 37, 45), and
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uropathogenic E. coli (33). Although it was reported that CA in
Salmonella is not important for biofilm formation in vitro (46),
some reports indicated that CA in Salmonella may play a role in
vivo (4, 47, 48). The divergence of CA gene clusters between Sal-
monella and E. coli is slightly higher than the average for other
genes of the two species (4). The six genes involved in the synthesis
of GDP-fucose in Salmonella were replaced recently by genes from
a close relative of the original donor species (4). The mucoid phe-
notype, caused by CA overexpression, is highly variable in differ-
ent Salmonella subspecies and strains, even with induction of syn-
thesis by p-fluorophenylalanine (1). Mucoid Salmonella strains
were not lysed by P22, indicating the inaccessibility to the P22
receptor LPS O antigen (49). A mucoid variant of Salmonella has
been isolated from a clinical specimen, which indicated that CA
overexpression in vivo may help Salmonella escape antibiotic
treatment (48). Although the physiological stimuli in vivo that
induce CA synthesis are not fully understood (50), mutation of
wcaM, one of the CA synthesis genes in Salmonella, resulted in
reduced biofilm formation on HEp-2 cells and on chicken intes-
tinal tissue at 37°C in vitro (47), which indicated that the CA can be
produced at 37°C when bacteria are exposed to eukaryotic cells.

Recently, it was reported that the production and secretion of
recombinant proteins in an E. coli strain with a whole CA operon
deletion mutation and other mutations increases by about �16%
and � 25%, respectively, by an unknown mechanism (51). Thus,
we speculated whether the attenuated Salmonella vaccine vectors
with a CA operon deletion mutation could have the same pheno-
type and, hopefully, lead to enhanced immune responses to re-
combinant protective protein antigens.

We developed an in vivo regulated delayed attenuation strategy
(RDAS) to construct safe and efficacious attenuated Salmonella
vaccine vectors (52), with Salmonella enterica serovar Typhimu-
rium strain �9558 and its isogenotype Salmonella enterica serovar
Typhi strains �9633, �9639, and �9640 as representatives. These
vaccine vectors are safe and effective in adult, newborn, and infant
mice (53–56). The pmi mutation is one of the main ways to
achieve the in vivo regulated delayed attenuation phenotype by
reversible synthesis of LPS O-antigen side chains. The pmi gene
encodes phosphomannose isomerase that interconverts mannose
6-phosphate (mannose 6-P) and fructose 6-phosphate (57). Man-
nose 6-P can be converted to GDP-mannose and used for synthe-
sis of LPS O-antigen side chains (58). The combination of the
�pmi-2426 (� � deletion) mutation, which deletes the whole pmi
gene, with exogenous mannose during in vitro growth results in a
smooth phenotype with the synthesis of wild-type LPS O antigen
to facilitate successful colonization of lymphoid tissues by the mu-
tant strain (59, 60). In vivo, there is an absence of nonphosphory-
lated mannose so that the synthesis of LPS O-antigen side chain
ceases to result in a rough phenotype and avirulence (60). This
mutation has been shown to significantly but not completely at-
tenuate S. Typhimurium (60). S. Typhimurium pmi mutants are
highly immunogenic (61), with enhanced abilities to induce anti-
body titers to cross-protective outer membrane proteins (OMPs)
(61), to produce outer membrane vesicles (OMVs) that can also
deliver recombinant protective antigens to enhance induction of
protective immunity (62, 63), and to induce antibody responses
against the LPS core (64, 65) that is common to all S. enterica
serotypes (66, 67).

In S. Typhimurium strain �9558 and its isogenotypic S. Typhi
vaccine strains, we described the deletion mutation �(gmd-fcl)26,

which eliminates two enzymes needed to synthesize GDP-fucose,
which is required for colanic acid synthesis. The mutation can
preclude GDP-mannose from being converted into GDP-fucose
so that all added mannose would be incorporated into LPS O
antigen; thus, it can be used in combination with the �pmi-2426
mutation to tightly regulate O-antigen synthesis by exogenous
mannose (61). This deletion does not alter attenuation, tissue col-
onization, or immunogenicity of a strain with the �pmi-2426 mu-
tation alone (61). It was also used in regulated delayed lysis strains
to block the potential synthesis of CA, which could help cells un-
dergoing diaminopimelic acid-less and muramic acid-less death
to survive (68, 69), as well as in our balanced-lethal vector system.
Our lab also proved that the lrp gene is an antivirulence gene (70).
The deletion of the lrp gene results in an increase in epithelial cell
invasion and enhanced transcription of the hilA and ssrA genes,
the master regulators of the Salmonella pathogenicity island 1
(SPI-1) type III secretion system and the SPI-2 type III secretion
system, respectively (70). In this paper, we report the construction
of different CA operon deletion mutations in place of the �(gmd-
fcl)26 mutation in Salmonella vaccine strains. Our goals were to
evaluate the effects on protein synthesis and immune responses by
including the CA operon deletion mutation and lrp mutation in-
dividually or combined.

MATERIALS AND METHODS
Bacterial strains, plasmids, media, and growth conditions. Bacterial
strains and plasmids used in this study are listed in Table 1. S. Typhimu-
rium vaccine strains were derived from the highly virulent strain UK-1
(71). S. Typhimurium cultures were grown statically overnight at 37°C in
LB broth or on LB agar (72). When necessary, arabinose (0.05%) and/or
mannose (0.1%) was added to the broth as indicated. Bacterial growth
curves were obtained using optical density measurements with a Genesys
10 UV spectrophotometer (Thermo Scientific) and by plating serial dilu-
tions of bacterial cultures on LB agar (72). LPS profiles were examined
using silver staining as previously described (73). The genotypes of the
strains were verified using corresponding primer sets (Table 2). The phe-
notype characterizations associated with mutations in the strains were
described elsewhere (52, 74). LB agar without NaCl and containing 5%
sucrose was used for sacB gene-based counterselection in allelic exchange
to generate mutations. Streptococcus pneumoniae strain WU2 was cultured
on brain heart infusion agar containing 5% sheep blood or in Todd-
Hewitt broth plus 0.5% yeast extract (75).

Construction of plasmids and strains. Plasmid pYA4366 for deletion
of the CA gene cluster to generate the �(wza-wcaL)6 mutation was con-
structed as follows. A 423-bp fragment at the 3= end of wcaL was generated
by PCR by using primers P1 and P2 (Table 2), and a 405-bp fragment of
the 5= end of wza was generated by PCR by using primers P3 and P4 (Table
2). These two fragments were cloned into the KpnI and SacI sites of
pRE112 to generate suicide vector pYA4366. The plasmid pYA4367 for
deletion of the CA gene cluster to generate the �(wza-wcaL)7 mutation
was constructed essentially as described above except that the 423-bp
fragment was replaced with a 391-bp fragment at the 3= end of wcaL,
generated by PCR with primers P1 and P5 (Table 2). The 391-bp and
405-bp fragments were cloned into the KpnI and SacI sites of pRE112 to
generate suicide vector pYA4367. Plasmid pYA4368 for deletion of the CA
gene cluster to generate the �(wza-wcaM)8 mutation was constructed
essentially as described above except that the 423-bp fragment at the 3=
end of wcaL was replaced with a 418-bp fragment at the 3= end of wcaM,
generated by PCR with primers P6 and P7 (Table 2). The 418-bp and
405-bp fragments were cloned into the KpnI and SacI sites of pRE112 to
generate suicide vector pYA4368.

