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Abstract

The translational challenge in biomedical research lies in the effective and efficient transfer of
mechanistic knowledge from one biological context to another. Implicit in this process is the
establishment of causality from correlation in the form of mechanistic hypotheses. Effectively
addressing the translational challenge requires the use of automated methods, including the ability
to computationally capture the dynamic aspect of putative hypotheses such that they can be
evaluated in a high throughput fashion. Ontologies provide structure and organization to
biomedical knowledge; converting these representations into executable models/simulations is the
next necessary step. Researchers need the ability to map their conceptual models into a model
specification that can be transformed into an executable simulation program. We suggest this
mapping process, which approximates certain steps in the development of a computational model,
can be expressed as a set of logical rules, and a semi-intelligent computational agent, the
Computational Modeling Assistant (CMA), can perform reasoning to develop a plan to achieve
the construction of an executable model. Presented herein is a description and implementation for
a model construction reasoning process between biomedical and simulation ontologies that is
performed by the CMA to produce the specification of an executable model that can be used for
dynamic knowledge representation.
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1 Introduction

The biomedical research community faces a challenge manifest as the discrepancy between
an increasing amount of basic mechanistic knowledge about biological processes and the
inability to effectively translate that mechanistic knowledge into clinically effective
therapeutics. The divergence between basic science knowledge and the delivery of effective
therapeutics was noted by the United States Food and Drug Administration in a 2004 report:
“Innovation or Stagnation: Challenge and Opportunity of the Critical Path to New Medical
Products,” where, despite increasing expenditures on basic science research, there was a
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downward trajectory in terms of the number of new therapies that reached the bedside
(USFDA 2004). This is the essence of the translational dilemma in biomedical research, and
appears to be particularly evident when investigating systems diseases, where there are
disturbances of internal system-level regulatory mechanisms, such as cancer, autoimmunity,
diabetes and sepsis. We suggest that there are fundamental process issues present in the
biomedical research workflow that lead to the current translational dilemma.
Characterization and identification of these process issues are a necessary step in the rational
development of strategies to address the translational dilemma.

1.1 The roots of the translational dilemma

A recent review has examined the roots of the translational dilemma (An 2010) and a
summary of its assertions is below:

As primarily an applied science, the ultimate goal of biomedical research is to identify and
affect control on biological systems moving between states of health and disease. Effecting
control requires an approximation of mechanistic causality, as planned interventions must
have their basis in some imputed causal mechanism. Identification of correlative
relationships do not amount to identifications of causality, therefore a means of testing
causality must be incorporated into any knowledge-expansion process. Since the complete
and comprehensive description of a biological system is impossible (i.e. a putative solution
based on just obtaining more data will not suffice), a more efficient means of evaluating the
sufficiency of the current state of knowledge must be established, where sufficiency is
defined as establishing enough trust in a presumptive mechanistic hypothesis such that the
hypothesis is useful in designing a means of control. The biomedical research community is
in a situation where the balance of the scientific method (conversion of observations/data
into patterns/hypotheses via correlation leading to testing of presumptive causality via
experiment) has dramatically shifted towards the correlative component. The advent of the
high throughput data environment has led to an increasing range of possible explanatory
hypotheses, while the ability to evaluate those hypotheses through testing remains a time
consuming, linear task. As such, where establishing correlation has become parallelized,
testing causality remains a serial process. Adding to the challenges posed by this situation
are the hierarchical organization and multi-scale nature of biological systems, resulting in
epistemological boundaries to human intuition and synthesis, such that mechanistic
hypotheses cannot be merely aggregated to obtain system-level behavior. The overall
process of biomedical research is therefore limited in both (1) the breadth of hypothesis
testing (throughput problem) and (2) complexity of hypotheses (multi-scale problem). These
issues point to the need to enhance representation and examination of mechanistic
hypotheses to facilitate the identification and evaluation of plausible solutions. Automation
aimed at augmenting the rate-limiting steps of the scientific process is therefore a reasonable
strategy for the future. More specifically, the need to represent the dynamics of a putative
hypothesis and the imputed paths of causality within that hypothesis is greatly enhanced by
the use of computational modeling and simulation (M&S) as a means of instantiated,
dynamic knowledge representation. Furthermore, the need to provide a scalable solution
means that this use of M&S must be augmented via semi-automation of the simulation-
creation workflow. Advancing the process of dynamic biological knowledge representation
involves: (1) formalizing the expression of biomedical knowledge, (2) being able to tie those
representation formats to a classification of M&S methods and approaches, and (3) doing so
in a manner that limits the intellectual overhead of non-computer experts among the
biomedical research community, which in essence requires the proposed process to generate
executable code for simulations. Restated, developing scalable dynamic knowledge
representation involves leveraging existing biomedical knowledge representation achieved
through ontologies, linking knowledge thus represented with M&S methods to produce
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dynamics, and semiautomating the process by which this transfer occurs. In the following
sections we will deal with each of these steps.

1.2 Biomedical ontologies

Ontologies are knowledge classification systems that provide a structured vocabulary and
taxonomy for a particular scientific domain. The benefits of such classification systems
include: providing organizational structure to an established corpus of knowledge, allowing
a contextual placement of existing and new research, allowing navigation within a particular
domain and identification of intersections of knowledge, providing a frame of reference with
respect to existing and new terminology, and providing a knowledge base amenable to
automated inference with respect to expanding relationship structure. Ontologies emphasize
class-structures, properties and taxonomic relationships between the constitutive concepts
within the domain. The Web Ontology Language (OWL) and the Resource Description
Framework (RDF) currently specify the descriptive capacity of ontologies. This descriptive
capacity generally consists of a collection of facts and axioms that define the knowledge
about classes, properties and individuals in the ontology. Ontology development methods
have expanded into the area of bioinformatics, and as such biomedical ontologies follow
these conventions. Bio-ontologies are currently found in an online repository, BioPortal
(http://bioportal.bioontology.org), which is managed by the National Center for Biomedical
Ontologies (NCBO) (http://www.bioontology.org). The NCBO has ongoing development of
computational and bioinformatics tools to increase the utility of bio-ontologies for the
biomedical community at large. Additionally, the OBO Foundry (http://
www.obofoundry.org) is a collaborative project that is focused on establishing principles for
biomedical ontology development with the goal of growing a group of interoperable
ontologies to be used in the biomedical arena; a substantial number of the ontologies found
in BioPortal originate from the OBO Foundry.

However, despite their usefulness, ontologies/bio-ontologies have a significant limitation in
terms of their expressiveness given the goal of evaluating the dynamic behavior of
mechanistic hypotheses. Current ontologies generally utilize a limited predicate set focused
on classifying objects, concepts and relationships between them, allowing logical inference
and proof of the internal consistency of a statement, but not being able to represent any of
the dynamic consequences associated with that relationship. Therefore, there is a critical
need to expand the predicate expressiveness to “actions” or “functions” to allow the
expression of rules necessary to generate dynamics. To some degree, terms corresponding to
these function predicates already exist in BioPortal ontologies, but they exist as adjectives
that can be applied to other noun-concepts in the various ontologies. For instance, in the
Gene Ontology there is class called “Molecular_Function” (GO:0003674) that lists a series
of possible functional roles for molecules, such as “Enzyme Regulator Activity” (GO:
0030234). However, this in the form of an adjective, and would need to be converted into its
verb form in order to be used in a rule. For example, such a rule might be “Compound A
modulates the activity of Enzyme B.” The ability to express a rule would require a
concatenation of terms from different ontologies, and also may require some transformation
of the form of the ontological term. There is already some recognition of these limitations of
OWL in the area of Semantic Web research, with ongoing development in languages such as
Rule Markup Language (RuleML) (http://www.ruleml.org) and Semantic Web Rule
Language (SWRL) (http://www.w3.org/Submissions/SWRL/). The need to use rules to
instantiate dynamics moves knowledge representation towards the realm of modeling and
simulation (M&S).
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1.3 Ontologies in modeling and simulation

