
BRAIN
A JOURNAL OF NEUROLOGY

REVIEW ARTICLE

Natural killer cells and their receptors in
multiple sclerosis
Gurman Kaur,1 John Trowsdale2 and Lars Fugger1,3

1 MRC Human Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University

of Oxford, Oxford, OX3 9DS, UK

2 Department of Pathology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK

3 Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital,

University of Oxford, Oxford, OX3 9DS, UK

Correspondence to: Lars Fugger,

Nuffield Department of Clinical Neurosciences,

Division of Clinical Neurology,

Weatherall Institute of Molecular Medicine,

John Radcliffe Hospital, University of Oxford,

Oxford, OX3 9DS, UK

E-mail: lars.fugger@imm.ox.ac.uk

The immune system has crucial roles in the pathogenesis of multiple sclerosis. While the adaptive immune cell subsets, T and B

cells, have been the main focus of immunological research in multiple sclerosis, it is now important to realize that the innate

immune system also has a key involvement in regulating autoimmune responses in the central nervous system. Natural killer

cells are innate lymphocytes that play vital roles in a diverse range of infections. There is evidence that they influence a number

of autoimmune conditions. Recent studies in multiple sclerosis and its murine model, experimental autoimmune encephalomy-

elitis, are starting to provide some understanding of the role of natural killer cells in regulating inflammation in the central

nervous system. Natural killer cells express a diverse range of polymorphic cell surface receptors, which interact with poly-

morphic ligands; this interaction controls the function and the activation status of the natural killer cell. In this review, we

discuss evidence for the role of natural killer cells in multiple sclerosis and experimental autoimmune encephalomyelitis. We

consider how a change in the balance of signals received by the natural killer cell influences its involvement in the ensuing

immune response, in relation to multiple sclerosis.

Keywords: natural killer cells; multiple sclerosis; killer cell immunoglobulin-like receptors; natural killer cell receptors;
human leukocyte antigen

Abbreviations: EAE = experimental autoimmune encephalomyelitis; HLA = human leukocyte antigen; IFN = interferon;
IL = interleukin; ITAM = immunoreceptor tyrosine-based activating motif; ITIM = immunoreceptor tyrosine-based inhibitory motif;
KIR = killer cell immunoglobulin-like receptor; LILR = leukocyte immunoglobulin-like receptors; MHC = major histocompatibility
complex

Introduction
Multiple sclerosis is an inflammatory and degenerative disease of

the CNS with variable disease course. While in the majority of

patients, multiple sclerosis manifests as a relapsing–remitting disease

consisting of attacks followed by periods of clinical stability, a small

fraction (510%) show a gradual disease progression from onset,
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with an inability to recover neurological function. Furthermore, most

of the relapsing–remitting patients proceed to develop a progressive

form after a period of 15–20 years, as shown in large epidemiological

studies (Confavreux and Vukusic, 2006; Compston and Coles,

2008). The basis for this disease heterogeneity remains unknown.

One explanation might be that there is a changing balance between

multiple effector and regulatory immune cells that contribute to the

chronic inflammation of the CNS (Sospedra and Martin, 2005;

Fugger et al., 2009; Goverman, 2009). Immunological research in

multiple sclerosis has mainly focused on T and B cells (Weber and

Hemmer, 2010), which belong to the adaptive immune system. Sev-

eral studies have explored the recognition by T cell receptors of

myelin-derived epitopes presented by predisposing major histocom-

patibility complex (MHC) molecules (Madsen et al., 1999; Gregersen

et al., 2006; Friese et al., 2008). The role of T cells in the pathogenesis

of multiple sclerosis has been strengthened by findings of recent

genome-wide association studies that have identified some 60

non-MHC risk loci for multiple sclerosis, which also point towards

T cells as critical drivers of disease pathology (Hafler et al., 2007; De

Jager et al., 2009; Sawcer et al., 2011). There is also now an appre-

ciation of the role of B cells in multiple sclerosis, which influence T cell

activation, secrete immune-modulatory cytokines and act as a source

of antibody secreting plasma cells (Townsend et al., 2010). The im-

portance of T and B cells in multiple sclerosis has been suggested by

the beneficial effects of immunomodulatory therapies, with drugs

such as alemtuzumab, natalizumab and rituximab, which target

these adaptive immune cell subsets (Polman et al., 2006; Hauser

et al., 2008; Bar-Or et al., 2010; Radue et al., 2010; Coles et al.,

2011). However, it is now known that a complex network of immune

mechanisms consisting of both adaptive and innate immune cells is

likely to be involved in the pathogenesis of multiple sclerosis. Until

recently, little was known about involvement of the innate immune

system in disease pathogenesis (Batoulis et al., 2010) but it is now

clear that innate cell types such as dendritic cells, macrophages and

microglia amongst others, can influence CNS inflammation. It has

been shown that dendritic cells play a critical role in immune invasion

of the CNS by presenting antigen to activate autoreactive T cells and

in epitope spreading, hence implicating these cells in CNS inflamma-

tion and disease development (Greter et al., 2005; McMahon et al.,

2005; Bailey et al., 2007). Activation of microglia and macrophages

also plays an essential role in pathogenesis of CNS inflammatory

disease (Heppner et al., 2005; Adams et al., 2007). A detailed dis-

cussion of the function of these cells in multiple sclerosis and its

animal model, experimental autoimmune encephalomyelitis (EAE)

has been published elsewhere and is beyond the scope of this

review (Wu and Laufer, 2007; Comabella et al., 2010; Chastain

et al., 2011; Gao and Tsirka, 2011). Another innate cell type,

which is receiving increasing attention, is the natural killer cell.

These lymphocytes, which are part of the innate immune system,

have vital roles in immune-regulation. Natural killer T cells are distinct

from natural killer cells, even though they express some of the natural

killer cell surface antigens. They represent innate-like T cells that

mostly express the semi-invariant T cell receptor and recognize gly-

colipid antigens in context of the CD1d molecule (van Kaer, 2007).

In vivo activation of natural killer T cells has been shown to limit CNS

tissue damage in EAE by induction of Th2 responses, changing the

cytokine secretion profile of autoreactive T cells (Jahng et al., 2001;

Singh et al., 2001) or by inhibiting differentiation of naı̈ve CD4 + T

cells towards the Th17 cell lineage (Mars et al., 2009). Nevertheless,

there are conflicting results, perhaps due to differences in dose,

timing and ligand used for natural killer T cell activation (Jahng

et al., 2001; Miyamoto et al., 2001; Pal et al., 2001). A reduction

in the proportion of circulating natural killer T cells has also been

observed in patients with multiple sclerosis, with increased interleu-

kin (IL)4 production from CD4 + natural killer T cells isolated and

expanded from patients in remission in comparison to relapse or

healthy individuals (van der Vliet et al., 2001; Araki et al., 2003).

Further discussion about natural killer T cell function and defects in

multiple sclerosis, and varied approaches used to study natural killer T

cell defects in human disease can be found in other recent reviews

(Sakuishi et al., 2010; Berzins et al., 2011; Novak and Lehuen, 2011).

In this review, we focus on the highly complex and interesting role of

natural killer cells and their receptors in multiple sclerosis and EAE.

The ability of natural killer cells (and their receptors) to respond to

MHC class I molecules makes them ideal candidates for playing a

crucial role in CNS disease (Lanier, 2005; Batoulis et al., 2010). MHC

class I molecules may be highly expressed in various cell types in the

CNS such as oligodendrocytes, astrocytes, microglia and macro-

phages, as observed in active demyelinating multiple sclerosis lesions

(Hoftberger et al., 2004), or even in CNS neurons where the expres-

sion of MHC class I can be altered by cytokines such as interferon

(IFN)� (Neumann et al., 1995, 1997; Corriveau et al., 1998). As

discussed later in this review, MHC class I molecules have also

been genetically implicated in multiple sclerosis. To develop effective

treatment of multiple sclerosis, there is a need to target multiple

disease pathways and to have a better understanding of both the

individual components and the interplay between the innate and

adaptive immune systems (Batoulis et al., 2010). Recent studies

have begun to address the potential importance of natural killer

cells in modifying autoimmune responses. However, it is critical to

take into account the wide range and complexity of the different cell

surface receptors employed by natural killer cells and the effector

mechanisms by which they interact with other cell types, both of

which we review here in the context of multiple sclerosis and EAE.