The �(wza-wcaM)8 mutation deletes 20 genes from the start codon of
wza to the stop codon of wcaM. It was introduced into S. Typhimurium
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strains �9241, �9558, and �9837 by allelic exchange using the suicide
vector pYA4368 to generate strains �11370, �9902, and �9903, respec-
tively. The presence of the 22,624-bp deletion was confirmed by PCR with
a primer set flanking the deletion region, primers P4 and P6 (Table 2).

SDS-PAGE, immunoblot analyses, and GFP detection. Vaccine
strains from static cultures grown overnight at 37°C in LB broth with
0.05% arabinose and/or 0.1% mannose were diluted 1:100 into the same
medium at 37°C. The culture was grown with aeration at 37°C to an
optical density at 600 nm (OD600) of 0.5 with continued growth for 4 h
after addition of 1 mM IPTG (isopropyl-�-D-thiogalactopyranoside).
Equal numbers of cells were collected for each culture. All samples were
subjected to SDS-PAGE and Western blotting as previously described
(76).

For detection of green fluorescent protein (GFP), cells were grown as
described above. After addition of 1 mM IPTG to induce the GFP synthe-
sis, the cells were cultured for an additional 5 h at 25°C with shaking. The
fluorescence intensity and OD600 were measured using a SpectraMax M2e

microplate reader (Molecular Devices). The relative expression levels
were calculated by the ratio of fluorescence to OD600.

Animals. Six-week-old female BALB/c mice were obtained from
Charles River Laboratories (Wilmington, MA). All animal protocols were
approved by the ASU IACUC and complied with the rules and regulations
of the American Association for Accreditation of Laboratory Animal
Care. The mice were acclimated for 7 days after arrival before the experi-
ments were started.

Virulence, immunogenicity, and protection tests in mice. Virulence
tests for determination of the 50% lethal dose (LD50) were as described
previously (76). LB was supplemented with 0.05% arabinose and/or 0.1%
mannose when needed. Static overnight cultures of recombinant attenu-
ated Salmonella vaccine (RASV) strains were diluted 1:100 into LB broth
with 0.05% arabinose and/or 0.1% mannose at 37°C. Each culture was
grown with aeration at 37°C to an OD600 of 0.85 to 0.9. Procedures for cell
collection, immunization, blood and vaginal wash sample collection, and
storage have been described previously (76). Groups of mice were orally
inoculated with approximately 1 � 109 CFU of vaccine strains. The mice
were boosted with approximately 1 � 109 CFU of the same strain at week
6. At week 10, mice were challenged by intraperitoneal (i.p.) injection with
2 � 104 CFU of S. pneumoniae WU2 in 100 �l of BSG (33), which is
equivalent to 100 times the LD50. Challenged mice were monitored for
death daily for 30 days.

Antigen preparation and ELISA. Recombinant PspA (rPspA) protein
and Salmonella outer membrane proteins (SOMPs) were purified as de-
scribed previously (76). The rPspA clone was a kind gift from Susan Hol-
lingshead at the University of Alabama at Birmingham. Enzyme-linked
immunosorbent assay (ELISA) was used to assay antibodies to S. Typhi-
murium SOMPs and rPspA in serum and to rPspA in vaginal washes as
described previously (76).

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Relevant characteristicsa Reference

Strains
E. coli

�6212 F� 	� 
80 �(lacZYA-argF) endA1 recA1 hsdR17 deoR thi-1 glnV44 gyrA96 relA1 �asdA4 104
�7213 thi-1 thr-1 leuB6 fhuA21 lacY1 glnV44 �asdA4 recA1 RP4 2-Tc::Mu (	 pir) Kmr 105

S. enterica serovar Typhimurium
�3761 UK-1 71
�8650 �3761 �pmi-2426 61
�8831 �3761 �(gmd-fcl)26 52
�8868 �pmi-2426 �(gmd-fcl)26 81
�9241 �pabA1516 �pabB232 �asdA16 �relA198::araC PBAD lacI TT �araBAD23 74
�9535 �3761 �(wza-wcaL)6 This study
�9536 �3761 �(wza-wcaL)7 This study
�9537 �3761 �(wza-wcaM)8 This study
�9540 �pmi-2426 �(wza-wcaM)8 This study
�9558 �pmi-2426 �Pfur81::TT araC PBAD fur �Pcrp527::TT araC PBAD crp �asdA27::TT araC PBAD c2

�araE25 �araBAD23 �relA198::araC PBAD lacI TT �sopB1925 �agfBAC811 �(gmd-fcl)26
56

�9837 �9558 �lrp-23 This study
�9902 �9558 �(wza-wcaM)8 This study
�9903 �9837 �(wza-wcaM)8 This study
�11370 �9241 �(wza-wcaM)8 This study

S. pneumoniae WU2 Wild-type virulent, encapsulated type 3 strain 75

Plasmids
pRE112 Suicide plasmid, 	 pir dependent, oriT, oriV, sacB, Cmr 106
pYA3493 Periplasmic secretion plasmid based on �-lactamase N-terminal signal sequence, pBR ori, Ptrc, AsdA� 84
pYA4088 849-bp DNA encoding the �-helical region of PspA Rx1 from amino acid 3 to 285 in pYA3493 76
pYA4366 pRE112 derivative for constructing �(wza-wcaL)6 mutation This study
pYA4367 pRE112 derivative for constructing �(wza-wcaL)7 mutation This study
pYA4368 pRE112 derivative for constructing �(wza-wcaM)8 mutation This study

a TT, transcription terminator.

TABLE 2 Primers used in this study

Primer Sequence

P1 5= ATATAGGTACCGCGAACATCCAGCGTCACATTG 3=
P2 5= ACGCGAGATCTCAGCCTGCTACAAACGATATAAAC 3=
P3 5= CGCGAGATCTGATTATTTATCACTTTGGCAG 3=
P4 5= ACGAGGAGCTCCTTGCCTGTCATTAGGTTAG 3=
P5 5= ATATGAGATCTATGCCCGCGACTAAATTCTCCCG 3=
P6 5= GTGAAGGTACCAAGTTCATAAGAGGTGTCGAAGTG 3=
P7 5= CGCTGAGATCTGTACCGCTATTTTTACGAAAATTC 3=

Wang et al.
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IL-4, IFN-�, and IL-17 ELISPOT and ASC assays. One week after
boosting at 6 weeks, spleen and lung cells were harvested from three or
four mice from each group. Enzyme-linked immunospot (ELISPOT) as-
says were performed to test interleukin-4 (IL-4)-, gamma interferon
(IFN-)-, and IL-17-secreting cells in triplicate wells as previously de-
scribed (77). IgG and IgA antibody-secreting cells (ASCs) in spleens and
lungs were detected in triplicate as previously described (78). All antibody
pairs used were from BD Biosciences.

Statistics. Statistical analyses were performed by using the GraphPad
Prism 5 software package (Graph Software, San Diego, CA). Antibody
titers were expressed as means � standard errors. The means were evalu-
ated with two-way analysis of variance (ANOVA) and Bonferroni tests for
multiple comparisons among groups. Differences were considered signif-
icant at a P value of �0.05.