As in the biomedical arena, there is interest in the use of ontologies in the area of M&S,
particularly in terms of the development and use of ontology-driven M&S (Yilmaz 2007;
Miller et al. 2004; Petty and Weisel 2003; Fishwick and Miller 2004; Benjamin et al. 2006).
The advantages of an ontology-driven approach can be seen in the development of M&S
standards for interoperability, modularity, use of legacy codes/models and federated
simulation (Benjamin et al. 2006). The key concept underlying these projects is that of
composability. the ability to select and assemble simulation components in various
combinations to meet specific simulation use goals (Benjamin et al. 2006; Petty and Weisel
2003). Performing simulation composition is recognized as a dynamic process that evolves
during the course of a research/experimental program (Yilmaz 2007), an important
realization in terms of addressing the translational challenge. There has also been significant
work on the development of ontologies for M&S methods, such as the Discrete-event
Modeling Ontology (DeMO) proposed and developed by Miller and Fishwick (Miller et al.
2004; Fishwick and Miller 2004; Silver et al. 2011). DeMO is a “classical” ontology that
relies upon a hierarchical “IS/A” class-subclass organizational structure. This allows the
application of automated inference methods on DeMO knowledge structures, as is possible
with bio-ontologies, but also means that the dynamic expressiveness of a M&S structure
within DeMO is limited. However, utilizing the concept of composability along with the
domain-specific knowledge in a M&S ontology allows the creation of computational objects
that can effectively capture dynamics.

1.4 Ontology concatenation for dynamic knowledge representation

As noted above limitations of the expressiveness of OWL and existing ontologies are based
in the inability of current ontologies to express ru/es. Rules form the basis for instantiating
mechanistic relationships, and the ability to express rules forms the key step in moving from
static knowledge representation to dynamic knowledge representation. Expressing rules
requires extending predicate logic systems to statements that denote functions or actions.
This will allow the statements to be converted to dynamic models and simulations, fulfilling
a critical role in the use of modeling in biology in overcoming the Translational Dilemma.
Due to the complexity of the relationships in biology and the uncertainty with respect to its
constitutive statements the importance of a biological model requires not only an assessment
of its internal consistency (veracity) but also its mapping to the real world (validity). A
biological conceptual model based on a purely logical formalism does not have sufficient
expressiveness to assess the application of that conceptual model to the real world: the
internal “correctness” of the logical formalism (“true/false™) does not provide enough
information to correlate to real world measurements. Since the expression of functional/
actionable predicate relationships within an ontology is not possible using OWL, we propose
the concatenation of knowledge components from biomedical ontologies using function-
representing structures from M&S methods. A key point to this proposal is that while an
ontology of M&S methods is limited in its expressiveness to relational predicate statements,
the domain knowledge associated with each M&S object/class contains, by necessity given
the nature of the M&S domain, a formal description of the simulation method (see DeMO)
and therefore becomes the core data for the formal system used to generate the dynamic
model. It should be noted that a logical model can be constructed that operates upon either a
relational predicate or functional/actionable predicate statement (i.e. a computer program
that utilizes the syntax of the statement as a data structure). We propose to use the logical
inference capability of a formal system to augment the ability of researchers to operate in the
real world. The key to this argument has to do with the different realms between the
operations of logic and determinations of “truth” within the knowledge structure, and the
relationship between the relationship structure and the real world (validity). Herein we

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Christley and An

Page 5

identify a series of formats and protocols to facilitate the process of dynamically composing
simulations such that a computational agent can be developed to exercise those protocols.

1.5 Prior work in computational discovery of scientific knowledge

The past few decades has seen increasing research in the computational discovery of
scientific knowledge (DZeroski et al. 2007). While originally envisioned as the development
of computer systems that could produce new scientific discoveries on par with a human
scientist (Langley 2000), the field has grown to encompass creativity processes and
computational augmentation of the scientific method both with and without the involvement
of the human scientist, i.e. human-in-the-loop and human-out-of-the-loop. Initial research
led to the distinction between scientific knowledge structures and scientific activities.
Scientific knowledge structures constitute the primary products of the scientific endeavor
and consist of taxonomies (or ontologies), laws and theories. Scientific activities are the
formation and revision of those scientific knowledge structures, and those activities typically
utilize intermediate knowledge structures such as models and experiments to aid in the task.
Computational creativity attempts to expand beyond the artificial intelligence problem-
solving paradigm, with its well-defined goals and algorithms to achieve them, into an
artifact-generating paradigm that incorporates cognitive aspects of creativity and social and
cultural interactions (Colton et al. 2009; Chen et al. 2009; Shneiderman 2007).
Computational creativity goes beyond scientific discovery to include other creative tasks
such as writing poems and jokes, composing music and painting pictures. Computational
augmentation of the scientific process focuses upon those intermediate knowledge structures
to increase productivity and effectiveness of the primary scientific activities. Through
development of computer tools, example augmented tasks include generation and evaluation
of models (Yilmaz and Hunt 2011; Bridewell et al. 2006), design of experiments (Zytkow et
al.1992), aggregation and management of scientific knowledge (Antezana et al. 2009;
Rzhetsky et al. 2000), and construction of scientific workflows (Goecks et al. 2010; Hull et
al. 2006; Linke et al. 2011). The research presented in this article falls in the latter category
of computational augmentation, specifically the automation of constructing computational
models from biological knowledge.

Computational discovery is a daunting task, and for that reason much research has
concentrated on the manipulation of well-defined formal structures such as mathematical
statements (Montano-Rivas et al. 2010), mathematical equations (Krishnamurthy and Smith
1994; Atanasova et al. 2006), and logic programs (Zupan et al.2007; Karp 2001).
Consequently, there has been considerable advance in artificial intelligence algorithms to
perform deductive, inductive (Colton and Muggleton 2006; Montano-Rivas et al. 2010; King
et al. 2007) and abductive (Prendinger and Ishizuka 2005; Zupan et al. 2007) reasoning for
scientific discovery, heralding the day of the robot scientist (King et al. 2009). Furthermore,
data mining and machine learning have introduced a new parallel paradigm where patterns
are discovered from large data sets, leading to an explosion of bioinformatic tools to analyze
and manage the data produced from high-throughput biology experiments and accumulated
in biological databases. However, while artificial intelligence approaches have succeeded
for some disciplines, such as mathematics and physics where the underlying axioms and
physical laws are well established, they have been less successful for biological discovery
because the underlying laws that govern the behavior of biological phenomena at higher
organizational scales above the physical scale, such as cells, tissues, organisms and
ecosystems, are poorly understood. These organizational scales tend to require symbolic
versus equation-based representations, and those systems that have been implemented have
focused on biochemical reaction networks that draw upon decades worth of knowledge in
molecular biology and operate using the physical laws of chemistry (Karp 2001; Calzone et
al. 2006; Curti et al. 2004).
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Alternatively, our objective is to provide hypothesis evaluation across these multiple
organizational scales, and we maintain the human-in-the-loop as part of discovery process
because of the invaluable contribution provided by human intuition. To reduce the
computer/programming expertise threshold for the researcher we utilize a near-natural
language representation for biological knowledge that allows hypotheses to be expressed in
the concise way that scientists expect. While this might make the model construction task
more difficult for the semi-intelligent agent, we consider this an advantageous approach
because it alleviates the problem with many existing systems whereby the biologist must
translate their knowledge into an intermediate modeling language. Our approach draws upon
artificial intelligence research but instead of attempting to automate discovery, we augment
the scientist’s own capability to evaluate hypotheses through modeling and simulation by
facilitating the translation of biological knowledge into computational models. While we
recognize that in the future a more comprehensive computational augmentation tool would
include aiding in the evaluation of models (Yilmaz and Hunt 2011; Bridewell et al. 2006),
design of experiments (Zytkow et al. 1992), and construction of scientific workflows
(Goecks et al. 2010; Hull et al. 2006; Linke et al. 2011), we assert that computational
augmentation of hypothesis representation and instantiation is a necessary step towards these
future goals. Therefore, in the next section, we discuss the translation process from
biological conceptual models into computational/mathematical model specifications in more
detail and demonstrate our method with two biological case studies.