Natural killer cells
Natural killer cells are large granular lymphocytes, which have

front-line defensive actions against a variety of infections and tu-

mours (Smyth et al., 2001; Cooper et al., 2009a). In contrast to B

and T lymphocytes, natural killer cells can mediate host defences

without any prior sensitization by antigen (Lanier et al., 1986b;

Anegon et al., 1988). Unlike B and T lymphocyte receptors, nat-

ural killer cell receptors do not undergo somatic rearrangement,

but instead vary at the germline in terms of allelic sequence, copy

number and expression levels (Vivier et al., 2008; Orr and Lanier,

2010). Natural killer cells are generally identified as CD3�, to dis-

tinguish them from T cells. In humans, mature natural killer cells

are subdivided into functionally distinct cell subsets based upon

their expression levels of CD56 (high or low expression,

i.e. CD56hi/CD56bright or CD56low/CD56dim) and presence or ab-

sence of CD16, as summarized in Table 1. As CD56 is not ex-

pressed in mice, it is difficult to draw a direct comparison of
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human and mouse natural killer cell subsets (Lanier et al., 1986a;

Frey et al., 1998; Cooper et al., 2001; Jacobs et al., 2001;

Vosshenrich et al., 2006; Huntington et al., 2007; Poli et al.,

2009; Marquardt et al., 2010). A marker generally used for nat-

ural killer cell identification in both human and mouse is NKp46,

although the expression of NKp46 is not fully specific as it can be

observed in other cell types such as some rare populations of ��+

T cells, a mucosal population of innate lymphoid cells and in

human astrocytes (Stewart et al., 2007; Satoh-Takayama et al.,

2008; Cella et al., 2009; Luci et al., 2009; Reynders et al., 2011;

Durrenberger et al., 2012).

Natural killer cell surface receptors include both inhibitory and

activating molecules, many of which are expressed in stochastic,

variegated and overlapping patterns (Box 1). This allows for

expression of different constellations of receptors on different nat-

ural killer cell clones, which are then capable of discriminating

between cells expressing different ligands, in particular different

MHC class I molecules. This creates a diverse repertoire of func-

tionally distinct natural killer cells within an individual and between

populations (Raulet et al., 2001; Orr and Lanier, 2010; Jamil and

Khakoo, 2011). Engagement of these cell surface receptors with

their respective ligands regulates natural killer cell activities, and

the integration of signals received by these receptors dictates the

activation status of the natural killer cell (Vivier et al., 2008; Orr

and Lanier, 2010). Once activated, natural killer cells can them-

selves produce immunoregulatory cytokines and regulate the

development of the ensuing immune response and tissue inflam-

mation, as well as kill target cells (Moretta et al., 2006, 2008;

Vivier et al., 2008; Lieberman, 2010; Sun and Lanier, 2011).

Alteration in natural killer cell number and function has been

implicated in various human autoimmune diseases. For example,

decreases in circulating natural killer cell number, reduced receptor

expression or reduced natural killer activity has been observed in

patients with type 1 diabetes and systemic lupus erythematosus,

amongst others. Nevertheless, it is important to consider that there

might be functional differences between natural killer cells studied

in peripheral blood in comparison to the target site, and it is some-

times difficult to ascertain whether the reported natural killer cell

alterations are a cause or consequence of disease (Erkeller-Yusel

et al., 1993; Rodacki et al., 2007; Park et al., 2009). In inflam-

matory conditions, natural killer cells can be rapidly recruited from

the blood to inflammatory sites in response to chemokine gradi-

ents and adhesion molecules, and mediate an immunoregulatory

role (Fig. 1) (French and Yokoyama, 2004; O’Leary et al., 2006;

Moretta et al., 2008; Perricone et al., 2008; Vivier et al., 2008;

Cooper et al., 2009a, b; Sun et al., 2009, 2010; Lieberman, 2010;

Sun and Lanier, 2011).

Killer cell immunoglobulin-like receptors (KIRs) represent one of

the human natural killer cell receptor families that recognize MHC

class I molecules as their ligands. Similarly, human natural killer

cells also express the C-type lectin-like receptors, CD94/NKG2

heterodimers that recognize the non-classical MHC class I

molecules [i.e. human leukocyte antigen (HLA)-E in humans and

Qa1 in mouse]. They may also express leukocyte immunoglobulin

like receptors (LILR), some of which also recognize MHC class I

ligands. All these receptors consist of members with inhibitory or

activating potential (Vilches and Parham, 2002; Lanier, 2005).

Cells that physiologically express self-MHC class I molecules are

resistant to natural killer cell-mediated killing, whereas loss of

MHC class I expression (e.g. virally infected or neoplastic cells

escaping conventional cytotoxic T cells) provokes natural killer

cells. Thus, natural killer cells are activated by detecting ‘missing

self’ (Karre et al., 1986; Ljunggren and Karre, 1990; Bix et al.,

1991), so that the natural killer cell inhibitory receptors no longer

restrain the activating receptors, which then initiate killing

(Karlhofer et al., 1992; Raulet et al., 2001). The response of a

Box 1 Definition of terms
Epigenetic mechanisms—Include heritable changes that regulate gene transcription or expression, and are not due to changes in DNA sequence

itself (Shenker and Flanagan, 2012).

Dimorphism—Occurring in two different forms. For example, dimorphism at positions 77–80 in HLA-C alleles encodes for serine or asparagine

amino acids at position 77, and asparagine or lysine amino acids at position 80, hence broadly classifying HLA-C alleles in two groups.

Overlapping receptor expression—There is overlap in the receptor expression of different natural killer cells, i.e. natural killer cells express

different combinations of receptors with a different degree of overlap in receptor expression with other natural killer cells (Raulet et al., 2001;

Joncker and Raulet, 2008).

Pseudogene—Non-functional copies of coding genes (Gregory, 2005).

Stochastic—Often refers to a series of random or probabilistic processes. The probability of natural killer cells co-expressing a given combination

of receptors can be estimated by the product of frequencies of natural killer cells expressing each receptor (Raulet et al., 2001).

Synteny—Earlier used to define occurrence of two or more genes on the same chromosome. However, it is often used to refer to conserved

blocks of homologous genes that might be located on different chromosome in another species (Ehrlich et al., 1997).

Variegated—Individual natural killer cells express a subset of the receptor genes or alternatively each receptor is expressed only on a subset of

natural killer cells (Raulet et al., 2001; Joncker and Raulet, 2008).

Table 1 Human natural killer cell subsets

CD16+ CD56low

natural killer cells
CD16�CD56hi

natural killer cells

Relative abundance Constitute �90% of
natural killer cells
in blood

Constitute �10% of
natural killer cells
in blood; predom-
inant in lymphoid
organs

KIR expression High Low

Cytotoxic activity High Low

Cytokine production
upon stimulation

Low High
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natural killer cell is controlled by the expression of these multiple

cell surface receptors. The activating receptors thus play an

important role in promoting natural killer cell activation and cyto-

toxicity. There are many activating receptors, including the natural

cytotoxicity receptors, represented by NKp46, NKp44 and NKp30,

NKG2D, 2B4, CD2, LFA1 and co-receptors such as DNAM1

(Schleinitz et al., 2008; Pegram et al., 2011).

Interestingly, however, natural killer cells in hosts deficient in

MHC class I expression are not spontaneously autoreactive

in vivo (Bix et al., 1991; Hoglund et al., 1991; Liao et al.,

1991; Yu et al., 1992; Zimmer et al., 1998; Vitale et al., 2002).

