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Susceptibility breakpoints are crucial for prudent use of antimicrobials. This study has developed the first susceptibility break-
point (MIC < 0.25 �g/ml) for enrofloxacin against swine Salmonella spp. based on wild-type cutoff (COWT) and pharmacoki-
netic-pharmacodynamic (PK-PD) cutoff (COPD) values, consequently providing a criterion for susceptibility testing and clinical
usage of enrofloxacin.

Salmonella spp. are leading zoonosis and food-borne patho-
gens. Approximately 10 to 20% of all human cases of salmo-

nellosis in the European Union may be the result of contact with
pigs and consumption of pig meat (1). Enrofloxacin, an FDA- and
China-approved fluoroquinolone member, has been used broadly
for treatment of swine disease caused by Gram-positive and -neg-
ative bacteria. For guiding susceptibility testing and clinical drug
usage, the Clinical and Laboratory Standards Institute (CLSI) has
developed a susceptibility breakpoint for enrofloxacin in swine for
respiratory disease only (2). Before the present study, no break-
point for enrofloxacin had been established for swine disease
caused by enteric bacteria, such as Salmonella.

In the present study, 214 swine Salmonella isolates were ob-
tained from five representative districts (Henan, Hubei, Zhejiang,
Anhui, and Shanghai) in China during the years 2003 to 2010. The
MICs of enrofloxacin to these swine Salmonella isolates were de-
termined by agar dilution susceptibility testing according to the
CLSI M31-A3 guidance (2). Primary MIC distribution was sub-
jected to statistical goodness-of-fit tests and nonlinear least-
squares regressions by following the procedure elaborated in a
previous study (3). A wild-type cutoff (COWT) was developed
based on the fitted MIC distribution by following CLSI M37-A3
guidance and some previous methods (3–5).

As shown in the primitive enrofloxacin MIC distribution in
Fig. 1A, MICs for enrofloxacin against 214 Salmonella isolates
were in the range of approximately 0.125 to 8 �g/ml. The percent-
ages at each MIC (0.125, 0.25, 0.5, 1, 2, 4, and 8 �g/ml) were 6.1%,
0.4%, 14.5%, 15%, 43.5%, 5.6%, and 15%, respectively. The stan-
dard goodness-of-fit tests demonstrated that primitive MIC dis-
tribution did not match a normal distribution, because a bimodal
distribution was observed at MICs of 2 �g/ml and 8 �g/ml. To
obtain unimodal MIC distribution, the 32 Salmonella isolates with
a MIC of 8 �g/ml were consequently removed. The other 182
swine Salmonella isolates were subsequently subjected to nonlin-
ear least-squares regressions and goodness-of-fit tests. The best fit
for the unimodal population was found when presumed MIC dis-
tribution was defined as being between 0.125 �g/ml and 4.0 �g/
ml. In the fitted unimodal MIC distribution (see Fig. 1B), the
number of isolates estimated by nonlinear least-squares regres-
sion (183 isolates) was closest to the true number of isolates (182
isolates). Of the estimated number of Salmonella strains (183 iso-
lates), more than 95% had enrofloxacin MICs in the range of

approximately 0.5 to 2 �g/ml. After NORMINV function and
NORMDIST test in Microsoft Excel, the COWT was defined as 2.0
�g/ml. The COWT in our study was slightly higher than suscepti-
bility MIC breakpoints for ciprofloxacin against human Entero-
bacteriaceae recommended by CLSI M100-S20 (MIC � 1 �g/ml)
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FIG 1 The MIC distribution for enrofloxacin against Salmonella isolates. (A)
Primary MIC distribution of 214 Salmonella isolates; (B) fitted MIC distribu-
tion of the estimated 183 Salmonella isolates after standard goodness-of-fit
tests and nonlinear least-squares regression.
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and the traditional ciprofloxacin breakpoint against Salmonella
(MIC � 1 �g/ml) used in the 2002 to 2010 NARMS reports (6, 7).
The higher COWT in the present study may due to the different
backgrounds of strains isolated from different hosts and different
geographical areas.