2 Model construction

A critical step in developing a robust and scalable solution to the translational dilemma is
facilitating the adoption of dynamic computational modeling as a means of knowledge
representation within the general biomedical research community. However, at this point in
time, the threshold for the average biomedical researcher to engage in computational and
mathematical modeling remains prohibitive. The process of transforming biological
knowledge and data into computational models requires specific expertise acquired through
extensive training and experience. However, we suggest that certain aspects of the modeling
process can be characterized algorithmically and then embedded into computational agents
to semi-automate model construction. We suggest that the general adoption of M&S-
enhanced hypothesis instantiation/evaluation can be aided by the development of software
entities that we term a Computational Modeling Assistant (CMA). We propose the CMA as
a software tool that augments biological model construction by integrating biological
knowledge, computational modeling methodology, and expert-derived rules for mapping
biological concepts to modeling methods. Figure 1 gives an overview of the information
flow for the interactions between the researcher and the CMA.

The CMA is intended to be agnostic to any specific modeling method, providing possible
alternatives using multiple methods as different abstractions of the same biological concept.
This latter point is a significant issue, as different aspects of a biological model may be best
represented with different simulation methods, resulting in an increasing recognition of the
importance of being able to construct hybrid biological models.

2.1 Biological Example #1

To demonstrate how our proposed CMA would be used to instantiate and explore
hypotheses for a biological mechanism, we consider as an initial example the formation of
the stratified mucus layer in the human colon.

2.1.1 Gut mucus stratification—Many epithelial layers produce and maintain a mucus

layer that acts as an additional barrier between the epithelium and the external or luminal
environment. In the human colon, epithelial goblet cells secrete mucus that forms a stratified

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Christley and An

Page 7

structure composed of an inner “tight” mucus layer and an outer “loose” mucus layer
(Johansson et al. 2010). The outer mucus layer is the habitat of the gut bacteria flora while
the inner mucus layer is attached to the epithelial cells and is normally devoid of bacteria,
thus providing a protective layer to prevent contact between bacteria and the epithelial cells.
It is not known how the inner mucus layer is converted into the outer mucus layer, but it is
known to be under host control (versus caused by bacteria) because both layers form in
bacteria-free mice. Also, mucus conversion is an active chemical process performed by a
molecule released by the epithelial cells, as there are no cells in the mucus layer and
conversion is inhibited in the inner layer.

We consider a hypothesized mechanism whereby epithelial cells release one or more
morphogens that form a spatial gradient where conversion is inhibited near the cells and
activated further away from the cells, resulting in the stratified mucus layers. For our
biological model, we consider two unknown genes A and B. Inside a cell, the proteins for A
and B are bound together into a protein complex AB that is secreted from the cell. AB
diffuses in the extracellular space and decays back into the A and B proteins at some rate.
Protein A then converts mucus from the tight to loose form, while protein B decays. We
formalize our biological model into a set of near-natural language statements that have been
annotated with their corresponding bio-ontology term (Gene Ontology (GO), Systems
Biology Ontology (SBO), Foundational Model of Anatomy Ontology (FMA), and Physico-
chemical Process Ontology (REX)) to produce the enriched communicative biological
model given below:

1. goblet cell [GO:0005623] has [GO:has_part] muc2 gene [SBO:0000243].
Muc2 gene is transcribed [SBO:0000183] into muc2 mRNA [SBO:0000278].
Muc2 mRNA is translated [SBO:0000184] into muc?2 protein [SBO:0000252].
goblet cell [GO:0005623] has [GO:has_part] A gene [SB0O:0000243].

A gene is transcribed [SBO:0000183] into A mRNA [SBO:0000278].

A mRNA is translated [SBO:0000184] into A protein [SBO:0000252].

goblet cell [GO:0005623] has [GO:has_part] B gene [SBO:0000243].

B gene is transcribed [SBO:0000183] into B mRNA [SBO:0000278].

B mRNA is translated [SBO:0000184] into B protein [SBO:0000252].

© © N o g A~ WD

=
o

Goblet cell secretes [GO:0046903] muc? protein into extracellular space [GO:
0005615].

11. A protein and B protein bind [SBO:0000177] to form AB complex [SBO:
0000296].

12. Goblet cell secretes AB complex into extracellular space.
13. Extracellular AB complex diffuses [REX:0000122].

14. Extracellular AB complex disassociates [SBO:0000180] into extracellular protein
A and B.

15. Extracellular A protein diffuses [REX:0000122].
16. Extracellular B protein diffuses [REX:0000122].
17. Extracellular A protein decays [SBO:0000179].
18. Extracellular B protein decays [SBO:0000179].
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19. Extracellular muc2 protein forms inner mucus layer [GO:0070702].
20. Extracellular A protein cleaves [SBO:0000178] extracellular muc2 protein.
21. Cleaved extracellular muc2 protein forms outer mucus layer [GO:0070703].

22. Colon epithelium [FMA:Epithelium_of_colon] is a 2D plane of cells.

2.1.2 Intelligent agent composition—The CMA utilizes and leverages developments in
formal knowledge representation through the use of ontologies in biology and M&S by
using an intelligent-agent approach based upon a logical framework. It performs automated
reasoning to aid in the construction of a computational model (and ultimately simulation
code), treating model construction as a planning task where the goal is translating a
conceptual biological model into simulation code. The plan is divided into two parts:
constructing the model specification and producing the simulation code. As illustrated in
Fig. 1, construction of the model specification requires the integration of numerous
knowledge databases and ontologies. The researcher hypothesizes a conceptual biological
model in a near-natural language format such as demonstrated for gut mucus stratification.
This model is then supplemented with a database of existing biological knowledge.
Ontologies for biology and modeling concepts are then used with a knowledge base of
mapping rules to produce one or more model specifications.

The CMA produces multiple model specifications corresponding to alternative modeling
methods. For example, one specification might be for a continuous deterministic model,
while another may be a discrete stochastic model. The researcher reviews those model
specifications and chooses one or more for the CMA to produce simulation code. This
decision is based upon various factors: availability of certain types of biological data, prior
knowledge about the behavior of the biological system and level of modeling detail. More
than one model specification can be chosen, maybe to compare the different models and
determine whether the extra complexity in one model over another is required for the
particular biological problem of interest. This is one reason why the human cannot be
completely taken out of the loop: because as all models are abstractions of reality, only the
researcher has the intuition to assess the usefulness of one model abstraction versus another
for the biology being studied.

Given a chosen model specification the CMA can produce simulation code using an
ontology of numerical and simulation methods and logical rules to map the model
specification into code using particular methods. Here too there may be multiple choices for
implementation, though these choices are primarily concerned with stability and
performance issues. While these are important issues, we do not explore them further in this
article.

2.1.3 Maude logical framework—We implement our system using Maude (Clavel et al.
2007). Maude is a logical framework based on rewriting logic that is simple yet expressive.
It provides capabilities such as reflection and formal verification beyond other logical
frameworks such as CLIPS or Prolog. These additional capabilities are useful for the CMA
as it can provide alternative models and analyze the knowledge database for inconsistencies
or gaps.

2.1.4 Biological knowledge representation—Three pieces of biological knowledge
need to be represented within Maude in order for the CMA to operate: a list of biomedical
ontologies, existing biological knowledge and the conceptual biological model to be
instantiated. In order for ontological knowledge representations to be operated on by Maude,
ontology data types need to be translated into Maude structures. Towards this end, we
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translate ontological terms into Maude sorts while the ontology’s IS/A hierarchy is
represented by Maude subsorts. Maude sorts correspond to types in programming language
theory, so this provides us with customized ontology-derived data types for representing and
reasoning about the entities and processes in the biological and M&S knowledge.

The biological knowledge is represented as a series of biological statements whereby the
nouns and verbs of the statement are defined according to their ontology term and thus a
Maude sort. Figure 2 shows how statement #2 is represented in Maude. The biological
entities, muc2-gene and muc2-mRNA, are defined as constant instances of the Maude sorts
“gene”’ and “messenger RNA.” The biological process of transcription is defined as a
“transcribe’ operator on a “gene’ and a “messenger RNA,” and is used to represent a
biological statement. Lastly, the biological statement that the muc2-gene is transcribed into
muc2-mRNA is stated. Maude supports polymorphism for operators so another transcribe
operator could be defined that operates on “pre-messenger RNA,” thus allowing for mMRNA
processing and alternative splicing to be defined. This flexibility allows multiple levels of
biological detail with the appropriate level of abstraction chosen automatically by the types
of biological statements.