This is because host MHC class I molecules are also required for

the functional maturation of natural killer cells. Several models

have been proposed to describe this as ‘natural killer cell licensing’

or ‘education’ (Brodin et al., 2009; Hoglund and Brodin, 2010; Orr

and Lanier, 2010). Whereas licensing of natural killer cells was

initially attributed to signalling via the inhibitory natural killer cell

receptors, recent data suggest that interactions of activating

receptors with their MHC ligands can decrease subsequent natural

killer cell responsiveness (Oppenheim et al., 2005; Sun and Lanier,

2008; Tripathy et al., 2008; Fauriat et al., 2010). Nevertheless,

licensing requirements can sometimes be bypassed, for instance,

when natural killer cells are preactivated, stimulated by cytokines

or exposed to inflammatory conditions (Kim et al., 2005;

Yokoyama and Kim, 2006). Also, licensing can be reversible;

mature natural killer cells can be reprogrammed to either gain or

lose activity after transfer to or from MHC-deficient hosts (Elliott

et al., 2010; Joncker et al., 2010).

The following sections provide an account of some of the

prominent human natural killer cell receptors including KIR,

CD94:NKG2, NKG2D, natural cytotoxicity receptors and LILR,

focusing on evidence of their involvement in multiple sclerosis.

Killer cell
immunoglobulin-like
receptors
KIR genes encode polymorphic activating as well as inhibitory nat-

ural killer cell receptors that belong to the immunoglobulin super-

family of Type I transmembrane proteins and comprise 15 genes

and two pseudogenes. They span 100–200 kb in the leukocyte

receptor complex on human chromosome 19q13.4, where allelic

and copy number variations encompass a variety of haplotypes

(Trowsdale, 2001; Barrow and Trowsdale, 2008). KIR receptors

are important regulators of natural killer cell function that must

have co-evolved with polymorphic HLA class I ligands (chromo-

some 6p21.3) (Trowsdale, 2001; Marsh et al., 2003; Uhrberg,

2005; Norman et al., 2007; Single et al., 2007); it is therefore

vital to first understand the properties of these receptors in general

before discussing their involvement in multiple sclerosis.

KIRs are classified according to their number of extracellular

immunoglobulin-like domains, cytoplasmic tail length and

sequence similarity (Fig. 2) (Vilches et al., 2000a; Vilches and

Parham, 2002; Marsh et al., 2003; Purdy and Campbell, 2009).

Figure 1 Immunoregulatory functions of natural killer cells. APC = antigen presenting cell; DC = dendritic cell.
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The inhibitory receptors have long cytoplasmic tails that contain

one or more immunoreceptor tyrosine-based inhibitory motifs

(ITIM), which become phosphorylated upon ligand binding. This

leads to recruitment of such cytoplasmic phosphatases as Src hom-

ology 2 (SH2)-containing phosphatase-1 (SHP-1) or SHP-2. These

enzymes then dephosphorylate protein substrates of tyrosine kin-

ases that are linked to activating natural killer receptors, and sup-

press their signalling. In contrast, the activating receptors lack the

intracellular signalling motifs and instead bind via positively

charged arginine residues in their transmembrane regions—to

complementary, negatively charged aspartate residues in adaptor

proteins, such as DAP-12, that contain immunoreceptor tyrosine-

based activating motifs (ITAMs). Both ITIM and ITAM are defined

by different consensus sequences, which determine their specificity

to bind different substrates. Therefore, once phosphorylated, the

ITAM on the adaptor binds to an SH2 domain-containing kinase

such as Syk or ZAP-70. This initiates a signalling cascade, culmi-

nating in actin-skeleton reorganization, degranulation and tran-

scription of cytokine and chemokine genes (Lanier, 2005, 2008;

Pegram et al., 2011).

In addition to the extensive allelic variation in the KIR genes,

there is diversity in the number and type of KIR genes between

individuals and populations. Some KIR alleles differ by level of

expression, binding affinity to the HLA ligand, or access to

the cell surface (Campbell and Purdy, 2011). Several KIR genes

exhibit copy number variation; this is less prominent in flanking

framework genes such as KIR3DL3 and KIR3DL2 (Jiang et al.,

2012). Additional, more centrally placed framework genes include

KIR2DL4 and KIR3DP1. Haplotypes with different complements of

KIR loci are proposed to be products of unequal crossing-over,

namely non-allelic homologous recombination, and may vary

greatly (Trowsdale, 2001; Parham, 2003; O’Connor et al., 2007;

Thananchai et al., 2007; Li et al., 2008; Traherne et al., 2010). They

are broadly divided into Groups A and B, the prevalences of which

differ in different populations. Group A haplotypes contain seven

KIR genes and two pseudogenes, which are all inhibitory except for

KIR2DS4. However, KIR2DS4 carries a deletion on the majority of A

haplotypes (Hsu et al., 2002; Middleton et al., 2007). Group B

haplotypes are more varied and encode more activating receptors,

including KIR2DS1–3, KIR2DS5 and KIR3DS1, as well as inhibitory

receptors such as KIR2DL2 and KIR2DL5 (Uhrberg et al., 1997,

2002; Parham, 2003). The KIR gene complex is unusually compact,

its genes being only �2 kb apart. It has evolved rapidly, and differs

considerably between humans, great apes and Old World monkeys

(Khakoo et al., 2000; Volz et al., 2001; Guethlein et al., 2002;

Parham, 2004; Hershberger et al., 2005; Sambrook et al., 2006).

KIRs are expressed mainly by natural killer cells, but also by sub-

sets of ��+ T cells, effector memory CD8 +CD28� �b+ T cells,

chronically stimulated CD3 + T cells and some CD4 + memory T

cells. Individual natural killer ‘clones’ express different numbers

and combinations of KIRs, but always maintain the ability to

sense and respond to dynamic changes in ligand expression such

Figure 2 Killer cell immunoglobulin-like receptor structure and nomenclature. KIR genes consist of extracellular immunoglobulin-like

domains, a stem region, a transmembrane region and a cytoplasmic tail. The inhibitory receptors contain one or two ITIM motifs in their

long cytoplasmic tails, whereas the activating receptors have a charged residue in their transmembrane domains that allows them to bind

and signal via adaptor proteins. KIR2DL4 is an exception and contains an ITIM in its cytoplasmic tail and a positively charged residue in its

transmembrane domain.

NK cells and their receptors in MS Brain 2013: 136; 2657–2676 | 2661



as those caused by viral infection or tumours. Once these variegated

KIR expression patterns are formed, they are stabilized by epigen-

etic mechanisms over numerous cell divisions (Huard and Karlsson,

2000; Vilches and Parham, 2002; Young and Uhrberg, 2002;

Parham, 2003; Vivier and Anfossi, 2004; Lanier, 2005).

HLA-C was once considered a minor MHC class I isotype because it

is generally expressed at lower levels than HLA-A and HLA-B, but has

since proved a key focus of recognition by natural killer cells (Barrow

and Trowsdale, 2008). Polymorphic HLA-C alleles are broadly clas-

sified into two groups, based on the HLA-C1 (77Ser 80Asn), HLA-C2

(77Asn 80Lys) dimorphism at position 77–80, which defines their abil-

ity to bind KIR2D receptors. Table 2 summarizes the different HLA-C

groups and their binding specificity for KIR2D receptors (Colonna

et al., 1993; Moretta et al., 1993; Wagtmann et al., 1995; Winter

et al., 1998; Boyington and Sun, 2002; Parham, 2005; Stewart et al.,

2005; Moesta et al., 2008).

By contrast, KIR3D receptors recognize some HLA-A and HLA-B

alleles. The latter are split into HLA-Bw4 versus HLA-Bw6 ‘supra-

types’, based on serological epitopes defined by positions 74–83 in

their �1 domains, particularly their respective 80Ile or 80Thr versus
80Asn (near the C-termini of the bound peptides) (Muller et al.,

1989). KIR3DL1 recognizes Bw4 alleles and Bw4 + HLA-A variants,

and may show higher affinity and inhibition by those with 80Ile

versus 80Thr (Cella et al., 1994; Wagtmann et al., 1995). Table 3

lists the different human KIRs and their respective ligands.

Because the KIRs and their HLA-class I ligands are so polymorphic,

they are potential susceptibility factors for infections and autoim-

mune diseases, as well as obstetric complications such as

pre-eclampsia. While HLA-KIR genotypes that favour natural killer

cell or T cell activation might have evolved to enhance resistance to

viruses or tumours, some combinations may concomitantly predis-

pose to autoimmunity (Rajagopalan and Long, 2005). Interactive

associations of HLA-KIR genotypes in autoimmune diseases, infec-

tious models, reproductive failure, cancer and haemopoietic stem cell

transplantation are reviewed elsewhere (Parham, 2005; Rajagopalan

and Long, 2005; Williams et al., 2005; Kulkarni et al., 2008; Chazara

et al., 2011; Jamil and Khakoo, 2011).