RESULTS
Construction of strains with CA operon deletion. We con-
structed three different mutations in the CA biosynthetic operon,
�(wza-wcaL)6, �(wza-wcaL)7 and �(wza-wcaM)8 (Fig. 1). There
were 19 genes deleted in the �(wza-wcaL)6 and �(wza-wcaL)7
mutations and 20 genes deleted in the �(wza-wcaM)8 mutation.
The �(wza-wcaL)6 mutation still has the SD sequence of wcaM,
while �(wza-wcaL)7 does not. We also had another mutation,
�(gmd-fcl)26, with two genes, gmd and fcl, deleted in the CA
operon (Fig. 1). The �(gmd-fcl)26 mutation deletes only genes
related to the GDP-mannose conversion to GDP-fucose, one of
the precursors of CA, whereas the �(wza-wcaL)6, �(wza-wcaL)7,
and �(wza-wcaM)8 mutations also remove the genes important
to colanic acid synthesis, modification, polymerization, export
(wzc and wzxC), and translocation (wza) and the GDP-mannose
pathway, which is related to O-antigen synthesis (cpsG and manC)
(6, 79). The Wza, Wzb, and Wzc proteins are highly conserved in
bacteria that produce capsular polysaccharides (CPS) and extra-
cellular polysaccharide (EPS) (80). They are required for translo-
cation and surface assembly of EPS or CPS, which are tightly as-
sociated with the surface of the bacterial cell (5, 80). There is no
difference between the growth of strains with the �(wza-wcaL)6,
�(wza-wcaL)7, or �(wza-wcaM)8 mutation (data not shown).
Because wcaM was shown to be important for biofilm formation
on tissue cultures (47), we decided to use the larger deletion mu-
tation �(wza-wcaM)8, which deletes the wcaM gene, to continue
our work.

Virulence of strains with CA operon deletion mutations in
mice. The presence or absence of CA did not affect the virulence of
the human blood isolate E. coli O4/K54/H5 strain in the rat gran-
uloma pouch, an in vivo model for localized infection, and after
intraperitoneal inoculation into mice, a systemic infection model

(35). To evaluate the effect of the CA operon deletion mutants on
Salmonella virulence, we determined the LD50s of strains with or
without the CA mutation in mice (Table 3). The wild-type strain
�3761 was highly virulent, with an LD50 of 1 � 104 CFU, which is
consistent with previous reports (61). The strain �8831 [�(gmd-

FIG 1 Schematic map showing chromosome deletion of different CA gene mutations. The mutation �(gmd-fcl)26 deletes 2 genes, gmd and fcl. Mutations
�(wza-wcaL)6 and �(wza-wcaL)7 delete 19 genes of the CA gene cluster; the former keeps the SD sequence of wcaM, while the latter does not. Mutation
�(wza-wcaM)8 deletes all 20 genes in the CA gene cluster.

TABLE 3 Virulence of �(wza-wcaM)8 mutants in 7-week-old BALB/c
mice infected by oral inoculationa

Strain LD50 (CFU)
Dose
(CFU)

No. of
survivors/total Groupb

�3761 (wild type) � 1 � 104 0.9 � 106 0/5 a
0.9 � 105 1/5
0.9 � 104 0/5
0.9 � 103 1/5

�8650 (�pmi-2426) �0.76 � 108 0.76 � 109 0/5 a
0.76 � 108 4/5
0.76 � 107 3/5
1.0 � 108 3/5 b
1.0 � 107 4/5

�8831 [�(gmd-fcl)26] � 8.6 � 104 5.9 � 105 1/4 c
5.9 � 104 4/4
5.9 � 103 4/4
5.9 � 102 4/4
8.6 � 106 0/4 d
8.6 � 105 0/4
8.6 � 104 0/4
8.6 � 103 1/4

�9537 [�(wza-wcaM)8] �1 � 104 0.9 � 106 0/2 e
0.9 � 105 0/2
0.9 � 104 1/2
1.8 � 106 0/5 a
1.8 � 105 0/5
1.8 � 104 1/5

�8868 [�(gmd-fcl)26
�pmi-2426]

�108 1.08 � 109 2/5 f
1.08 � 108 0/5
1.08 � 107 5/5

�9540 [�pmi-2426
�(wza-wcaM)8]

�1.0 � 107 1.8 � 108 0/2 e
1.8 � 107 0/2
1.8 � 106 0/2
1.2 � 109 1/5 a
1.2 � 108 2/5
1.2 � 107 2/5
1.04 � 109 1/5 f
1.04 � 108 2/5
1.04 � 107 2/5

a All strains were grown in LB broth except strains with the �pmi-2426 mutation, which
were grown in LB broth with 0.1% mannose. The data are from different experiments.
b The same letter indicates that experiments were carried on the same batch of mice.
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fcl)26] was not effected in virulence (Table 3) (81). The LD50 of
strain �9537 [�(wza-wcaM)8] was similar to that of the wild-type
strain (Table 3). Strain �8650 (�pmi-2426) has an LD50 of over
0.76 � 108 (Table 3) (61). Strain �9540 [�pmi-2426 �(wza-
wcaM)8] has an LD50 of about 107, which is about a 10-times-
higher virulence than that of its parent strain �8650 (�pmi-2426)
(Table 3). The LD50 of �8868 [�pmi-2426 �(gmd-fcl)26] was be-
tween 107 and 108 CFU (Table 3). These results showed that CA
operon deletion alone does not affect virulence; however, it
slightly increased the virulence when combined with the �pmi-
2426 mutation.

Synthesis of rPspA in attenuated Salmonella vaccine strains
with different attenuation characteristics. To evaluate the effect
of the CA operon deletion in recombinant attenuated Salmonella
vaccine (RASV) strains, we introduced the �(wza-wcaM)8 muta-
tion into two sets of strains derived from either �9241 or �9558.
RASV strains �9241 and �9558 have been successfully used to
deliver the pneumococcal surface protein PspA and to induce pro-
tective immunity against S. pneumoniae challenge in mice (53,
76). They represented two kinds of attenuation strategies. Strain
�9241 adopts the auxotrophic character of �pabA �pabB muta-
tions (82). Genes pabA and pabB are two unlinked genes that
encode the two subunits of 4-amino-4-deoxy-chorismate syn-
thase, which is required for the production of folic acid in Salmo-
nella. Mutations in either of these genes cause attenuation due to
the fact that Salmonella cannot assimilate folic acid from the en-
vironment (83). Strain �9558 is based on using the regulated de-
layed attenuation strategy (RDAS) (52). In strains with this strat-
egy, bacteria are expected to display features of wild-type virulence
of Salmonella at the time of oral vaccination to enable strains to
first effectively colonize lymphoid tissues and then exhibit atten-
uation gradually in vivo. Thus, �9241 and �9558 provided two
kinds of attenuation backgrounds for evaluating the efficacy of the
CA operon deletion in vaccine strains. Both �9241 and �9558
carry a �asdA deletion to facilitate use of the Asd� balanced-lethal
antigen-encoding plasmid. The �(wza-wcaM)8 mutation was in-
troduced into �9241 and �9558 to generate the corresponding
strains �11370 and �9902, respectively. This mutation was also
introduced into �9837, a derivative of �9558 with the �lrp-23
mutation, which enhances the invasion of epithelial cells (70), to
yield the corresponding strain �9903. In strains �9902 and �9903,
the larger CA operon deletion �(wza-wcaM)8 replaced the small
deletion �(gmd-fcl)26 in �9558 and �9837. All these strains were
then transformed with the recombinant Asd� plasmid pYA4088,
carrying a recombinant pspA gene fused to DNA encoding the
�-lactamase signal sequence (76), or the control empty Asd� plas-
mid pYA3493 (84).