The diffusion operator shows how the I1S/A ontology hierarchy is utilized. While
transcription is clearly defined as operating on a gene, many different biological entities can
diffuse, thus the “dliffuse’ operator is defined for the general “material entity” sortas can be
seen in Fig. 3. The biological statement that “A-protein[e] (extracellular A protein) diffuses”
is valid because “A-proteinfe]’ |SIA “ polypeptide chain’ \SIA “ information
macromolecule’ 1SIA “macromolecule” |SIA “ material entity,” according to the biomedical
ontologies.

All of the biological statements are thus represented in Maude as logical statements as
shown in Fig. 4. As shown, these logical statements would correspond to a set of facts that
are asserted as true in other logic systems like CLIPS or Prolog. However, Maude allows for
richer expression than propositional logic as in those logic systems, and the statements are
closer to first-order logic that have been argued as a more appropriate representation for
scientific discovery (King et al. 2007), though Maude is also capable of supporting higher-
order logics. This current model lacks some of the biological knowledge about goblet cells
and their spatial arrangement in an epithelium layer, which we consider in future work.
Maude considers certain biological statements invalid due either to incorrect specification of
the biological statement, or because Maude lacks a proper definition of the biological
process or entity.

2.1.5 Modeling knowledge representation—The modeling ontology is translated into
Maude sortsand subsorts just as with the biomedical ontologies. However the breadth of
modeling ontologies is limited in comparison to the biomedical ontologies; therefore we
have had to extract this knowledge from published M&S literature. Existing ontologies such
DeMO and the Ontology of Physics for Biology (OPB) offer starting points, but accurate
and detailed characterization of modeling methods require specific descriptions of
mathematical entities such as variables, functions, arithmetic, derivatives, etc. Standards
such as OpenMath (http://www.openmath.org) and MathML (http://www.w3.org/Math/)
provide some formalization of mathematical knowledge but there are still many challenges
related to attempts to catalog mathematical methods that are beyond the scope of this paper.
For our current work with the CMA, we have focused on building up a small but sufficient
ontology of common modeling methods. This work will continue over time to incorporate
additional methods into a more complete ontology.
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2.1.6 Mapping rules—Transformation of biological knowledge into a model specification
is described by a set of Maude rewrite rules that take one or more biological statements and
produce a modeling specification statement. The rules are specific to both the biological
statement and the modeling method used to represent the biology. It is these rules that
encapsulate the expert knowledge of modelers and the process of model construction.

A set of rewrite rules for the biological functions of transcription, translation, degradation,
binding, dissociation, secretion and diffusion can be seen in Fig. 5. These specific rules
produce a specification for a continuous model using ordinary differential equations (ODE)
or partial differential equations (PDE). Each left-hand side of the rule matches a biological
statement and the right-hand side of the rule appends a model specification statement. For
the transcribe rule which has two components of the gene (G) and the resultant RNA (R), an
ODE s specified for variable R with a Hill function in the variable G. The secrete rule is
more complicated with four components of the source molecule (A), source spatial context
(CA), the resultant secreted molecule (B), and the resultant spatial context (CB). The secrete
rule results in two ODEs added to the model specification, one for the source molecule A
and one for the resultant secreted molecule B. The diffusion rule is of interest because it
shows that when a molecule diffuses then an ODE is not sufficient, and it becomes a PDE
for that molecule variable. These rules all use generic functions like hillFunction,
linearFunction, bindFunction, etc., and these can be specified in more detail elsewhere
which allow for different and alternative dynamics to be modeled.

The flexibility of Maude rewrite rules allows for complex transformations to be described.
There could be situations whereby the method required for two biological statements
together is different from either of those biological statements modeled in isolation. These
situations typically arise at the interfaces between modeling methods such as with hybrid
models that integrate continuous and discrete methods. For example, if a cell secretes a
molecule into the extracellular space, then there is an interface between the cell model and
the extracellular spatial model that describes how variables in the cell model relate the
context of the secrete operation to variables in the extracellular spatial model. If the cell or
the extracellular space were specified as individual models, then there would be no need for
an explicit representation of the interface between the two models. Rewrite rules can be
generated that describe how the interface between different modeling methods should be
performed, and those rules can be specialized for a particular biological process. For the
secrete operation in Fig. 5, the rules describe a continuous model, so both the cell and the
extracellular space are coupled by variables in a set of ODEs.

2.1.7 Model specification construction—There are numerous techniques for
computational modeling of biological phenomena. Broad categories include continuous
versus discrete and deterministic versus stochastic. Multiple categories can often represent
the same biology. For example, molecular interactions can be modeled with ordinary
differential equations, a continuous deterministic description, or with stochastic chemical
kinetics, which is a discrete stochastic description. As the CMA develops a plan for the
specification of the biological model these different modeling techniques correspond to
alternative plans: thus there is not a single representation of the biological model but rather
numerous potential representations. The CMA provides these alternatives to the researcher
such that one or more can be chosen for implementation.

Construction of the model specification is designed as a planning task. The initial state of
the task is the set of Maude logical statements representing the conceptual biological model
as in Fig. 4. The goal state is a model specification where all of the statements from the
conceptual biological have been accounted for in the list of potential computational models.
Planning fails if there are one or more biological statements that could not be transformed
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into a modeling method. This could be due to the lack of a mapping rule for that particular
biological entity or process into a M&S method. The CMA uses the Maude search command
to find all possible solutions to complete model specifications from the initial biological
statements. The search command uses a standard breadth-first search as an inference
algorithm that selects mapping rewrite rules to be applied to the set of Maude logical
statements, and incrementally constructs the model specification as each mapping rewrite
rule is applied. The algorithm creates a state transition graph where goal states correspond to
complete model specifications, and a path from the initial state to a particular goal state is
the sequence of mapping rewrite rules for transforming the conceptual biological model into
a model specification. While Maude uses breadth-first search as the standard algorithm, its
meta-level reflection capabilities allow strategies to be defined that control the rewriting
inference process. Such strategies are written as part of a mapping rewrite rule, and though
they are not required for the examples presented in this article, the CMA can use strategies
for high-order reasoning that cannot be performed with first-order logical inference.
Furthermore because the exact sequence of rules can be recovered, this enables an
explanatory description to be provided to the user about how the biological model was
transformed into a computational model, which might be useful for pedagogical or
debugging purposes. For the biological model given in Fig. 4, the CMA produces the model
specification show in Fig. 6. This model specification is composed of eight ODEs and three
PDEs represented by these equations:

d| muc2
w =H (mMCZggn(:)
l[l[";‘:cz} =H (mucszNA) =S (muc2)
dla
% =H (Agenc)
[ % = (AmRNA) - B(A,B)
d|B
i (Bgene)
% =H (BmRNA) ~B(A,B)
d[ftB] =B(A,B)- S (AB)
d| muc2
[”’Z[tc E } =S (muc?)
dlA
[dﬁ =V2A,+D (AB) ~ kiA,
d|B
- =V?B,+D(AB) — k2B,
d[aB,]

£l =V?AB,+S (AB) — D(AB,)

where H, S, Band D are the hillFunction, secreteFunction, bindFunction and
dissociateFunction functions.

2.1.8 Model parameters—In our example for gut mucus stratification, the model
specification uses generic names for various interaction functions such as AillFunction,
bindFunction, etc. However, these functions can be defined in more detail, allowing the
CMA to perform additional modeling and simulation capabilities. For example, the CMA
could query the number and type of parameters required for each function. That list of
parameters could be passed to another process that executes parameter sweeps for the
simulation. Likewise, the CMA could query existing biological knowledge to find
experimentally determined values such as transcription rates, degradation rates, diffusion
rates, etc. to be used as initial values for those parameters.

2.1.9 Simulation code—The final step for the CMA is to produce simulation code that
can be executed from the model specification. Here the CMA utilizes an ontology
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categorizing various numerical and simulation methods along with a set of mapping rules to
transform the model specification into simulation code using specific numerical methods.
There has been even less effort devoted to formalizing such numerical and simulation
method knowledge into a machine-readable format, and we are not aware of any existing
ontologies with this information.