Killer cell
immunoglobulin-like
receptors and their human
leukocyte antigen class I
ligands in multiple sclerosis
The parallel recognition of HLA class I molecules by T cell receptor

and KIRs has prompted a new look at susceptibility to multiple

Table 3 KIR and ligands

Receptor Type Species Ligand References

KIR2DL1a,b Inhibitory Human HLA-C2 (80Lys) Colonna et al. (1993), Moretta et al. (1993), Wagtmann
et al. (1995), Fan et al. (1997, 2001)

KIR2DL2a,b Inhibitory Human HLA-C1 (80Asn), HLA-B*4601,
*7301, Some HLA-C2

Colonna et al. (1993), Moretta et al. (1993), Wagtmann
et al. (1995), Snyder et al. (1999), Moesta et al. (2008)

KIR2DL3a Inhibitory Human HLA-C1 (80Asn), HLA-B*4601,
*7301, Some HLA-C2

Colonna et al. (1993), Moretta et al. (1993), Wagtmann
et al. (1995), Maenaka et al. (1999), Moesta et al. (2008)

KIR2DL4 Inhibitory and
activating

Human HLA-G? Rajagopalan and Long (1999)

KIR2DL5A,B Inhibitory Human ? Vilches et al. (2000b), Gomez-Lozano et al. (2002)

KIR2DS1 Activating Human HLA-C2 (80Lys) Moretta et al. (1995), Biassoni et al. (1997)

KIR2DS2a Activating Human ? Saulquin et al. (2003)

KIR2DS3,5 Activating Human ?

KIR2DS4a Activating Human HLA-A11, HLA-C Katz et al. (2001), Graef et al. (2009)

KIR3DL1b Inhibitory Human HLA-Bw4, HLA-A23, A24, A32 Cella et al. (1994), Gumperz et al. (1995), Stern et al. (2008),
Vivian et al. (2011)

KIR3DL2 Inhibitory Human HLA-A3, HLA-A11, CpGDNA/
TLR9

Hansasuta et al. (2004), Sivori et al. (2010)

KIR3DL3 Inhibitory Human ?

KIR3DS1 Activating Human ?

a Represents receptors whose crystal structures have been determined.
b Represents receptors whose crystal structures are determined in complex with ligand.

Table 2 HLA-C ligand and KIR binding specificity

HLA-C1 HLA-C2

Alleles HLA-Cw1, Cw3, Cw7,
Cw8, Cw12, Cw13,
Cw14, Cw1507,
Cw1601/4

HLA-Cw2, Cw4, Cw5,
Cw6, Cw15,
Cw1204/5,
Cw0707/9,
Cw1602, Cw17,
Cw18

Evolutionary age Evolutionarily older Arisen later in primate
evolution

KIR recognition KIR2DL2, KIR2DL3a KIR2DL1a, KIR2DS1

Strength of
KIR-HLA binding
and inhibition

KIR2DL1-HLA-C24KIR2DL2-HLA-C14
KIR2DL3-HLA-C1

a KIR2DL1 is specific in its binding to HLA-C2, but KIR2DL2 and KIR2DL3 can bind
to HLA-C1, several HLA-C2 allotypes and two HLA-B allotypes that share key

residues with HLA-C1.
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sclerosis. For example, HLA-A3 predisposes to multiple sclerosis

(Fogdell-Hahn et al., 2000; Harbo et al., 2004). Since HLA-A3-

restricted CD8 + T cells are implicated in its induction in a huma-

nized mouse model (Friese et al., 2008), possible contributions of

natural killer cell receptors like KIR3DL2, which recognize HLA-A3,

demand further study. Recent studies in multiple sclerosis are

beginning to increase our understanding of the importance of

HLA-B and HLA-C alleles as ligands for KIRs. A comparison of

1201 multiple sclerosis cases and 3660 UK controls showed

that HLA-Cw5 has a protective effect (relative risk �0.55), inde-

pendent of HLA-DRB1*1501, *03 and *0103. However, grouping

into HLA-C1 versus -C2 did not reveal further associations

(Yeo et al., 2007). HLA-Cw5 can be recognized by a variety of

receptors, i.e. KIR2DL1, KIR2DS1 and possibly also by KIR2DL2,

and KIR2DL3 expressed on natural killer cells or a subpopulation of

T cells, suggesting an increased potential for immune regulation

via this HLA-KIR recognition pathway (Winter et al., 1998;

Parham, 2005; Moesta et al., 2008). An Italian study reported

that the protective effect of HLA-Cw5 was possibly synergistic

with that of HLA-A2 (Bergamaschi et al., 2010). On

the other hand, a Scandinavian study failed to confirm protection

by HLA-Cw5, but instead showed a positive association

with HLA-Cw8 in HLA-DRB1*15-negative subjects (Link et al.,

2010).

There are similar reports of protective associations of HLA-Bw4

ligands for KIR3DL1. Thus HLA-B*44 (in the HLA-Bw4-80Thr

group) is under-represented in multiple sclerosis, which might

have confounded the implication of the linked Cw5 (Rioux

et al., 2009; Healy et al., 2010). A Norwegian study also found

protection by the HLA-Bw4 group, again independently of

HLA-DRB1 alleles. Although differences in prevalence of inhibitory

or activating KIR alleles did not reach significance, there were

signs of interactions between KIR2DL1/S1 and HLA-C2 that war-

rant larger studies (Lorentzen et al., 2009). A small Italian

study suggested a protective role or a decrease in the frequency

of KIR2DS1 in patients with multiple sclerosis, an effect

that was enhanced in the presence of its ligand group HLA-C2.

On the contrary, frequency of another activating receptor

KIR2DS4*001/002 allele was found to be higher in patients

(Fusco et al., 2010). A recent study demonstrated a decrease in

the frequency of the inhibitory gene KIR2DL3 in patients with

multiple sclerosis (Jelcic et al., 2011). KIR2DL2 and KIR2DL3 seg-

regate as alleles at the same locus (Uhrberg et al., 2002); there-

fore, the presence of two copies of KIR2DL2/S2 (KIR2DS2 is in

high linkage disequilibrium with KIR2DL2) in the absence of

KIR2DL3 was over-represented in the multiple sclerosis cohort

(Jelcic et al., 2011).

A serious difficulty in many of these studies is the loss of

statistical power after stratifying subjects according to combin-

ations of KIR with HLA variants, excluding secondary effects of

linked HLA-DRB1 alleles, and then correcting for multiple compari-

sons. Nevertheless, independent contributions of natural killer cells

and their receptors to disease pathogenesis and progression clearly

warrant investigation in larger studies. Furthermore, mechanistic

studies that allow functional assessment of each of these genes

in CNS disease are required.

CD94:NKG2, NKG2D and the
natural cytotoxicity receptors
The CD94/NKG2 gene family is located in the natural killer gene

complex on human chromosome 12 and the syntenic region on

mouse chromosome 6. The CD94 gene is genetically linked to four

NKG2 genes in humans (NKG2A, C, E and F) and three in mice

(NKG2A, C and E). The common CD94 subunit forms heterodi-

mers with NKG2A, E or C; the CD94:NKG2A heterodimer is an

inhibitory receptor, whereas the CD94:NKG2C and CD94:NKG2E

are activating (Fig. 3) (Borrego et al., 1998; Braud et al., 1998;

Lanier, 2005; Pegram et al., 2011). The CD94/NKG2A receptors

have two ITIM motifs in their cytoplasmic domains, whereas the

CD94/NKG2C and CD94:NKG2E have a positively charged residue

in their transmembrane regions and hence associate with DAP12

(Borrego et al., 2006). CD94:NKG2A/E/C molecules recognize

non-classical MHC molecules, which carry grooves that normally

bind peptides derived from the leader sequences of classical HLA

class I molecules, hence allowing indirect monitoring of MHC class

I expression on the target cell. CD94/NKG2A and CD94/NKG2E

receptors bind HLA-E with higher affinity than CD94/NKG2C and

minor sequence differences in the peptide bound to HLA-E can

dramatically influence receptor binding affinity (Vales-Gomez

et al., 1999; Kaiser et al., 2005; Hoare et al., 2008). The

CD94/NKG2 receptors play a crucial role in modulating natural

killer cell responses and have an indispensable role in protection

against infectious diseases such as viral mousepox disease (Fang

et al., 2011). These receptors have very limited polymorphism and

are expressed on overlapping subsets of natural killer cells and T

cells; unlike KIRs, expression of CD94/NKG2 receptors is not

stable and can be modulated by cytokines or T cell receptor signals

(Lanier, 2005; Pegram et al., 2011).