We then evaluated PspA synthesis by these strains carrying
plasmid pYA4088 or pYA3493. There was no PspA synthesis in
strains carrying the control plasmid pYA3493. All strains with
plasmid pYA4088 can synthesize a 37-kDa protein that specifically
reacts with rabbit anti-rPspA antibody, as expected (Fig. 2A). Al-
though in our initial test, we found that PspA synthesis in strain
�11370 [�(wza-wcaM)8] decreased 26% compared with that in
parent strain �9241 [(wza-wcaM)�] (Fig. 2A), repeated experi-
ments showed that they produced similar levels of PspA synthesis
(Fig. 2B). The PspA level synthesized in strain �9558 [�(gmd-
fcl)26] was 18% less than that in strain �9902 [�(wza-wcaM)8]
(Fig. 2A). We repeated this experiment 8 times with duplicates.
The results confirmed that strain �9558 produced 18% less PspA

than strain �9902 [�(wza-wcaM)8] (P � 0.05) (Fig. 2B). How-
ever, strain �9837 [�lrp-23 �(gmd-fcl)26] produced similar
amounts of PspA as did �9903 [�lrp-23 �(wza-wcaM)8] (P �
0.48) (Fig. 2B). Next, we used GFP to evaluate whether the �(wza-
wcaM)8 mutation can increase the level of protein synthesis by
measuring the ratio of relative fluorescence to OD600 (Table 4).
Strain �9902 [�(wza-wcaM)8] generally gave about 3 to 6% more
GFP fluorescence than strain �9558 [�(gmd-fcl)26] (P � 0.05). In
another comparison, strain �9903 [�lrp-23 �(wza-wcaM)8] pro-
duced 3 to 7% more GFP than its parent strain �9837 [�lrp-23
�(gmd-fcl)26] (P � 0.05). However, strains �9241 and �11370
[�(wza-wcaM)8] showed similar levels of GFP syntheses. These
results showed that the mutation �(wza-wcaM)8 can increase re-
combinant protein production in RDAS strains, but the amount
of increase varied according to the antigen and strain background.
Considering the methods for detection of these two antigens, i.e.,
Western blotting for PspA and fluorescence for GFP, the latter is
more sensitive than the former. Thus, a precise method and
enough repeated tests are needed to measure the marginal im-
provement of antigen synthesis in strains with the CA deletion.

Immune responses in strains attenuated by auxotrophic
traits. We first evaluated the effect of the CA operon deletion
mutation on the immunogenicity of auxotrophic attenuated

FIG 2 PspA synthesis in S. Typhimurium vaccine strains. (A) The Western
blots show PspA synthesis in �9241, �11370 [�9241 �(wza-wcaM)8], �9558,
�9837 (�9558 �lrp-23), �9902 [�9558 �(wza-wcaM)8], and �9903 [�9558
�lrp-23 �(wza-wcaM)8] carrying plasmid pYA3493 (vector control) or
pYA4088 (specifying PspA amino acids 3 to 285). After induction of PspA
synthesis with 1 mM IPTG, strains were continually grown for 4 h at 37°C.
Equal numbers of cells from each culture were subjected to SDS-PAGE, trans-
ferred to nitrocellulose membranes, and probed with different polyclonal an-
tibodies specific for either PspA or GroEL. GroEL was used as a standardiza-
tion marker. Relevant portions of each blot are shown. The bands were
normalized according to the densitometry of �9241. Lanes 1, control vector
pYA3493; lanes 2, pspA expression vector pYA4088. (B) Relative densitometry
of PspA synthesis in different strains. The results are averages from 8 indepen-
dent experiments with duplicates. The densitometry of �9241 or �9558 was
used for normalizing bands from strains derived from �9241 or �9558, respec-
tively. *, P � 0.05 by paired two-tailed t test.
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strain �9241. Strain �11370 is derived from �9241 with the CA
operon deletion mutation �(wza-wcaM)8. Both RASV strains
carrying pYA4088 induced similar anti-PspA serum IgG re-
sponses at 8 weeks (Fig. 3A). Strain �11370 [�(wza-wcaM)8] in-
duced 4- or 2-times-lower vaginal IgA antibody responses at 2 and
4 weeks, respectively, but 2-times-higher responses at 6 and 8
weeks (Fig. 3B). The vaginal IgA responses in mice induced by

�11370 [�(wza-wcaM)8] slowly increased during 8 weeks, and the
increase of IgA responses were faster in mice immunized with
�11370 than in mice immunized with its parent strain �9241 (Fig.
3B). These results showed that strains with the CA operon deletion
can slightly increase the mucosal immune responses against a het-
erologous antigen delivered by RASV strains. No anti-PspA anti-
bodies were detected in sera or vaginal secretions of mice immu-

TABLE 4 GFP protein synthesis levelsa

Strain (with gfp expression plasmid) Relevant genotype

Relative synthesis level (fluorescence/OD600)b in expt:

1 2 3

Control 48.2 � 0.6 32.8 � 2.4 56.8 � 2.5
�9241 Wild type 748.6 � 22.0 860.7 � 26.2 743.4 � 20.3
�11370 �(wza-wcaM)8 789.9 � 17.9 853.0 � 30.1 754.9 � 24.7
�9558 �(gmd-fcl)26 998.9 � 57.4 1,221.1 � 28.0 947.1 � 40.0
�9902 �(wza-wcaM)8 1,031.2 � 53.9 1,287.6 � 47.3** 1,008.7 � 46.0*
�9837 �lrp �(gmd-fcl)26 987.0 � 59.9 1,146.6 � 21.5 938.1 � 39.1
�9903 �lrp �(wza-wcaM)8 1,059.1 � 41.9* 1,224.9 � 22.3** 1,035.4 � 51.2**
a The synthesis of the GFP proteins in strains with or without the �(wza-wcaM)8 mutation was compared. After induction of GFP synthesis with 1 mM IPTG, cultures were
continually grown at 25°C for 5 h with agitation, and readings were taken every hour to monitor the fluorescence intensity and cell density (optical density at 600 nm [OD600]).
b The values represent average fluorescence/OD600 values at 4 h calculated from sextuple or octuple samples from three independent experiments; errors are standard deviations. *,
P� 0.05; **, P� 0.01 [for comparison between strains with or without mutation �(wza-wcaM)8].