Just as with construction of the model specification, multiple numerical methods can be
applied for the simulation of the same model. These alternatives are typically concerned
with computational and stability issues. They play less of a role regarding interpretation and
analysis of the biological model, but they are important for insuring the simulation produces
valid results. For example, a Runge-Kutta 4th-order method could provide greater stability
and a larger time step over the basic Euler method, though it may have a greater
computational cost. CMA might be able to analyze the parameter values for the model,
looking for order of magnitude scale differences that indicate a stiff system, thus requiring
more stable methods to be used. Furthermore, CMA could take advantage of information
about the hardware, thus producing simulation code that is geared towards a specific
computing environment whether it be a single computer, multi-core processor, parallel MPI
cluster, or a GPU. While this scalability across hardware platforms is not gained for free,
over time as the knowledge database of numerical and simulation methods increases, more
of this capability can be provided in an automated fashion.

2.1.10 Alternative hypotheses—One advantage of using an approach such as the CMA
is the increased throughput gained by the ability to easily pose and investigate alternative
hypotheses. With our gut mucus stratification model, we can consider a slight modification
to our model that still utilizes the mechanism of morphogen gradients. In this alternative
hypothesis, A and B are secreted by the cells individually, and protein A diffuses faster than
protein B. Extracellular protein A and B form a complex AB which then decays. Proteins A
and B also decay at some rate, and protein A converts mucus from tight to loose form as
before. The idea behind this model is that the AB complex binding prevents protein A from
converting the mucus near the cells, but the faster diffusion rate of protein A means it
accumulates in greater concentration than protein B further from the cells, thus allowing
mucus conversion to occur. This alternative model would remove statements 11-14 from the
original hypothesis, and add the following statements.

1. Goblet cell secretes [GO:0046903] A protein into extracellular space [GO:
0005615].

2. Goblet cell secretes [GO:0046903] B protein into extracellular space [GO:
0005615].

3. Extracellular A protein and B protein bind [SBO:0000177] to form AB complex
[SBO:0000296].

4. 4. Extracellular AB complex decays [SBO:0000179].

The CMA could readily generate a new model specification and simulation code for this
alternative hypothesis. Furthermore, the CMA could carry over parameter values and
choices made regarding the original model specification and implementation methods to the
alternative model, thus ensuring a close correspondence and effective comparison of the
results predicted by the two simulations. By reducing the degree of implementation detail
required, the CMA allows the researcher to maintain focus at the level of the biological
model during the course of exploring model possibility-space. This type of computational
augmentation of the hypothesis evaluation stage would facilitate the parallelization of
identifying plausible mechanisms and aid in reducing the process bottleneck present in
biomedical research.

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Christley and An

Page 13

2.1.11 Biological Example #2—Having described the general process by which the
CMA can semi-automate the translation of a biological model into a computational one, we
present another example that uses a different target M&S method. In this case, the biological
model being transformed is that of an intracellular pathway that involves receptor activation,
signal transduction, gene transcription and protein synthesis. While many pathways of this
sort have been modeled using ODEs, in the interest of demonstrating the capabilities of the
CMA we choose a discrete alternative, Petri nets, to the deterministic continuous ODE. Petri
nets are a graph-based modeling formalism that has been used for mathematical modeling of
molecular pathways and networks, and are a popular means of capturing stochastic and
qualitative dynamics from such pathways (Chaouiya 2007; Goss and Peccoud 1998). For our
example we will use a virulence factor activation pathway found in the bacteria,
Pseudomonas aeruginosa.

2.1.12 Virulence activation in Pseudomonas aeruginosa by the host immune
response—The bacterial species P. aeruginosa is a gram negative bacillus that is one of
the most dangerous bacteria in terms of hospital acquired infection (Obritsch et al. 2005). ~.
aeruginosa is noted for its ability to develop resistance to antibiotics as well as activate a
series of virulence mechanisms causing it to change from a relatively benign species to a
dangerous one. P. aeruginosais normally found in the colon of healthy humans, being one of
the multitude of microbial species that reside in the human intestinal tract. Under normal
healthy circumstances, there is no adverse consequence resulting from the presence of 2.
aeruginosa in the host colon. However, recently P. aeruginosa virulence expression has been
identified as responding to host tissue factors released by the gut in response to physiologic
stresses seen in hospitalized patients, such as immune activation (Wu et al. 2005). For
purposes of our example for the CMA we will focus on the sensing of host immune response
factor, interferon-y (IFN-y), and the subsequent virulence pathway activated in response to
bacterial binding of IFN-+. It has been identified that in A. aeruginosa, the immune
mediator, interferon-+ induces the expression of virulence factors that in turn reduce host
defenses (Wu et al. 2005). IFN-y binding to outer bacterial membrane receptor OprF
activates the expression of PA-1 lectin, a compound secreted by P. aeruginosa that attacks
the connections between intestinal epithelial cells, leading to breakdown of gut barrier
defenses and allowing potential bacterial invasion. Up regulation of the transcription factor
Rhll during exposure to IFN-y represents an intermediate step between the molecular
signaling and gene activation (the target regions being identified as Lux box for the
promoter gene region and LecA as the coding gene region) leading to the production of PA-I
lectin.

Using the same, near-natural language syntax described previously above, the biological
model of the immune activation of PA-I production is as follows:

1. Pseudmonasis a bacteria
Pseudomonas has OprF [V0:0012360]
OprF [V0:0012360] is a receptor [SBO:000024]

Interferon-y bind to [SBO:0000177] OprF [V0:0012360] to form Interferon-y -
OprF-complex [SBO:0000179]

A WD

Interferon-y -OprF-complex decays
Interferon-y is a ligand [SBO:0000280]

Pseudomonas has Rh1RlI

© N o O

Rh1RI is a transcription factor [GRO: TranscriptionFactor]
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9. Interferon-y -OprF-complex is a stimulator [SBO:0000459] of Rh1RlI

10. Pseudomonas has Lux box

11. Lux box is a gene regulatory region [SBO:0000369]

12. Rh1RI bind to [SBO:0000177] Lux box to form Rh1RI-Lux box-complex

13. Rh1RI-Lux box-complex disassociates into Rh1RI and [SBO:0000177] Lux box
14. Pseudomonas has LecA

15. LecAisagene [SBO:0000243]

16. Rh1RI-Lux box-complex positively regulates transcription
[GRO:PositiveRegulationOfTranscriptionByTranscriptionActivator] of LecA

17. LecA is transcribed [SBO:0000183] into PA-I lectin mMRNA

18. PA-I lectin mRNA is translated [SBO:0000184] into PA-I lectin

19. PA-I lectin mRNA decays

20. Pseudomonas secretes [GO:0030528] PA-I lectin into extracellular compartment
[GO:0005615].

2.1.13 Mapping rules and model specification creation—As in the process
delineated above, the virulence pathway biological model was presented to the CMA,
translated into a set of Maude logical statements, and then the application of the Maude
logical rewrite rules shown in Fig. 7 produced a Petri net model. The resulting model is
shown in Fig. 8.

It should be noted that an additional output of this process was an error statement:
“polypeptide chain” entities “OprF,” “interferon-gamma,” “RhIRI,” has no “translate”

This statement resulted from the fact that some of the entities listed in the biological model
did not have a rule leading to their production. However, rather than considering this error
statement as rendering the biological model invalid, these entities would be presented back
to the researcher as variables in the model that require initialization values; i.e. the input
values for simulation execution.