The activating NKG2D molecule is conserved between humans

and mice and is expressed as a disulphide-linked surface homo-

dimer potentially on all mouse and human natural killer cells,

human CD8 + �b T cells, �� T cells and a fraction of CD4 + T

cells. Its expression on T cells is more selective in mice. Though

its gene is also in the natural killer gene complex, it has so little

homology with the rest the NKG2 family that ‘NKG2D’ is con-

sidered a misnomer (Raulet, 2003; Lanier, 2005). It associates with

DAP-10 adaptor protein; its alternatively spliced short isoform,

NKG2D-S, is found in mice (and not humans), and can associate

with either DAP-10 or DAP-12. Stress-induced, MHC class

I-related molecules act as ligands for NKG2D; they include

MICA, MICB, ULBP1, ULBP2, ULBP3 and ULBP4 proteins in

humans and RAE1, H60 and MULT proteins in mice. Most of

these ligands are expressed at low levels by normal cells but are

upregulated under inflammatory conditions, and upon cellular

transformation or stress (Bauer et al., 1999; Diefenbach et al.,

2000; Raulet, 2003; Lanier, 2005, 2008). NKG2D ligands are

also induced in T cells upon activation and this interaction of

NKG2D with its ligands plays an important role in the crosstalk

between activated T cells and natural killer cells (Rabinovich et al.,

2003; Cerboni et al., 2007). However, it has also been suggested

that MICA that is induced in these activated T cells is mostly

retained intracellularly, perhaps as a safeguard mechanism to
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protect them from NKG2D-dependent cytotoxicity (Molinero

et al., 2006). In T cells, NKG2D can function as a co-stimulatory

receptor and influence T cell receptor-dependent T cell activation

(Groh et al., 2001); NKG2D conjugation along with the T cell

receptor on CD8 + T cells can alter T cell function and decrease

production of anti-inflammatory cytokines (Barber and Sentman,

2011). NKG2D is a powerful receptor and plays an important role

in mediating immune surveillance against viral infections and

tumours (Zafirova et al., 2011).

Natural cytotoxicity receptors, namely NKp30, NKp44 and

NKp46, are another group of important activating receptors that

belong to the Ig superfamily. Their reported ligands include viral

haemagglutinins (NKp46 and NKp44), heparin sulphate proteogly-

cans (NKp46 and NKp30), HLA-B-associated transcript 3, i.e.

BAT3 and B7-H6 (NKp30). They must have other unidentified

endogenous ligands that stimulate natural killer cell responses, as

antibody-mediated blocking of natural cytotoxicity receptors pre-

vents lysis of various tumour cell types (Sivori et al., 1999;

Moretta et al., 2001; Pegram et al., 2011). Some proteins block

natural killer cell function and cytotoxicity by binding natural cyto-

toxicity receptor proteins. Human cytomegalovirus pp65 protein,

for example binds to NKp30 (Arnon et al., 2005). Similarly,

cancer-associated protein, proliferating cell nuclear antigen

(PCNA) binds to NKp44 (Rosental et al., 2011). Natural cytotox-

icity receptors associate with ITAM-bearing signal transduction

molecules, which mediate activation, i.e. CD3� and Fc"RI� for

NKp46 and NKp30, and DAP12 for NKp44 (Moretta et al.,

2001; Pegram et al., 2011). NKp46 and NKp30 are expressed

on activated and resting natural killer cells, while NKp44 is upre-

gulated on IL2 stimulation. Additionally, NKp46 expression has

recently been observed in astrocytes in human brain tissue and

more so in white matter lesions from patients with multiple scler-

osis, however, its function on astrocytes is unclear (Durrenberger

et al., 2012). NKp46 is conserved between humans and mice;

however, no functional mouse orthologue has been reported for

NKp44 and NKp30 (Walzer et al., 2007). Natural cytotoxicity

receptors appear to be key mediators of tumour cell killing by

natural killer cells, and of natural killer recognition of immature

dendritic cells (Barrow and Trowsdale, 2008; Pegram et al.,

2011). An important role for NKp46 in protection against viral

conditions and in the development of Type 1 diabetes has been

demonstrated in vivo. Knock-in mice containing a non-functional

NKp46 receptor demonstrated an enhanced susceptibility to lethal

influenza virus infection (Gazit et al., 2006) and less development

of type 1 diabetes (Gur et al., 2010). Some of these findings are

contradictory and NKp46 is suggested to be involved in down-

regulation of natural killer cell responsiveness (Narni-Mancinelli

et al., 2012). Nevertheless, NKp46 was shown to bind undeter-

mined ligands on human and mouse pancreatic beta cells, and

natural killer cells killed pancreatic beta cells in an NKp46-

dependent manner. Moreover, induction of blocking NKp46-

specific antibodies prevented diabetes development in non-obese

diabetic mice (animal model of type 1 diabetes) (Gur et al., 2010,

2011). A summary of these receptors can be found in Table 4.

CD94:NKG2 and NKG2D
receptors in multiple sclerosis
The CD94/NKG2A receptors reportedly play an important role in

regulating T cell activity in EAE. Inhibitory interactions between

murine CD94:NKG2A on natural killer cells and Qa1 on activated

T cells are important in protecting activated T cells from natural

killer lysis, and thus in clonal expansion and memory generation

by self-reactive T cells. Furthermore, EAE is ameliorated by

antibody-mediated blockade of Qa1-NKG2A interactions, or by

adoptive transfer of Qa1-deficient CD4 + T cells, because of

Figure 3 CD94/NKG2 and natural cytotoxicity receptors. The inhibitory receptors contain ITIM motifs in their cytoplasmic tails, whereas

the activating receptors have a positively charged residue in their transmembrane regions and associate with ITAM-bearing adaptor

proteins.
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potent natural killer killing of activated autoreactive T cells.

Antibody-mediated blockage of Qa1-NKG2A interactions is asso-

ciated with reduced cellular infiltrates and activated microglia, and

an altered cytokine profile (i.e. decreased IL17 and IFN�, and

increased IL4 and IL10) of CD4 + T cells in the CNS (Lu et al.,

2007; Leavenworth et al., 2010). In line with this, activated

CD4 + T cells from Qa1 mutant knock-in mice (with a selective

deficiency to bind the CD94/NKG2A receptor) are highly suscep-

tible to natural killer cell lysis, reconfirming the role of this path-

way in modulating adaptive/autoimmune responses (Lu et al.,

2007). Furthermore, Qa1 engagement of CD94-NKG2A receptors

on CD8 + T cells transmits an inhibitory signal that attenuates

suppressive activity of CD8 + regulatory T cells; disruption of

these Qa1-NKG2A interactions leads to robust CD8 regulatory

activity and diminished development of EAE (Lu et al., 2008).

Interaction via NKG2D may be an alternative mechanism

by which natural killer cells could suppress autoreactive T cells.