FIG 3 Immune responses against PspA in mice immunized with RASV strains attenuated by mutations conferring auxotrophy. Serum and mucosal antibody
titers in pooled samples from mice orally immunized with approximately 1 � 109 CFU of attenuated Salmonella vaccine strains harboring either control plasmid
or pspA-encoding plasmid were determined by ELISA. (A) Serum IgG against rPspA; (B) mucosal IgA in vaginal wash against rPspA; (C) serum IgG against S.
Typhimurium OMPs. (D) Numbers of IgG- and IgA-producing cells in spleens and lungs were determined by ELISPOT assay. Splenocytes and lung cells were
harvested from 3 mice per group at 7 days after the boost immunization. The results from each well are expressed as spots per million splenocytes or lung cells
minus background (typically �15 spots) from cells unstimulated with rPspA. Significant differences between groups are indicated and were determined using
two-way ANOVA and Bonferroni tests. **, P � 0.01.
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nized with strains with the control plasmid pYA3493, which did
not specify synthesis of rPspA (data not shown). Although the CA
operon was deleted in �11370, this did not change the anti-SOMP
responses compared with those for strain �9241 with the wild-
type CA operon (Fig. 3C), which indicated that the CA operon
deletion does not compromise the ability of the vaccine strain to
induce antibody responses against Salmonella. At 6 and 8 weeks,
the anti-SOMP IgG titer in mice immunized with the same strains
containing empty vectors is slightly higher than that in mice im-
munized with the strains containing PspA expression vectors,
which was observed in other papers published from our lab (85).
This was mainly due to the growth advantage that the strain har-
boring the empty vector has over that harboring a plasmid speci-
fying antigen synthesis.

The serum immune responses to rPspA were further examined
by measuring the levels of IgG isotype subclasses IgG1 and IgG2a,
which are indicators of Th2 cells directing the humoral response
or Th1 cells directing the cellular immunity (86, 87). Th1-type
dominant immune responses are frequently observed after immu-
nization with attenuated Salmonella strains (88–90). All strains
induced high IgG1 and IgG2a responses, indicating a mixed Th1
and Th2 response (see Fig. S1 in the supplemental material). The
IgG2a titers were slightly higher than IgG1 titers induced by both
strains �9241(pYA4088) and �11370(pYA4088) at different weeks
postimmunization, indicating that the reaction is slightly skewed

to the Th1 response. These results showed that the CA operon
deletion mutation did not affect the Th1/Th2 balance.

We further evaluated the presence of PspA-specific IgG and
IgA ASCs in spleens and lungs at 7 weeks, i.e., 7 days after boosting
at 6 weeks. Strain �11370 [�(wza-wcaM)8] induced lower num-
bers of IgG ASCs and similar numbers of IgA ASCs as the numbers
induced by the parent strain �9241 in spleens. However, strain
�11370 induced similar numbers of IgG ASCs to and significantly
higher numbers of IgA ASCs than strain �9241 in lungs (P � 0.01)
(Fig. 3D). The ASCs are responsible for recall immune responses
that confer protection against infection. The generation of IgA
ASCs in the lung is important to fight against S. pneumoniae in-
fection since lungs are the primary invasion sites of S. pneumoniae,
and mouse lung has IgA-bearing lymphocytes that help against
pneumococcal infection through an IgA-driven mechanism (91).
The higher IgA ASC responses in lungs at 7 weeks were correlated
with the slightly enhanced IgA responses in vaginal washes at 6
and 8 weeks (Fig. 3B). Thus, these results suggested that the CA
operon deletion mutation helps to generate better mucosal im-
mune responses.

Antibody responses in strains with RDAS. We further evalu-
ated the effects of the CA operon deletion mutation on immuno-
genicity in strains with RDAS. At 8 weeks, all RASV strains carry-
ing pYA4088 induced strong anti-PspA serum IgG responses (Fig.
4A). Strain �9902(pYA4088) [�(wza-wcaM)8] induced 64-times-

FIG 4 Immune responses against PspA in mice immunized with RASV strains attenuated by RDAS. Serum IgG responses to rPspA (A) and to S. Typhimurium
OMPs (C) and vaginal wash IgA responses to rPspA (B) were measured by ELISA. The data represent reciprocal anti-IgG antibody levels in pooled sera from mice
orally immunized with attenuated Salmonella carrying either plasmid pYA3493 (control) or pYA4088 (specifying rPspA) at the indicated weeks after immuni-
zation. The mice were inoculated with 2.135 � 109 CFU �9558(pYA3493), 1.275 � 109 CFU �9558(pYA4088), 1.94 � 109 CFU �9837(pYA3493), 2.075 � 109

CFU �9837(pYA4088), 2.16 � 109 CFU �9902(pYA3493), 1.645 � 109 CFU �9902(pYA4088), 2.12 � 109 CFU �9903(pYA3493), or 2.075 � 109 CFU
�9837(pYA4088) and boosted at 6 weeks with 2.22 � 109 CFU �9558(pYA3493), 2.14 � 109 CFU �9558(pYA4088), 2.24 � 109 CFU �9837(pYA3493), 2.47 �
109 CFU �9837(pYA4088), 1.99 � 109 CFU �9902(pYA3493), 2.19 � 109 CFU �9902(pYA4088), 2.025 � 109 CFU �9903(pYA3493), or 2. 5 � 109 CFU
�9837(pYA4088), respectively. Error bars represent variation between triplicate wells.
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higher anti-PspA antibody titers than its parent strain
�9558(pYA4088) at all weeks except at 8 weeks, when it induced a
4-times-higher titer (Fig. 4A). Strain �9837(pYA4088) with the
�lrp-23 mutation also induced 64-times-higher anti-PspA anti-
body responses than parent strain �9558(pYA4088) at 2 and 6
weeks. Strain �9903(pYA4088) [�lrp-23 �(wza-wcaM)8] induced
32-times-higher antibody responses than �9558(pYA4088) at 2 and 4
weeks but lower responses than strain �9902(pYA4088) except at
week 8 and lower responses than strain �9937(pYA4088) at weeks 2
and 6 (Fig. 4A). Strain �9558(pYA4088) induced undetectable IgA
responses against PspA at week 2, whereas all other strains in-
duced detectable responses. At week 8, strain �9903(pYA4088)
induced 8 times more IgA than �9837(pYA4088) (Fig. 4B). Nota-
bly, strain �9902 [�(wza-wcaM)8] with the CA operon deletion
induced higher anti-PspA IgG and IgA antibody titers than �9558
at 2 weeks (Fig. 4A and B). No anti-PspA antibodies were detected
in sera or vaginal secretions of mice immunized with control
strains that did not express pspA. All immunized mice developed
high titers against S. Typhimurium SOMPs (Fig. 4C). The SOMP
responses showed trends similar to those for the anti-PspA anti-
body responses, with strain �9902(pYA4088) inducing higher an-
tibody response than any other strain harboring plasmid pYA4088
at 8 weeks (Fig. 4C). Strains �9902(pYA4088), �9837(pYA4088),
and �9903(pYA4088) induced higher anti-SOMP responses than
�9558(pYA4088) at 2 weeks. The anti-SOMP antibody titers in-
duced by strain �9902(pYA4088) were similar to those induced by
the same strain harboring the empty plasmid pYA3493 at 2, 4, and
6 weeks. The same trend was seen in strain �9837 at 2 and 6 weeks.