The above model specification can be described in standard notation for biochemical rules:

PA-I-lectin-mRNA - O

PA-I-lectin-mRNA —  PA-I-lectin-mRNA + PA-I-lectin
PA-I-lectin —  PA-I-lectin[e]
interferon-OprF-complex - g

interferon-OprF-complex — interferon-OprF-complex + RhIRI
RhIRI-Lux-box-complex —  Lux-box + RhIRI

OprF + interferon-gamma — interferon-OprF-complex
Lux-box + RhIRI —  RhIRI-Lux-box-complex

lecA + RhIRI-Lux-box-complex —  lecA + RhIRI-Lux-box-complex +
PA-I-lectin-mRNA
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As with the gut mucus model example, the conversion of the base Petri net model into
simulation code would involve a selection by the researcher among a set of subcategories of
Petri nets based on their specific properties, such as deterministic or stochastic, and the
characteristics of the system under study. Furthermore, as described in Example #1, the
CMA could also have generated an ODE model of the virulence activation pathway; in
practice, the biological model of virulence activation would have been inputted into the
CMA and both a Petri net and an ODE model (among, perhaps, other types) would be
generated, each with suggested parameters based on the requirements of the particular
modeling method, and the researcher would select one or the other (or perhaps even both)
based on the initialization data available or the desired dynamics to be investigated.
Additionally, future development of the CMA would include the capability to parse the
biological model and determine which components of the model would be suitably
represented with deterministic methods (such as signal transduction) and which components
would be best represented with stochastic approaches (such as gene binding and activation),
resulting in a hybrid method model.

3 Summary

In this paper we present a description of how a semi-intelligent computational agent can
augment the process of computational biological model construction by utilizing bio-
medical and M&S ontologies to generate simulation code for dynamic knowledge
representation. We suggest that the use of a CMA can aid in addressing the current
throughput issues facing the biomedical research community regarding hypothesis
instantiation, verification and validation. As noted above, the eventual goal of the
computational solution to the Translational Dilemma will require the expansion of the
CMA’s planning and analysis capabilities to include model behavior assessment, anomaly
identification, suggesting alternative hypotheses/solutions and the design of putative
experiments to evaluate these new hypotheses, and scientific workflows (Hull et al. 2006;
Zytkow et al. 1992; Yilmaz and Hunt 2011; Bridewell et al. 2006; Linke et al. 2011; Goecks
et al. 2010). However, achieving these goals will require biological knowledge to be in a
formal, computable format such that a wide range of machine learning, model checking,
automated inference and Al-planning methods can be employed. Therefore, the current
developmental focus of the CMA is on the necessary first step of enhancing the conversion
of biological knowledge into the computational and mathematical formal structures that
would allow for the development and implementation of these capabilities. As such the
CMA represents a potentially robust and scalable strategy for enhancing the utilization of
dynamic computational models by the general biomedical research community via semi-
automation of the specification-mapping work associated with computational model
development. By utilizing the meta-programming capabilities of the Maude system,
specifically related to its rewriting logic and reflection properties, the CMA leverages
ongoing development in bio-ontologies, formal knowledge representation and M&S
methods to facilitate the generation of simulation code. It is important to recognize that
while the overall translational goal cannot be achieved using only logic-based systems, the
implementation of computational models using logical inference can aid in achieving the
greater research goal of instantiating conceptual models. Treating the steps of the model
construction process as a planning task can improve the modularity, robustness and
scalability of knowledge integration through the introduction of a new class of meta-
programming semi-intelligent computational agents. This would allow the focusing of future
development on the CMA'’s inference instruction set. Given its role as a “translator”
between biological models and M&S methods, future research can be targeted at advancing
the CMA’s capabilities and expressiveness while maintaining interoperability with
established but ongoing development in the areas of formal semantics/knowledge
representation and M&S methods. From the biological side, future development of the CMA
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would include the ability to read and integrate models expressed in XML and Resource
Description Framework (RDF) compatible formats (Cuellar et al. 2003; Hedley et al. 2000;
Bullivant et al. 2001; Hucka et al. 2003). This would allow leveraging of existing model
repositories expressed in those markup languages being used to standardize model sharing in
the biomedical community, such as Systems Biology Markup Language (SBML) (Hucka et
al. 2003) and Cell Markup Language (CellML) (Cuellar et al. 2003). Development from the
M&S community has a bit farther to go, though OpenMath and MathML may provide the
initial steps toward cataloging M&S methods in a computable form. We believe that the
process automation advances offered by the CMA will lead towards the development of
cyber-environments providing scalable high-throughput hypothesis evaluation.

Biography

Scott Christley is an Associate Professor of Surgery at the University of Chicago and the
President of the Swarm Development Group. He has for over 11 years been involved in the
use of agent-based modeling to address the translational challenge in biomedical research,
specifically in the use of agent-based modeling for dynamic knowledge representation, and
integration of bioinformatics methods.

Gary An is a Research Associate in the Department of Surgery at the University of
Chicago. He has over 20 years of experience in software design and development, and 6
years experience developing computational methods for simulating biological systems.

References

An G. Closing the scientific loop: bridging correlation and causality in the petaflop age. Sci Transl
Med. 2010; 2(41):41ps34.

Antezana E, Kuiper M, Mironov V. Biological knowledge management: the emerging role of the
semantic web technologies. Brief Bioinform. 2009; 10(4):392-407. doi:10.1093/bib/bbp024.
[PubMed: 19457869]

Atanasova N, Todorovski L, Dzeroski S, Kompare B. Constructing a library of domain knowledge for
automated modelling of aquatic ecosystems. Ecol Model. 2006; 194(1-3):14-36. doi:10.1016/
j.ecolmodel.2005.10.002.

Benjamin P, Patki M, Mayer R. Using ontologies for simulation modeling. Proceedings of the winter
simulation conference. 2006 (WSC 06). doi:10.1109/WSC.2006.323206.

Bridewell W, Sanchez JN, Langley P, Billman D. An interactive environment for the modeling and
discovery of scientific knowledge. Int J Hum-Comput Stud. 2006; 11:1099-1114. doi:10.1016/
j.ijhcs.2006.06.006.

Bullivant, DP.; Hedley, WJ.; Hunter, PJ.; Nelson, MR.; Nielsen, PF. Languages for the definition and
exchange of biological models. Vol. vol 20. Proceedings of the physiological society; New Zealand:
2001.

Calzone, L.; Chabrier-Rivier, N.; Fages, F.; Soliman, S. Machine learning biochemical networks from
temporal logic properties. In: Priami, C.; Plotkin, G., editors. Transactions on computational
systems biology. V1. Lecture notes in computer science. Vol. vol 4220. Springer; Berlin: 2006. p.
68-94.

Chaouiya C. Petri net modelling of biological networks. Brief Bioinform. 2007; 8(4):210-219.
[PubMed: 17626066]

Chen C, Chen Y, Horowitz M, Hou H, Liu Z, Pellegrino D. Towards an explanatory and
computational theory of scientific discovery. J Informetr. 2009; 3(3):191-209.

Clavel, M.; Duran, F.; Eker, S.; Lincoln, P.; Marti-Oliet, N.; Meseguer, J.; Talcott, C. All about maude

—a high-performance logical framework. Springer; Berlin: 2007.
Colton S, Muggleton S. Mathematical applications of inductive logic programming. Mach Learn.
2006; 64(1-3):25-64. doi:10.1007/s10994-006-8259-x.

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Christley and An

Page 17

Colton S, de Mantaras Badia RL, Stock O. Computational creativity: coming of age. Al Mag. 2009;
30(3):11-14.

Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ. An overview of CellML
1.1, a biological model description language. SIMULATION. 2003; 79(12):740-747.

Curti M, Degano P, Priami C, Baldari C. Modelling biochemical pathways through enhanced
picalculus. Theor Comput Sci. 2004; 325:111-140. doi:10.1016/j.tcs.2004.03.066.

DZeroski, S.; Langley, P.; Todorovski, L. Lecture notes in computer science. Vol. vol 4660. Springer;
Berlin: 2007. Computational discovery of scientific knowledge. In: Computational discovery of
scientific knowledge; p. 1-14.

Fishwick PA, Miller JA. Ontologies for modeling and simulation: issues and approaches. Proceedings
of the 2004 winter simulation conference. 2004; vol 1 doi:10.1109/WSC.2004.1371324.