Heat-shock protein 70 complexed with peptides isolated from

EAE brains (Hsp70-pc) induced natural killer cell-dependent resist-

ance to subsequent EAE induction in SJL/J mice, possibly due to

upregulation of the NKG2D ligand, H60. NKG2D–H60 interactions

seem to modulate dendritic cell function, leading to elimination of

antigen-reactive T cells and induction of EAE tolerance. This was

suggested by the reduced ability of dendritic cells preincubated

with natural killer cells from Hsp70-pc mice to stimulate prolifer-

ation of proteolipid protein (PLP)-reactive cells in vitro, which also

correlated with enhanced death of PLP-reactive cells. (Galazka

et al., 2006, 2007). On the other hand, natural killer cells can

also interact directly with brain-resident cell types; once activated,

they can kill resting microglial cells in vitro via NKG2D- and

NKp46-dependent pathways. Activated microglia are protected

from lysis by these mechanisms by upregulating MHC class I

(Lunemann et al., 2008). Additionally, inappropriate expression

of NKG2D and its ligands can lead to activation of autoreactive

effector cells. Tumour cells reduce NKG2D expression on natural

killer and T cells, impairing their cytotoxic activity, by releasing

soluble forms of MICA or MICB. Interestingly, in a recent study,

serum levels of soluble MICB (but not MICA) were most elevated

(above controls) in patients with multiple sclerosis during relapse

(Groh et al., 2002; Fernandez-Morera et al., 2008).

Additional evidence suggests that NKG2D-expressing natural

killer or T cells can contribute to tissue injury in multiple sclerosis

by killing NKG2D-ligand bearing oligodendrocytes (Saikali et al.,

2007) or astrocytes (Darlington et al., 2008). Similarly, dorsal root

ganglion neurons are susceptible to natural killer cell-mediated

lysis because they strongly express the NKG2D ligand, RAE1

(Backstrom et al., 2003). Nevertheless, this might also suggest

differences in natural killer cell function in the CNS in comparison

to the peripheral blood (Shi et al., 2011).

Leukocyte
immunoglobulin-like
receptors
Leukocyte immunoglobulin-like receptors (LILRs, LIR or CD85),

also called immunoglobulin-like transcripts (ILTs), are encoded by

genes in the leukocyte receptor complex on chromosome

19q13.4, closely linked to the KIR genes. The LILR family com-

prises six potentially activating LILRA, five inhibitory LILRB and

two pseudogenes. LILRs can be expressed on various cells of the

myeloid lineage, including dendritic cells; also on B cells, natural

killer cells and T cells (Barrow and Trowsdale, 2008; Anderson and

Allen, 2009). There are two main haplotypes, containing 13 LILR

genes, one with a 6.7 kb deletion affecting the LILRA3 gene

(Norman et al., 2003; Hirayasu et al., 2006). The ligands for

some, but not all, LILRs are classical and non-classical HLA-class

I molecules, as well as the human CMV HLA-class I homologue,

UL18 (Brown et al., 2004; Barrow and Trowsdale, 2008; Anderson

and Allen, 2009). A proposed ligand for LILRA4 is CD317, also

known as tetherin (Cao et al., 2009). Like the other natural killer

inhibitory receptors, the LILRBs transmit negative signals through

their ITIM domains, whereas the activating LILRAs interact with

ITAM-bearing adaptor proteins such as Fc"RI� to deliver positive

signals. LILRB1 is variably expressed on subsets of blood natural

Table 4 NKG2D, NKG2, natural cytotoxicity receptors and their ligands

Receptor Type Species Ligand References

NKG2Da,b Activating Human and mouse Mouse RAE-1, H60, MULT
Human MICA, MICB, ULBP

Bauer et al. (1999), Li et al. (2001), Wolan et al. (2001)

NKp46a Activating Human and mouse Viral haemagglutinins Mandelboim et al. (2001), Foster et al. (2003)

NKp30a,b Activating Human B7-H6, BAT3, HCMV pp65 Arnon et al. (2005), Pogge von Strandmann et al. (2007),
Brandt et al. (2009), Joyce et al. (2011), Li et al. (2011)

NKp44a Activating Human Viral haemagglutinins, PCNA Arnon et al. (2001), Cantoni et al. (2003), Rosental et al.
(2011)

CD94/NKG2Aa,b Inhibitory Human and mouse HLA-E, Qa-1 Borrego et al. (1998), Braud et al. (1998), Lee et al.
(1998), Vance et al. (1998), Sullivan et al. (2007), Petrie
et al. (2008)

CD94/NKG2C Activating Human and mouse HLA-E, Qa-1 Borrego et al. (1998), Braud et al. (1998), Vance et al.
(1999)

CD94/NKG2E Activating Human and mouse HLA-E, Qa-1 Borrego et al. (1998), Vance et al. (1999)

a Represents receptors whose crystal structures have been determined.

b Represents receptors whose crystal structures are determined in complex with ligand.
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killer cells and T cells and more uniformly on B cells and mono-

cytes (Brown et al., 2004; Lanier, 2005; Barrow and Trowsdale,

2008; Anderson and Allen, 2009). Table 5 lists the different LILRs

and their ligands.

Given the wider expression of LILRs, their most important roles

are probably in regulating leukocytes that lack KIR or other inhibi-

tory receptors. Triggering of LILRs by interaction with ligands can

modulate the activation status of dendritic cells, and thus their

antigen-presenting functions, migration, cytokine secretion profile

and capacity to induce or tolerize T cell responses (Chang et al.,

2002; Young et al., 2008). LILRB1 mediates inhibition not only of

natural killer cell killing and adhesion to target cells but also of

T cell receptor signalling and T cell proliferation (Brown et al.,

2004; Anderson and Allen, 2009). It binds with low affinity to

HLA class I molecules and with 41000-fold higher affinity to

human cytomegalovirus protein UL18, which acts as a decoy of

LILRB1, suppressing its antiviral responses (Chapman et al., 1999).

Alternative splicing of LILR messenger RNAs can generate soluble

isoforms, suggesting further potential for regulating immune

responses by blockade of inhibitory interactions with HLA-class I

molecules (Jones et al., 2009). There is additional evidence that

LILRB1 and LILRB2 can compete directly with CD8�� for binding

to HLA class I, hence modulating T cell activation (Shiroishi et al.,

2003). In keeping with these modulatory effects on immune

responses, genetic polymorphisms and deletions in LILRs show

association with disease (Brown et al., 2004; Anderson and

Allen, 2009; Thomas et al., 2010).

Leukocyte
immunoglobulin-like receptor
association in multiple
sclerosis
Moderately sized Spanish and German studies analysing 225

and 451 patients with relapsing–remitting multiple sclerosis,

respectively, suggest disease predisposition by LILRA3 (ILT6)

gene deletion (Koch et al., 2005; Ordonez et al., 2009). LILRA3

itself lacks transmembrane and cytoplasmic domains and is thus a

potential soluble competitor. The disease-associated 6.7 kb gene

deletion in the LILRA3 locus leads to a null LILRA3 allele, with

seven of the eight LILRA3 exons being deleted (Torkar et al.,

2000; Wilson et al., 2000).

Studies are now beginning to investigate expression differences

of LILR and their ligands under inflammatory/autoimmune condi-

tions. There appear to be higher numbers of circulating

LILRB1 +CD8 + T and LILRB1 + natural killer cells in patients with

progressive multiple sclerosis than in patients with relapsing–remit-

ting multiple sclerosis, perhaps suggesting accumulation of

end-stage effector/memory T cells or experienced natural killer

cells (Martinez-Rodriguez et al., 2010). HLA-G and one of its

potential receptors, LILRB1, which are normally absent from the

CNS, are reported to be abundantly co-expressed on macrophages

and activated microglial cells in multiple sclerosis lesions, possibly

suggesting counter-regulation of pathogenic T cells by HLA-G

(Wiendl et al., 2005). Also, higher levels of soluble HLA-G have

been observed in the CSF of patients with multiple sclerosis than

in non-inflammatory controls (Wiendl et al., 2005; Fainardi et al.,

2008). However, evidence for expression of HLA-G in tissues

other than trophoblast has been questioned (Apps et al., 2008).

On the other hand, another LILR receptor, LILRB4 is reduced on

blood monocytes in active relapsing–remitting multiple sclerosis.

Although its ligand is unidentified, when expressed on antigen

presenting cell, LILRB4 can inhibit CD4 + T cell proliferation;

hence modulating its expression by such therapeutics as IFNb
might be beneficial (Jensen et al., 2010). These studies are begin-

ning to implicate LILR pathways in multiple sclerosis, although the

exact contributions of different LILRs still remains unclear and LILR

are expressed on cells other than natural killers.