IgG1 and IgG2a in strains with RDAS. We further measured
the IgG1/IgG2a responses against PspA (86, 87) in strains with
RDAS. Mice immunized with attenuated Salmonella strains usu-
ally generate a Th1-type dominant immune response (88–90). We

observed that all strains induced high IgG1 and IgG2a responses,
indicating a mixed Th1 and Th2 response against PspA (Fig. 5A to
D). The IgG2a titers were slightly higher than IgG1 titers in strains
�9558(pYA4088) and �9902(pYA4088) at weeks 4, 6, and 8
postimmunization, indicating that the reaction is slightly skewed
to the Th1 response (Fig. 5A and C). Strain �9837(pYA4088) in-
duced higher IgG1 than IgG2a titers at 2 weeks, indicating a Th2
type response at early times, and then it changed to a balanced
Th1/Th2 response (Fig. 5B); similar results were seen with
�9903(pYA4088) (Fig. 5D). These results showed that deletion of
the CA operon did not affect the Th1/Th2 balance; however, in-
clusion of the �lrp-23 mutation slightly skewed to a Th2 response
at 2 weeks and resulted in a more balanced Th1/Th2 response at 8
weeks. Consistent with previous results, strains �9902(pYA4088),
�9837(pYA4088), and �9903(pYA4088) induced higher IgG1 and
IgG2a responses than �9558(pYA4088) at 2 weeks after vaccina-
tion (Fig. 5).

Antigen-specific stimulation of IL-4 or IFN-� production in
strains with RDAS. We further examined PspA-specific responses
in mice immunized with strains �9558 and �9837 and their deriv-
atives �9902 and �9903 with the CA operon deletion mutation.
ELISPOT assays were used to compare PspA stimulation of IFN-
(Th1 associated), IL-4 (Th2 associated), and IL-17 (Th17 associ-
ated) production by spleen cells taken from immunized and con-
trol mice at week 7 (Fig. 6). The numbers of PspA-specific IL-4-
secreting cells were similar in spleens from mice immunized with
different strains, with �9837 giving slightly higher numbers than
others (Fig. 6A), while the number of PspA-specific IFN--secret-
ing cells in mice immunized with strain �9902 was significantly
higher than that in mice immunized with strains �9558 and �9903
(P � 0.05) (Fig. 6B). Strain �9837 also generated more IFN--
secreting cells than strains �9558 and �9903 (P � 0.05) (Fig. 6B).

FIG 5 Serum IgG1 and IgG2a responses to rPspA measured by ELISA. The data represent IgG1 and IgG2a subclass antibody levels to rPspA in pooled sera from
orally immunized mice at various numbers of weeks after immunization. Error bars represent variation between triplicate wells. The inoculation doses were same
as for Fig. 4.
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The four strains induced similar numbers of IL-17-secreting cells,
which were similar to the numbers of IL-4 secreting cells (Fig. 6C).

We further checked whether mice immunized with different
doses (108 to 109 CFU) of strains �9558 and �9902 could generate

different numbers of IL-4- and IFN--secreting cells. The number
of PspA-specific IL-4 secreting cells induced by both strains in-
creased with escalating dose. In each strain, the dose of 109 CFU
induced significantly higher numbers of IL-4-secreting cells than

FIG 6 PspA-specific stimulation of IL-4 (A and D)-, IFN- (B and E)-, and IL-17 (C)-producing cells in mice immunized with �9558(pYA4088),
�9837(pYA4088), �9902(pYA4088), or �9903(pYA4088). Numbers of secreting cells were determined by ELISPOT assays. Splenectomies were performed on
euthanized mice 7 days after the boosting immunization. Mice immunized with the same strains harboring the control plasmid pYA3493 were included as
controls. Splenocytes were harvested from 3 mice per group, and cells from each spleen were assayed in triplicate. Each symbol represents the results from a single
well. The results from each well are expressed as spots per million splenocytes or lung cells minus background (typically �15 spots) from cells unstimulated with
rPspA. The inoculation doses for panels A, B, and C were same as for Fig. 4. The inoculation doses for panels D and E were 2.02 � 109 CFU �9558(pYA3493),
2.18 � 108 or 2.18 � 109 CFU �9558(pYA4088), 2.13 � 109 CFU �9902(pYA3493), and 2.47 � 108 or 2.47 � 109 CFU �9902(pYA4088), and boost doses were
1.59 � 109 CFU �9558(pYA3493), 1.46 � 108 or 1.46 � 109 CFU �9558(pYA4088), 1.43 � 109 CFU �9558(pYA3493), and 1.18 � 108 or 1.18 � 109 CFU
�9902(pYA4088), respectively. **, P � 0.01; ***, P � 0.001. ###, compared with same dose, P � 0.001.
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the dose of 108 CFU. Strain �9902 induced similar numbers of
IL-4-secreting cells as did �9558 at the same dose (Fig. 6D) but
induced significantly higher numbers of PspA-specific IFN--se-
creting cells than �9558 at the same dose (Fig. 6E). The number of
IFN--secreting cells induced by �9558 increased as the dose in-
creased from 108 to 109 CFU, while for �9902, the dose of 108 CFU
was enough to induce the highest IFN- response. The two strains
with the control vector pYA3493 did not induce either PspA-stim-
ulated IL-4- or IFN--secreting cells. Thus, strain �9902 is more
potent to induce IFN- responses.

Protection. When vaccinated mice were challenged with viru-
lent S. pneumoniae WU2, all groups that received strains carrying
the pspA expression vector pYA4088 were significantly protected
compared to those receiving the same strain carrying the empty
vector pYA3493, except for �9837(pYA4088) (P � 0.01) (Fig. 7).
In the first group of experiments, two strains, �9241 and �11370
[�(wza-wcaM)8], induced similar protection in mice, with sur-
vival of 50% and 55%, respectively, at the endpoint (Fig. 7A). In
the second experiment, mice were immunized with strain �9558
and its derivatives. Protection levels in mice vaccinated with
strains �9558(pYA4088) and �9902(pYA4088) were similar, with
about 58.8% and 64.7%, respectively, surviving the challenge (Fig.
7B). However, only 23.5% and 29.4%, respectively, of the mice
vaccinated with strains �9837(pYA4088), carrying a �lrp-23 mu-
tation in �9558, and �9903(pYA4088), carrying a �(wza-wcaM)8

mutation in �9837, survived the challenge (Fig. 7B). The percent-
age of survival in mice vaccinated with strain �9902(pYA4088)
was significantly greater than that in mice vaccinated with
�9903(pYA4088) (P � 0.05). These results showed that strains
with the CA operon deletion mutation did not affect protection;
however, strains with the �lrp-23 mutation resulted in reduced
protection.