Goecks J, Nekrutenko A, Taylor J, Team G. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. Genome Biol.
2010; 11(8):R86. doi:10.1186/gh-2010-11-8-r86. [PubMed: 20738864]

Goss PJ, Peccoud J. Quantitative modeling of stochastic systems in molecular biology by using
stochastic Petri nets. Proc Natl Acad Sci USA. 1998; 95(12):6750-6755. [PubMed: 9618484]

Hedley W, Nielsen P, Hunter P. XML languages for describing biological models and data. Ann
Biomed Eng. 2000; 28(1):5-29.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, the rest of the SF. Arkin AP, Born-
stein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V,
Goryanin I, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling
A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama
Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling
J, Takahashi K, Tomita M, Wagner J, Wang J. The systems biology markup language (SBML): a
medium for representation and exchange of biochemical network models. Bioinformatics. 2003;
19(4):524-531. doi:10.1093/bioinformatics/btg015. [PubMed: 12611808]

Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T. Taverna: a tool for building
and running workflows of services. Nucleic Acids Res. 2006; 34(Web Server issue):W729-W732.
doi:10.1093/nar/gkl320. [PubMed: 16845108]

Johansson MEV, Holmén Larsson JM, Hansson GC. Microbes and health sackler colloquium: the two
mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of
host-microbial interactions. Proc Natl Acad Sci USA. 2010; 108:11217-11222.

Karp PD. Pathway databases: a case study in computational symbolic theories. Science. 2001;
293(5537):2040-2044. doi:10.1126/science.1064621. [PubMed: 11557880]

King R, Karwath A, Clare A, Dehaspe L. Logic and the automatic acquisition of scientific knowledge:
an application to functional genomics. Comput Discov Sci Knowl. 2007; 4660:273-289.

King RD, Rowland J, Oliver SG, Young M, Aubrey W, Byrne E, Liakata M, Markham M, Pir P,
Soldatova LN, Sparkes A, Whelan KE, Clare A. The automation of science. Science. 2009;
324(5923):85-89. doi:10.1126/science.1165620. [PubMed: 19342587]

Krishnamurthy M, Smith F. Integration of scientific-data and formulas in an object-oriented
knowledge-based system. Knowl-Based Syst. 1994; 7(2):135-141.

Langley P. The computational support of scientific discovery. Int J Hum-Comput Stud. 2000; 3:393—
410.

Linke B, Giegerich R, Goesmann A. Conveyor: a workflow engine for bioinformatic analyses.
Bioinformatics. 2011; 27(7):903-911. doi:10.1093/bioinformatics/btr040. [PubMed: 21278189]

Miller, JA.; Baramidze, GT.; Sheth, AP.; Fishwick, PA. Investigating ontologies for simulation
modeling. Proceedings of the 37th annual symposium on simulation; Washington, DC, USA. Los
Alamitos: IEEE Comput Soc; 2004. p. 55-63.

Montano-Rivas O, McCasland R, Dixon L, Bundy A. Scheme-based synthesis of inductive theories.
Adv Artif Intell. 2010; 6437:348-361.

Obritsch MD, Fish DN, MacLaren R, Jung R. Nosocomial infections due to multidrug-resistant
Pseudomonas aeruginosa. epidemiology and treatment options. Pharmacotherapy. 2005; 25(10):
1351-1364.

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Christley and An

Page 18

Petty, MD.; Weisel, EW. A composability lexicon. Spring 2003 simulation interoperability workshop;
2003. p. 181-187.

Prendinger H, Ishizuka M. A creative abduction approach to scientific and knowledge discovery.
Knowl-Based Syst. 2005; 18(7):321-326. doi:10.1016/j.knosys.2004.12.003.

Rzhetsky A, Koike T, Kalachikov S, Gomez SM, Krauthammer M, Kaplan SH, Kra P, Russo JJ, Fried-
man C. A knowledge model for analysis and simulation of regulatory networks. Bioinformatics.
2000; 16(12):1120-1128. [PubMed: 11159331]

Shneiderman B. Creativity support tools—accelerating discovery and innovation. Commun ACM.
2007; 50(12):20-32.

Silver GA, Miller JA, Hybinette M, Baramidze G, York WS. DeMO: an ontology for discrete-event
modeling and simulation. SIMULATION. 2011 doi:10.1177/0037549710386843.

USFDA. Innovation or stagnation: opportunities and challenges on the critical path to new medical
products. 2004. doi:http://www.fda.gov/ScienceResearch/Special Topics/CriticalPathInitiative/
CriticalPathOpportunitiesReports/ucm077262.htm

Wu L, Estrada O, Zaborina O, Bains M, Shen L, Kohler JE, Patel N, Musch MW, Chang EB, Fu Y-X,
Jacobs MA, Nishimura MI, Hancock REW, Turner JR, Alverdy JC. Recognition of host immune
activation by Pseudomonas aeruginosa. Science. 2005; 309(5735):774-777. [PubMed: 16051797]

Yilmaz L. A strategy for improving dynamic composability: ontology-driven introspective agent
architectures. 1JSCI : Int J Syst Cybern Inform. 2007; 5(5):1-9.

Yilmaz, L.; Hunt, CA. Advanced concepts and generative simulation formalisms for creative discovery
systems engineering. In: Tolk, A.; Jain, L., editors. Intelligence-based systems engineering.
Handbook on intelligence-based approaches for systems engineering. Springer; Berlin: 2011. p.
233-258.

Zupan, B.; Bratko, I.; Dem3ar, J.; Juvan, P.; Kuspa, A.; Halter, J.; Shaulsky, G. Computational
discovery of scientific knowledge. Lecture notes in computer science. Vol. vol 4660. Springer;
Berlin: 2007. Discovery of genetic networks through abduction and qualitative simulation; p.
228-247.

Zytkow JM, Zhu J, Zembowicz R. Operational definition refinement: a discovery process. Proceedings
of the national conference on artificial intelligence. 1992:76-81.

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.


http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm
http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Christley and An

Modeling Ontology

Rules to Map

Biology to stochastic

ABM
deterministic
discrete

ODE

Modeling
Methods

Existing
Biological

Knowledge

Biomedical Ontologies

GO FMA J
SRR oo
sgo REX \ Computational Biological
Modeling I <I"’:;-:J Model
Assistant |
M

@ hypothesis
Numerical Methods X
and Simulation Ontology Model review

Specification(s) \5
D
@ choose

o mmm——

\ Computational
Modeling

/7 Assistant

Runge-Kutta
finite-difference
finite-element
algorithms hardware
data structures

Rules to Map

Modeling
Methods to
Simulation " -
Simulation
Code Gl l

Fig. 1.

Page 19

Overview of workflow and interaction between researcher, computation modeling assistant

(CMA) and various ontologies and knowledge databases
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op muc2-gene : ->gene .
op muc2-mRNA : ->"messenger RNA" .

op transcribe : gene "messenger RNA" -> statement .

transcribe(muc2-gene, muc2-mRNA)
T ———

Fig. 2.
Biological statement #2 from the gut mucus stratification model represented in the Maude
language as a set of operators

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.
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op A-protein[e] : -> "polypeptide chain" .
op diffuse : "material entity" -> statement .

diffuse(A-protein[e])

Fig. 3.
Subsort hierarchy identifying the biological entity A-protein[e] as a material entity
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eq mucuskR =
translate(muc2-mRNA, muc2)
transcribe(muc2-gene, muc2-mRNA)
transcribe(A-gene, A-mRNA)
translate(A-mRNA, A-protein)
transcribe(B-gene, B-mRNA)
translate(B-mRNA, B-protein)
bind(A-protein, B-protein, AB-complex)
secrete(goblet, muc2, colon, muc2[e])
secrete(goblet, AB-complex, colon, AB-complex[e])
diffuse(AB-complex[e])
dissociate(AB-complex[e], A-protein[e], B-protein[e])
diffuse(A-protein[e])
diffuse(B-protein[e])
decay(A-protein[e])
decay(B-protein[e])

Fig. 4.
Biological model expressed as a set of Maude logical statements
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Fig. 5.

rl [transcribe] : spec(BKR(S transcribe(G,R)), MS(M))
=> spec(BKR(S), MS(add(variable(R), ODE(hillFunction(variable(G))), M))) .

=

[translate] : spec(BKR(S translate(A,B)), MS(M))
=> spec(BKR(S), MS(add(variable(B), ODE(hillFunction(variable(A))), M))) .