Taken together, these studies support the view that natural killer

cell receptors are involved in regulating autoreactive immune re-

sponses in the CNS. We will now discuss direct evidence for the

involvement of natural killer cells in multiple sclerosis and recog-

nize mechanisms by which they interact with other immune cells.

Table 5 LILR and ligands

Receptor Type Species Ligand References

LILRA1 Activating Human HLA-B27 Allen et al. (2001)

LILRA2 Activating Human ? Chen et al. (2009)

LILRA3a Activating Human Classical and non-classical
HLA-Class I

Ryu et al. (2011)

LILRA4 Activating Human Tetherin (CD317) Cao et al. (2009)

LILRA5a Activating Human ? Shiroishi et al. (2006a)

LILRA6 Activating Human ?

LILRB1a,b Inhibitory Human HLA-class I, HMCV UL18,
HLA-F, HLA-G

Cosman et al. (1997), Colonna et al. (1998), Chapman et al.
(1999, 2000), Vitale et al. (1999), Willcox et al. (2003)

LILRB2a,b Inhibitory Human HLA-class I,HLA-F, HLA-G, Colonna et al. (1998), Chapman et al. (1999), Willcox et al.
(2002), Shiroishi et al. (2006b)

LILRB3 Inhibitory Human ?

LILRB4 Inhibitory Human ? Cheng et al. (2011)

LILRB5 Inhibitory Human ?

a Represents receptors whose crystal structures have been determined.
b Represents receptors whose crystal structures are determined in complex with ligand.
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Involvement of natural killer
cells in multiple sclerosis and
experimental autoimmune
encephalomyelitis
Accumulating evidence from murine models, ex vivo analysis of

natural killer cells in patients with multiple sclerosis in both blood

and brain sections and data from human clinical trials strongly

implicate natural killer cells in modulating CNS inflammation.

Initiated by immunizing mice or rats with myelin antigens in

complete Freund’s adjuvant, EAE shares clinical and neuropatho-

logical features with multiple sclerosis (Steinman, 1999; Friese

et al., 2006). Several studies suggest that natural killer cells are

involved in its regulation. Natural killer cell depletion prior to dis-

ease induction led to an increase in EAE severity and mortality.

These animals exhibited pronounced cellular infiltrates, CNS in-

flammation and demyelination (Zhang et al., 1997; Matsumoto

et al., 1998; Xu et al., 2005; Hao et al., 2010). There was also

increased CD4 + T cell proliferation and production of Th1

cytokines such as IFN� and TNF� (Zhang et al., 1997). These

results imply a protective role for natural killer cells, consistent

with the inhibitory effects of bone marrow-derived natural killer

cells (from DA rats) on T cell proliferation and cytokine production

(e.g. IL10 and IFN�) (Smeltz et al., 1999). One suggested mech-

anism is direct killing of syngeneic myelin-specific encephalitogenic

T cells, however, the molecular mechanism of this interaction

is unclear (Zhang et al., 1997; Xu et al., 2005). Additionally,

natural killer cells can themselves produce IFN� and can

promote and influence polarization of Th1 responses (Andoniou

et al., 2008).

Recent work suggests that natural killer cells must localize to the

CNS to regulate the development of autoimmune responses in

EAE; the chemokine (fractalkine) receptor, CX3CR1 is critical

for CNS natural killer cell recruitment, but not for that of T

cells, natural killer T cells and monocytes/macrophages. Thus,

CX3CR1�/� mice, which have fewer natural killer cells infiltrating

the CNS, but normal numbers in the periphery, develop more

severe EAE with persistent spastic paralysis and increased mortal-

ity. The disease phenotype is similar to that observed in natural

killer cell depleted CX3CR1 + /� mice; emphasizing the importance

of locally infiltrating natural killer cells in controlling CNS auto-

immunity (Huang et al., 2006). The concomitant increase in

myelin-reactive CD4 + Th17 cell responses in the CNS (but not

the lymph nodes)—in both settings—suggests that these are nor-

mally restrained by natural killer cells (Hao et al., 2010).

Conversely, expansion of natural killer cells (by engaging IL2 re-

ceptor with IL2-IL2 monoclonal antibody complexes) reduced IL17

production by CD4 + T cells in the CNS and attenuated EAE. This

protective effect apparently required natural killer cells in the CNS,

as it was not seen in CX3CR1�/� mice. Since their microglia were

an important source of Th17 polarizing cytokines in the absence of

natural killer cells, perhaps interactions between natural killer cells,

microglia and Th17 cells normally determine the magnitude of

CNS inflammation in EAE (Hao et al., 2010, 2011).

Additional suggested mechanisms of natural killer cell-mediated

control of CNS inflammation include expression of brain-derived

neurotrophic factor and neurotrophin 3, which can contribute to

neuronal survival and repair (Hammarberg et al., 2000). In line

with this, immunomodulators that enhance natural killer cell activ-

ity, such as linomide and glatiramer acetate, ameliorated EAE

(Karussis et al., 1993a, b; Arnon and Aharoni, 2004; Al-Falahi

et al., 2009). Prior injection of glatiramer acetate enhanced killing

of autologous immature or even mature dendritic cells by natural

killer cells, whether activated or not with IL2 in vitro. So did ex-

posure of human natural killer cells to glatiramer acetate in vitro.

Therefore, one possible action of glatiramer acetate in EAE or

multiple sclerosis is its enhancement of natural killer cell lysis of

dendritic cells that might otherwise present autoantigens to patho-

genic T cells (Al-Falahi et al., 2009; Sand et al., 2009).

Contrasting reports suggest that natural killer cells can be

pathogenic and exacerbate EAE. Consistent with this, in C57BL/

6 mice, myelin oligodendrocyte glycoprotein (MOG)-induced EAE

was ameliorated after depletion of natural killer cells. There were

parallel decreases in production of IFN� and TNF� by CD4 + T cells

in the draining lymph nodes (but not in the CNS), but, interest-

ingly, IL17 production remained unaltered. There were concomi-

tant changes in the maturational status of dendritic cells and in the

T cell receptor Vb usage of brain T cells (Winkler-Pickett et al.,

2008). These discrepancies could reflect distinct natural killer cell

localization patterns, or result from technical differences in anti-

body depletion regimes and doses, methods of immunization and

EAE scoring, sub-strains of mice and/or subsets of natural killer

cells. Further studies also suggest that the cytokine environment,

and interactions of natural killer cells with other adaptive immune

cell types, can facilitate the development of autoimmune

responses. For example, release of IL18 by macrophages or den-

dritic cells can lead to increased IFN� production by natural killer

cells, promoting a Th1 response. Indeed, IL18�/� mice are resist-

ant to MOG-induced EAE, an affect attributed to decreased cyto-

toxicity and IFN� production by natural killer cells. Furthermore,

this resistance was broken by injecting IL18, which also restored

the defective Th1 responses if natural killer cells were present

(Shi et al., 2000). Similarly, administration of IL21 before EAE in-

duction enhanced inflammatory infiltration into the CNS and

increased EAE severity by boosting IFN� production and natural

killer cell function (Vollmer et al., 2005). While these contradic-

tions may eventually be resolved, natural killer cells are clearly

important in inflammatory conditions in the CNS.

Human studies and
clinical trials
While natural killer cells have been suggested to be present in

demyelinating multiple sclerosis lesions (Traugott and Raine,

1984), this finding remains questionable as the antibodies used

to identify natural killer cells (for example, Leu-7 or CD57) were

not natural killer cell-specific but could identify both subsets of

natural killer cells, T cells and possibly also oligodendrocytes

(Lanier et al., 1983; McGarry et al., 1983). Similarly, other studies
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at the time suggested a reduced function or activity of natural

killer cells in patients with multiple sclerosis, but these observations

were mainly based on cytokine production or responsiveness and

cytotoxicity assays done on patient peripheral blood mononuclear

cells (Benczur et al., 1980; Uchida et al., 1982; Braakman et al.,

1986) and in some cases were also limited in patient sample size

(Oger et al., 1988). Natural killer cell numbers were reportedly

decreased in peripheral blood of patients; while some studies

used multiple cell surface markers (for example, CD3, CD56,

CD16 and CD8) to define natural killer cell populations

(Munschauer et al., 1995), others were more restricted (for

example, CD56 only) in their selection of antibodies used for nat-

ural killer cell immunophenotyping (Vranes et al., 1989).