After single-dose intramuscular administration of enrofloxa-
cin (2.5 mg/kg of body weight) to 12 piglets, concentrations of
enrofloxacin in plasma were determined by high-performance
liquid chromatography (HPLC) according to the method estab-
lished in our lab (8). The pharmacokinetic (PK) parameters were
calculated using 3p97 software. Based on human clinical experi-
ence, an area under the concentration-time curve over 24 h in the
steady state divided by the MIC (AUC/MIC ratio) value of �100
was assumed as pharmacokinetic-pharmacodynamic (PK-PD)
target attainment for fluoroquinolones against Gram-negative or-
ganisms (9). A 10,000-subject Monte Carlo simulation was con-
structed using Crystal Ball Professional version 7.2.2 software. The
PK-PD susceptibility cutoff (COPD) was defined as the MIC at
which the probability of target attainment (PTA) was �90% (4).

Our results were in agreement with previous studies which
indicated that ciprofloxacin levels (an active metabolite of enro-
floxacin) were too low in the plasma of pigs and enrofloxacin
could be served as the marker for PK calculation (10, 11). Based on
the concentration-time curve of plasma enrofloxacin, a series of
pharmacokinetic parameters for the 12 piglets were derived from
a one-compartment model (see Table 1). After intramuscular ad-
ministration of enrofloxacin, the peak drug concentration (Cmax)
and AUC were 0.74 � 0.38 �g/ml and 15.87 � 3.39 �g · h/ml,
respectively. The probability of achieving various AUC/MIC ra-
tios at each MIC value after a 10,000-pig Monte Carlo simulation
is presented in Table 2. At a MIC value of �0.25 �g/ml, the prob-
abilities of achieving AUC/MIC values of �100 were higher than
90%. Therefore, the COPD of enrofloxacin against swine Salmo-
nella was defined as a MIC value of �0.25 �g/ml.

The COPD in our study (MIC � 0.25 �g/ml) was lower than the
PK-PD breakpoint for ciprofloxacin recommended by EUCAST
(MIC � 0.5 �g/ml) and the susceptibility breakpoint for enro-

floxacin against dog Enterobacteriaceae (MIC � 0.5 �g/ml) rec-
ommended by CLSI M31-A3 (6, 12). The lower PK-PD break-
point in our study may be due to the lower dose of drug
administration to pigs, because previous studies concluded that
the dose of drug administration may affect the PK-PD breakpoint
(11, 13, 14). The PK-PD cutoff developed in our study should be
more conservative, because it was generated based on the lowest
approved dosage regimen for enrofloxacin (15). Based on PK-PD
models with the Monte Carlo simulation, a recent study estab-
lished a ciprofloxacin breakpoint for Gram-negative aerobic bac-
teria (MIC � 0.125 �g/ml) which was also much lower than the
CLSI breakpoint and EUCAST breakpoint (16). Both of the pre-
vious studies and our study suggested that CLSI may need to revise
the breakpoint for some Gram-negative bacteria (16, 17). Coinci-
dently, a new susceptibility breakpoint for ciprofloxacin against
Salmonella (MIC � 0.125 �g/ml) was used in a 2011 NARMS
report (7). The discrepancy of susceptibility breakpoint may be
due to drug specificity and geographical differences.

Conclusively, our study is unique in the sense that it has estab-
lished a novel enrofloxacin susceptibility breakpoint against swine
Salmonella spp. based on COWT (MIC � 2 �g/ml) and COPD

(MIC � 0.25 �g/ml). Since the PK-PD cutoff provided greater
value for setting the breakpoint than the wild-type cutoff did (15),
the COPD breakpoint (MIC � 0.25 �g/ml) was finally selected as
the optimum enrofloxacin susceptibility breakpoint for swine Sal-
monella. Although further clinical studies are necessary for con-
firming our findings, our work, to some extent, could provide a
criterion for enrofloxacin susceptibility testing and improve pru-
dent use of enrofloxacin for public health.
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