=

[decay] : spec(BKR(S decay(A)), MS(M))
=> spec(BKR(S), MS(add(variable(A), ODE(linearFunction(variable(A))), M))) .

=

[bind] : spec(BKR(S bind(A,B,C)), MS(M))
=> spec(BKR(S), MS( add(variable(A), ODE(bindFunction(variable(A),variable(B))),
add(variable(B), ODE(bindFunction(variable(A),variable(B))),

add(variable(C), ODE(bindFunction(variable(A),variable(B))), M))) )) .

rl [dissociate] : spec(BKR(S dissociate(A,B,C)), MS(M))
=> spec(BKR(S), MS( add(variable(A), ODE(dissociateFunction(variable(A)))
add(variable(B), ODE(dissociateFunction(variable(A)))
add(variable(C), ODE(dissociateFunction(variable(A))), M))) )) .

i

rl [secrete] : spec(BKR(S secrete(CA,A,CB,B)), MS(M))
=> spec(BKR(S), MS( add(variable(A), ODE(secreteFunction(variable(A),CA)),
add(variable(B), ODE(secreteFunction(variable(A),CB)), M)) )) .

rl [diffuse] : spec(BKR(S diffuse(A)), MS(M))
=> spec(BKR(S), MS(add(variable(A), PDE(diffuseFunction(variable(A))), M))) .

Page 23

Maude rewrite rules that describe how various biological statements are translated into a
continuous deterministic (ODE and PDE) model specification. Variables such A, B, C, S

modeling method

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.
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spec(BKR(emptyStatement), MS(
NM(variable(muc2-mRNA), ODE(hillFunction(variable(muc2-gene))))
NM(variable(muc2), ODE((hillFunction(variable(muc2-mRNA))
secreteFunction(variable(muc?2), goblet)))
NM(variable(A-mRNA), ODE(hillFunction(variable(A-gene))))
NM(variable(A-protein), ODE(hillFunction(variable(A-mRNA))
bindFunction(variable(A-protein), variable(B-protein))))
NM(variable(B-mRNA), ODE(hillFunction(variable(B-gene))))
NM(variable(B-protein), ODE(hillFunction(variable(B-mRNA))
bindFunction(variable(A-protein), variable(B-protein))))
NM(variable(AB-complex), ODE(bindFunction(variable(A-protein), variable(B-protein))
secreteFunction(variable(AB-complex), goblet)))
NM(variable(muc2[e]), ODE(secreteFunction(variable(muc2), colon)))
NM(variable(A-protein[e]), PDE(linearFunction(variable(A-protein[e]))
dissociateFunction(variable(AB-complex[e]))
diffuseFunction(variable(A-protein[e]))))
NM(variable(B-protein[e]), PDE(linearFunction(variable(B-protein[e]))
dissociateFunction(variable(AB-complex[e]))
diffuseFunction(variable(B-protein[e]))))
NM(variable(AB-complex[e]), PDE(dissociateFunction(variable(AB-complex[e]))
diffuseFunction(variable(AB-complex[e]))
secreteFunction(variable(AB-complex), colon)))))

Model specification produced by CMA for gut mucus stratification model

Comput Math Organ Theory. Author manuscript; available in PMC 2013 August 27.
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Fig. 7.

*** PetriNet method for positive regulation of transcription
rl [transcribe] : spec(BKR(S positive-regulate(TF,G) transcribe(G,R)), MS(M))
=> spec(BKR(S), MS( add(variable(TF) variable(R) variable(G),
PNR(PNW(1, variable(TF)) PNW(1, variable(G)),
PNW(1, variable(TF)) PNW(1, variable(G)) PNW(1, variable(R)),
constantFunction), M) )) .

*** PetriNet method for transcription
rl [transcribe] : spec(BKR(S transcribe(G,R)), MS(M))
=> spec(BKR(S), MS( add(variable(R) variable(G),
PNR(PNW(1, variable(G)), PNW(1, variable(G)) PNW(1, variable(R)),
constantFunction), M) )) .

*** PetriNet method for translation
rl [translate] : spec(BKR(S translate(R,P)), MS(M))
=> spec(BKR(S), MS( add(variable(R) variable(P),
PNR(PNW(1, variable(R)), PNW(1, variable(R)) PNW(1, variable(P)),
constantFunction), M) )) .

*** PetrNet method for decay
rl [decay] : spec(BKR(S decay(A)), MS(M))
=> spec(BKR(S), MS( add(variable(A),

PNR(PNW(1, variable(A)), emptyPetriNetWeight, constantFunction), M) )) .

*** PetriNet method for stimulate
rl [transcribe] : spec(BKR(S stimulate(A,B)), MS(M))
=> spec(BKR(S), MS( add(variable(A) variable(B),
PNR(PNW(1, variable(A)),
PNW(1, variable(A)) PNW(1, variable(B)), constantFunction), M) )) .

*** PetriNet method for bind
1l [bind] : spec(BKR(S bind(A,B,C)), MS(M))
=> spec(BKR(S), MS( add(variable(A) variable(B) variable(C),
PNR(PNW(1, variable(A)) PNW(1, variable(B)), PNW(1, variable(C)),
constantFunction), M) )) .

*** PetriNet method for dissociate
rl [dissociate] : spec(BKR(S dissociate(A,B,C)), MS(M))
=> spec(BKR(S), MS( add(variable(A) variable(B) variable(C),
PNR(PNW(1, variable(A)), PNW(1, variable(B)) PNW(1, variable(C)),
constantFunction), M) )) .

*** PetriNet method for secrete
rl [secrete] : spec(BKR(S secrete(CA,A,CB,B)), MS(M))
=> spec(BKR(S), MS( add(variable(A) variable(B),

PNR(PNW(1, variable(A)), PNW(1, variable(B)), constantFunction), M) )) .

Page 25

Maude rewrite rules that describe how various biological statements are translated into a

Petri net model specification. Variables such A, B, C G, TG, S and M are declared as
specific Maude sorts related either to the biological model or the modeling method
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spec(BKR(emptyStatement),

variable(RhIRI) variable(lecA) variable(PA-I-lectin-mRNA)
variable(PA-I-lectin) variable(PA-I-lectin[e])
variable(interferon-OprF-complex)
variable(RhIRI-Lux-box-complex),

PNR(PNW(1, variable(PA-I-lectin-mRNA)),
PNW(1, variable(PA-I-lectin-mRNA)) PNW(1, variable(PA-I-lectin)),
constantFunction)

PNR(PNW(1, variable(interferon-OprF-complex)),
constantFunction)

PNR(PNW(1, variable(RhIRI-Lux-box-complex)),

PNR(PNW(1, variable(OprF)) PNW(1, variable(interferon-gamma)),
PNW(1, variable(interferon-OprF-complex)), constantFunction)

PNR(PNW(1, variable(Lux-box)) PNW(1, variable(RhIRlI)),
PNW(1, variable(RhIRI-Lux-box-complex)), constantFunction)

PNR(PNW(1, variable(lecA)) PNW(1, variable(RhIRI-Lux-box-complex)),
PNW(1, variable(lecA)) PNW(1, variable(PA-I-lectin-mRNA))
PNW(1, variable(RhIRI-Lux-box-complex)), constantFunction))))

MS(PetriNet(variable(OprF) variable(interferon-gamma) variable(Lux-box)

PNR(PNW(1, variable(PA-I-lectin-mRNA)), emptyPetriNetWeight, constantFunction)

PNR(PNW(1, variable(PA-I-lectin)), PNW(1, variable(PA-I-lectin[e])), constantFunction)

PNR(PNW(1, variable(interferon-OprF-complex)), emptyPetriNetWeight, constantFunction)

PNW(1, variable(RhIRI)) PNW(1, variable(interferon-OprF-complex)),

PNW(1, variable(Lux-box)) PNW(1, variable(RhIRI)), constantFunction)

Fig. 8.

Page 26

Petri net model specification produced by CMA for the Pseudomonas aeruginosa virulence
activation pathway. The Petri net model is composed of a set of variables for the biological
entities (places in Petri net formalism) and a set of transition rules. The transitions consist of
pre-conditions, post-conditions, and a rate function currently defined as constantFunction.

The initial state is defined outside of the model specification
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