Moreover, literature suggesting a relationship between natural

killer cell deficiencies and disease status in multiple sclerosis is

problematic due to widely different criteria and protocols that

have been used to classify natural killer cell frequencies and

activity, as well as differences in patient selection. Furthermore,

defects in these lymphocyte populations could be an immune

manifestation of the ongoing disease in patients. A recent

phenotyping study that performed cytometric staining for mul-

tiple cell surface markers revealed lower frequencies of circulating

CD8lowCD56 +CD3�CD4� cells in untreated patients with

relapsing–remitting multiple sclerosis or clinically isolated demye-

lination syndrome than in healthy controls (De Jager et al., 2008).

Reduction in natural killer cell function in the periphery has also

been correlated with the onset of clinical relapse in patients with

multiple sclerosis (Kastrukoff et al., 1998, 2003). As in EAE,

CX3CR1 expression on natural killer cells was apparently import-

ant in patients with relapsing–remitting or primary-progressive

multiple sclerosis, in whom it was lower than in healthy controls.

Indeed, high expression levels of CX3CR1 correlates with

increased cytotoxicity of these cells. However, the proportions of

circulating CX3CR1 + natural killer cells were shown to be high in

patients with active disease/acute relapses than in those with

stable disease (Infante-Duarte et al., 2005). It is not clear whether

their CX3CR1low natural killer cells were defective in cytotoxicity

or actively pathogenic. Alternatively, these CX3CR1high and

CX3CR1low natural killer cells may represent distinct subsets or

stages of natural killer cell maturation (Hamann et al., 2011).

Human natural killer cell subsets can be distinguished not only

by their levels of CD56 and CD16 but also by their production of

IL10 and IFN� (NK1) or IL5 and IL13 (NK2). NK2 cells are report-

edly increased in the blood during disease remissions. This is seen

to correlate with increase in the proportion of natural killer cells

expressing CD95 (Fas) on their surface. According to the fre-

quency of CD95 + natural killer cells, patients are divided into

CD95 + natural killer-high or CD95 + natural killer-low; natural

killer cells from CD95 + natural killer-high patients were proposed

to have a higher frequency of memory autoimmune T cells that

are normally regulated by their natural killer cells (Takahashi et al.,

2001, 2004). Similarly, cytokine-driven proliferation and IFN� pro-

duction (though not natural killer cell numbers) were selectively

reduced by CD56hiCD16� natural killer cells in the blood of un-

treated patients with multiple sclerosis (Lunemann et al., 2011).

Various immuno-therapeutics are currently being tested in mul-

tiple sclerosis for their safety and efficacy in controlling brain

inflammation and preventing further progression. One such is

daclizumab, a humanized monoclonal antibody originally given

to block the high affinity IL2 receptor � subunit (CD25), so as

to inhibit T cell responses. In any event, inhibitions were only

marginal, though there was a decline in circulating CD4 + and

CD8 + T cells. In phase II clinical trials [initially in combination

with interferon b (IFNb) and then alone], daclizumab significantly

inhibited the appearance of total and contrast-enhancing lesions,

and improved clinical scores (Bielekova et al., 2004, 2009; Rose

et al., 2004, 2007). During therapy with IFNb or in combination

with daclizumab, total circulating natural killer cell numbers

declined slightly but there was a marked increase in the proportion

of CD56hi natural killer cells (Perini et al., 2000; Saraste et al.,

2007a; Vandenbark et al., 2009). The concomitant expansion of

circulating CD56hi natural killer cells associated with decreased

brain inflammation and with reduced survival of activated

T cells. These changes in CD56hi natural killer cells and CD4 +

and CD8 + T cells became more pronounced after the patients

progressed to taking daclizumab alone (Bielekova et al., 2004,

2006, 2009). While therapies such as glatiramer acetate or IFNb
do not primarily target natural killer cells but have effects on mul-

tiple immune cell types, it appears that expansion of these regu-

latory CD56hi population of natural killer cells is the most

important biological effect of daclizumab treatment (Kala et al.,

2011; Kieseier, 2011; Martin, 2012). Interestingly, it was recently

shown that treatment of patients with relapsing–remitting multiple

sclerosis with daclizumab led to a significant expansion of CD56hi

natural killer cells not only in the blood, but also in the CSF of

treated patients, suggesting that natural killer cells can suppress

immune responses directly in the CNS (Bielekova et al., 2011). It is

also suggested that these therapies modulate receptor expression

on natural killer cells, as demonstrated by the decrease in

LILRB1 + natural killer cells and an increase in NKG2A + natural

killer cells following treatment with IFNb (Martinez-Rodriguez

et al., 2011).

The reduction in new contrast-enhancing lesions was confirmed

in a recent phase II randomized, double-blind, placebo-controlled

trial of additional daclizumab given to patients with active

relapsing–remitting multiple sclerosis already receiving IFNb, and

correlated with the daclizumab dose. While the absolute numbers

of T, B or total natural killer cells did not change significantly, there

was again a 7- to 8-fold increase in the absolute CD56hi natural

killer cell numbers (Wynn et al., 2010). In contrast with the above,

frequencies of circulating CD4 +CD25 +Foxp3 + regulatory T cells

declined modestly on daclizumab therapy (Oh et al., 2009), as

their dependence on IL2 (Malek et al., 2002) might predict. The

immunoregulatory potential of this CD56hi subset of natural killer

cells is supported independently by their increase in the third tri-

mester of pregnancies in patients with multiple sclerosis, which is

when their relapse rates decline. There were concomitant decreases

in the proportions of CD16 + CD56low natural killer cells in patients’

blood, and in production of IFN� by their peripheral blood mono-

nuclear cells (Saraste et al., 2007b; Airas et al., 2008).

A recent study demonstrated that expansion of natural killer cells

isolated from relapsing–remitting patients (using IL2 complexed

with specific monoclonal antibody) enhanced cytokine production

and cytotoxic activity from CD56hi and CD56low natural killer cells,
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respectively. Furthermore, transfer of CD56 + natural killer cells

(pretreated with IL2-IL2 monoclonal antibody complexes) from pa-

tients with multiple sclerosis ameliorated EAE induced by the trans-

fer of PLP-reactive human T cell lines in the human–mouse chimera

model in RAG1�/� �c�/� mice (Hao et al., 2011).

Taken together, these studies indicate important immunoregu-

latory roles of human natural killer cells in multiple sclerosis. Some

of the contradictions might be resolved by further studies on the

differences in the natural killer cell subsets examined, and on their

particular combinations of inhibitory and activating receptors.

Concluding remarks
While research in multiple sclerosis has focussed on the role of T

and B lymphocytes in disease pathogenesis, there is now substantial

evidence implicating natural killer cells in regulating tissue damage

and autoimmune responses. Studies in both humans and in mouse

models propose predisposing as well as protective effects of natural

killer cells. It is, however, vital to take account of both the func-

tional variability of their different subsets and the interplay between

their receptors and their ligands. Before starting trials of natural

killer-cell directed therapies in multiple sclerosis, further work is

needed to clarify how natural killer cells can tip the balance be-

tween controlled and pathogenic autoimmune responses. The

very polymorphic KIR genes that interact with HLA class I molecules

have been the focus of recent work. While KIR/HLA interactions

represent a rather interesting pathway involving natural killer cells in

autoimmunity, these genes’ apparent associations in multiple scler-

osis must be interpreted cautiously. The same HLA class I molecules

that direct the licensing of a natural killer cell can also determine its

responses and activation status. Additionally, the expression of nat-

ural killer cell receptors on other cell types (e.g. dendritic cells,

monocytes, B cells and T cells) needs to be considered. In summary,

there is no doubt that the many permutations of receptors on nat-

ural killer cells create numerous opportunities for their involvement

in regulating autoimmune responses in multiple sclerosis. However,

there is a major need for further mechanistic studies to clarify this

complex network of cellular interactions between the innate and

the adaptive arms of the immune system.
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