DISCUSSION

CA is a polysaccharide comprised of repeating subunits. It is be-
lieved to be required for biofilm formation on tissue culture cells
in S. Typhimurium (47). It was reported that a CA-deficient mu-
tant of an extraintestinal E. coli O4/K54/H5 pathovar was not af-
fected in virulence in two in vivo models (35). We first compared
the virulence of strains with a CA operon deletion mutation.
Compared with the parent strain �3761, the single CA operon
deletion strain �9537 with the �(wza-wcaM)8 mutation did not
have a change in virulence. However, compared with the parent
strain �8650 (�pmi-2426), which lack O-antigen synthesis in vivo,
the double mutation [�pmi-2426 �(wza-wcaM)8] increased the
virulence about 10-fold. CA affects the surface of the bacteria. It
was reported that the overproduction of CA in S. Typhimurium
inhibits phagocytosis (92), which is one of the relevant factors that
contributes to the attenuation of constitutively activated rcsC mu-
tants (13). Considering that CA is encoded by a large operon con-

FIG 7 Survival curves for intraperitoneal challenge with virulent S. pneumoniae strain WU2. Female BALB/c mice were immunized with the indicated strains.
Ten weeks after immunization, mice were challenged with 100 times the LD50 of virulent S. pneumoniae WU2. (A) Mice immunized with �9241 or �11370
[�(wza-wcaM)8] harboring different plasmids. The protection levels are similar in mice immunized with strains with or without CA operon deletion and are
significantly different from those for the vector control (P � 0.001 for �9241, P � 0.02 for �11370). (B) Mice immunized with �9558 [�(gmd-fcl)26], �9837
(�lrp-23), �9902 [�(wza-wcaM)8], or �9903 [�(wza-wcaM)8 �lrp-23] harboring different plasmids. PspA-expressing strains were significantly protected
compared with the same strain containing the control vector pYA3493 (P � 0.05), except for �9837(pYA4088), which induced protection but at levels not
statistically significantly different from those for the controls that gave no protection. Mice vaccinated with strain �9902(pYA4088) showed significantly greater
protection than mice vaccinated with �9903(pYA4088) or �9837(pYA4088) (P � 0.05). *, P � 0.05.
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taining 20 genes and confers a strong negative charge to the cell
surface (35), the deletion of the CA operon may have two effects
on virulence. It may reduce the metabolic burden of CA synthesis
in vivo and may increase the interaction between bacteria and host
cells, which facilitate the bacteria entering cells to result in in-
creased virulence in vivo. However, we did not observe significant
differences in attachment and invasion between wild-type and CA
mutant strains in cell culture experiments (data not shown). Thus,
further experiments are needed to address these hypotheses.

Further, we found that the whole CA operon deletion �(wza-
wcaM)8 resulted in increased levels of PspA synthesis in the �9558
background and GFP synthesis in the �9558 and �9837 back-
grounds but not in the �9241 background. There are several pos-
sible reasons. First, it was reported (93) that eliminating synthesis
of CA can increase gene expression from plasmids, because CA
inhibits RNA polymerase activity and thus RNA synthesis. Re-
moving CA leads to about 2.2- to 4.4-fold-increased reporter gene
expression in organs of mice (93). Second, compared with the
�(gmd-fcl)26 deletion mutation, with only 2 genes deleted, muta-
tion �(wza-wcaM)8, the whole operon deletion with 20 genes
deleted, directly eliminates expression of more genes and results in
a reduced overall metabolic burden. Third, the increased protein
synthesis may be related to the metabolic flow directly caused by
the whole-operon deletion. The �(gmd-fcl)26 mutation deleted
only two genes related to GDP-mannose convertible to GDP-fu-
cose. The strain with this mutation may accumulate GDP-man-
nose and other possible intermediate products that are redirected
to other metabolic pathways to be assimilated. However, strains
with the CA operon deletion will not have this problem of redi-
rection or assimilation of intermediates and lead to a reduced
metabolic burden. All these factors may contribute to the in-
creased capacity of RASV cells to synthesize more heterologous
protective antigen. We also notice, however, that this phenotype is
not universal in all strains. Although we could not see the increase
of PspA synthesis in the �9241 and �9837 backgrounds, we did see
the increase of GFP synthesis in the �9558 and �9837 back-
grounds. We inferred that this may be related to the characteriza-
tion of the protective antigen, strain backgrounds, and other, un-
known gene regulation circuits. Most functions of the gene
products specified by the Salmonella CA operon were deduced
from sequence comparison with the CA operon in E. coli and were
not fully characterized. As mentioned above, at least six genes
involved in the synthesis of GDP-fucose in Salmonella have differ-
ent donor species compared with E. coli (4). These genes might
evolve slightly different regulations or functions other than their
E. coli compartment. They may also specify synthesis of other
membrane components unique to Salmonella. This needs to be
probed in the future. Another possible reason may be the effect of
Lrp. The function of Lrp is related to the cellular metabolism and
the nutritional state of the environment. Lrp represses rRNA syn-
thesis (94). Heterologous protein synthesis is inversely related to
the transcription of lrp (95). Thus, the �lrp-23 mutation allows
the maximum upregulation of substrate uptake genes in rich me-
dium, leading to greater antigen synthesis. This mechanism might
have some overlap with �(wza-wcaM)8, leading to the results we
observed.

There have been few studies reported concerning the effect of a
CA deletion mutation on the induction of immunity. The pres-
ence of CA capsules on E. coli conferred little resistance to the
bactericidal activity of human serum or phagocytic uptake and did

not protect against intracellular killing by polymorphonuclear
leukocytes (96). We wanted to see whether the effect of the CA
deletion on immune responses was universal or not in different
strain backgrounds. Thus, we evaluated the CA deletion mutation
in strains with two different attenuation mechanisms, one
through mutations in the auxotrophic genes and another through
regulated delayed in vivo attenuation. Our results showed that the
IgA levels in mice immunized with strain �9241, attenuated by
mutations in the auxotrophic genes, were similar to those in our
previous report, with the antibody being highest at 8 weeks (76).
However, strain �11370 [�9241 �(wza-wcaM)8] induced lower
levels of IgA at 2 and 4 weeks although higher levels at 6 and 8
weeks. Strains without or with the CA deletion mutation have
similar abilities to stimulate the systemic humoral immune re-
sponses, since mice immunized with both strains generated simi-
lar titers of anti-SOMP antibodies. However, the vaginal IgA is
from both systemic and local production (97). The IgA levels in
the genital tract are subject to a strong hormonal control that
regulates the transportation of immunoglobulins, the level of cy-
tokines, the distribution of various cell populations, and antigen
presentation during the reproductive cycle as well as a compart-
mentalization of the immune response within the genital tract (97,
98). All these factors may affect the level of IgA at a given time
point. To induce effective IgA responses, two doses were needed,
while one dose failed by vaginal immunization (7). Thus, the
lower antibody levels at 2 and 4 weeks in mice immunized with
strain �11370 (�9241 �(wza-wcaM)8] may reflect that there is not
enough interaction between the antigen carried by this strain with
the host vaginal immune system. With the time lapses, there was
more contact, which led to increments of the IgA responses.

We found that introducing the �(wza-wcaM)8 deletion into
�9558 to replace the �(gmd-fcl)26 mutation can significantly in-
crease the IgG and secretory IgA antibody responses at 2 weeks
(Fig. 6), a prominent advantage in developing RASVs for use in
newborns, who require induction of early antibody responses. It
also relates to the higher antibody response against SOMPs at 2
weeks (Fig. 6). These may be related to the increased antigen syn-
thesis and/or to the reduced metabolic burden conferred by the
�(wza-wcaM)8 mutation. We also found increased levels of vag-
inal IgA at 8 weeks and antigen-specific IgA-secreting cells in the
mouse lung at 7 weeks after immunization with strain �11370
[�9241 �(wza-wcaM)8] (Fig. 3) and increased IFN--secreting
cells at 7 weeks in mice immunized with strain �9902 [�9558
�(wza-wcaM)8] (Fig. 6). At doses of 108 and 109 CFU, strain
�9902 (�9558 �(wza-wcaM)8] induced higher IFN- levels than
�9558. Strain �9837 also induced earlier antibody responses than
�9558 at 2 weeks (Fig. 6). This may relate to the hyperinvasive
ability of strains with the �lrp-23 mutation. We did not observe
the expected superimposed positive effects of the �(wza-wcaM)8
and �lrp-23 mutations on the immune responses. One explana-
tion is that there may be some overlapping of their functions. As
we mentioned above, we tried to see if strains with the �(wza-
wcaM)8 mutation have enhanced invasion ability. However, we
observed only a marginal difference between strains with or with-
out the �(wza-wcaM)8 mutation (data not shown). Another rea-
son may relate to Lrp. It is a dual transcriptional regulator and
antivirulence gene product responsible for altering expression of
10% of the genes relating to biosynthesis, nutrient transportation,
and DNA packaging (70, 99); some of the downstream genes may
lead to the poor T cell responses and protection (Fig. 6 and 7) and
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even eliminate the benefit of the �(wza-wcaM)8 mutation. Com-
pared to the benefit of including a single mutation, either �lrp-23
or the �(wza-wcaM)8, the additional benefit of including both
mutations in a strain was not prominent, with the observation that
strain �9903 showed antibody responses higher than those of
�9558 but similar to those of �9837 at 2 weeks (Fig. 5). We ob-
served the increment of IgA and IgG responses in mice immu-
nized with �9902; whether this could lead to better protection if
we challenged the mice earlier with an S. pneumoniae strain that
colonizes the nasal pharynx is not clear. Such experiments will give
more evidence of the benefit of CA deletion mutation. Generally,
the mutation �(wza-wcaM)8 helped to generate better immune
responses, especially mucosal responses, though the kinetics of
antibody responses in vaccine strains with different attenuation
mechanisms varied.

Although inclusion of �lrp-23 increases invasiveness in some
strain backgrounds (70), strain �9837 (�9558 �lrp-23) induced a
lower vaginal IgA response at 8 weeks and strain �9903 [�9558
�lrp-23 �(wza-wcaM)8] induced lower PspA-specific IFN- and
IL-4 responses. Strains �9902 and �9903, with the same genotypes
except the �lrp-23 mutation, produced similar amounts the PspA
and similar levels of anti-PspA responses; strain �9903 induced a
significantly lower level of IFN- secreting cells. These weaknesses
in strains �9837 and �9903 may lead to the poor protection ob-
served with these strains. Compared with them, strain �9902 in-
duced decent anti-PspA IgG and IgA responses, as well as a better
IFN- response. Given these considerations, strain �9902 is supe-
rior to strains �9837 and �9903.

When testing the strains with the �(wza-wcaM)8 mutation,
the differences in protective antigen production in strains attenu-
ated with autotrophic characters is not as much as observed in
strains with RDAS. Also, only at 8 weeks, we could see a higher IgA
antibody response in �11370 with the �(wza-wcaM)8 mutation
than in its parent. This contrasts to the case for strains with RDAS,
which induced increased titers of anti-PspA and anti-SOMP IgG
and IgA at 2 weeks. A possible reason is that this is related to the
strain backgrounds. There are two hypotheses. (i) The function of
the �(wza-wcaM)8 mutation may be pronounced only when
combined with mutations that affect the cell surface. Strain �9241
has only 5 mutations, with no mutation related to the modifica-
tion of cell surface molecules; however, strain �9558 with RDAS
has 10 mutations, with a mutation, �pmi-2426, affecting the cell
surface molecule O antigen. Although both strains are used as
attenuated vaccine vectors, strain �9558 is more attenuated than
strain �9241. As we observed (Table 3), a strain with both the
�(wza-wcaM)8 and �pmi-2426 mutations showed higher viru-
lence. This might be one of the reasons why the �(wza-wcaM)8
mutation performs differently in different backgrounds. (ii) The
function of the �(wza-wcaM)8 mutation may be related to the
number of mutations a strain has. The generation of mutations in
the chromosome disrupts the normal physiological state of bacte-
ria. The more mutations are added, the more stress is exerted on
the bacteria. In this case, one mutation may negatively affect the
performance of another mutation. Thus, the balance among mul-
tiple mutations should be carefully evaluated. Optimization of
different combinations of mutations is necessary to achieve opti-
mal results (100). More experiments are required to clarify which
is the correct reason or whether both reasons play a role in the
performance of the �(wza-wcaM)8 mutation.

It was reported that CA is a main contaminant present in plas-

mid compositions used as DNA vaccines or for gene therapy (93).
The CA component in nucleic acid preparations used for gene
therapy can induce toxic effects in humans and other mammals
(93). It is difficult to separate CA from nucleic acids using current
standard purification procedures, even from a clinical-grade cur-
rent good manufacturing practice (cGMP) preparation. A CA-
degrading enzyme from phage NST1 was therefore used to re-
move CA in nucleic acid preparations for gene therapy. There are
several phages that encode an enzyme that can degrade CA (93,
101, 102). Since CA overproduction prevents phage infection
(103), an additional benefit of deletion of the CA operon in Sal-
monella vaccine strains is to increase its lysis by bacteriophages,
which help to reduce the persistence of bacteria in vitro to increase
the biocontainment character. Since CA expression is induced by
antibiotic treatments (21), deletion of the CA operon may facili-
tate elimination of the vaccine strain by antibiotics, if necessary.

We are focusing on developing vaccine strains with the RDAS
background. RDAS is a creative and effective way to increase vac-
cine efficacy and safety (52, 56). Results from a phase I clinical trial
with three RDAS S. Typhi vaccine strains showed that they were
safe (data not shown). The three RDAS S. Typhi vaccine strains
have same genotypes as in S. Typhimurium vaccine strain �9558
(54). In continuing efforts to increase the vaccine efficacy and
safety of S. Typhimurium vaccine strain �9558 and its isogenotype
S. Typhi vaccine strains, we found several candidate mutations.
One is the �(wza-wcaM)8 mutation, which was used to replace
the �(gmd-fcl)26 mutation. Another candidate mutation, �lrp,
also showed positive effects in our preliminary screenings (70).
We evaluated them in S. Typhimurium vaccine strain �9558, due
to its complex genetic background, with the new mechanism to
achieve attenuation as well as in strain �9241, with a simpler ge-
netic background, to get a systematic comparison. In this report,
we showed that the �(wza-wcaM)8 mutant derived from �9558
resulted in a higher recombinant protein synthesis level, higher
IgG and IgA responses at 2 weeks after immunization, and better
IFN- secretion (Fig. 3 to 6). In terms of protection, the immu-
nized mice were challenged well after antibody titers induced by
the two vaccine strains with and without the �(wza-wcaM)8 mu-
tation were very similar (Fig. 7). However, based on the induction
of higher levels of immune responses soon after immunization, we
would expect to see a higher level of protection induced by strains
with the �(wza-wcaM)8 mutation when challenge was 2 to 3
weeks after immunization. These results provide evidence of the
benefits of including the �(wza-wcaM)8 mutation in S. Typhimu-
rium �9558 and support incorporation of the �(wza-wcaM)8 mu-
tation into our final S. Typhi vaccine constructions with RDAS to
further increase the vaccine efficiency.
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