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Cryptococcus gattii consists of four cryptic species, VGI, VGII, VGIII, and VGIV. Herein, a duplex PCR assay using two primer
pairs targeting the vacuolar membrane gene and the intergenic spacer region was developed. It successfully distinguished the
cryptic species according to the distinct size of the amplicons.

The basidiomycetous yeast Cryptococcus gattii is a primary
pathogen that has a predilection for infecting immunocompe-

tent individuals. A wide geographic distribution, other than re-
striction in tropical and subtropical areas, has been recognized for
this species in many studies (1–7). Based on genetic differences,
four molecular types, VGI to VGIV, within C. gattii have been
determined (8). The four molecular types are also considered
cryptic species due to sequence divergence and no nuclear recom-
bination events observed between them (1, 9). The cryptic species
differ in their biologies, epidemiologies, virulence characteristics,
antifungal susceptibilities, and geographic distributions (1–16).
Among the four cryptic species, VGII is more concerning because
of the outbreak of the C. gattii VGII genotype in the Pacific North-
west and Australia, as well as its higher virulence in experimental
models, mating efficiency, and decreased susceptibility to antifun-
gal agents (1, 10–14, 16). In addition, VGI accounts for the most
cryptococcal cases caused by C. gattii around the world and has the
widest geographic distribution (1, 2, 7); VGIII and VGIV are more
geographically restricted and usually associated with HIV-in-
fected cases (5, 15).

Several molecular tools have been developed to distinguish the
four cryptic species (1, 7, 8, 16–21). However, these techniques
include time-consuming and laborious PCR-based methods or
molecular methods requiring expensive instruments. PCR analy-
ses of differences in intron size or intron loss have been established
to differentiate closely related species of Candida and the Crypto-
coccus neoformans-C. gattii species complex and have been con-
firmed to be simple, inexpensive, and reliable methods (22, 23).
Recently, genomic studies revealed that intron loss was also a phy-
logenetic marker for distinct cryptic species within C. gattii (24).

In this study, adjacent introns within protein-coding genes
were detected and compared between type strains WM276 (VGI)
and R265 (VGII) by the LAGAN tool as previously described (22).
The putative vacuolar membrane gene was chosen due to its dif-
ferent types of intron loss among the type strains of WM276
(VGI), R265 (VGII), and WM779 (VGIV), as well as WM161
(VGIII), which is identical to R265 (VGII) (Fig. 1). No intron
difference among all four cryptic species was found in our study,
which corresponded with a recent report (24). Additionally, a
VGII-specific primer pair which could specifically yield a 156-bp
amplicon for VGII strains by PCR analysis (25) was utilized herein
to distinguish VGII from VGIII.

A C. gattii-specific primer pair targeting the vacuolar mem-

brane gene, VACF (5= AGCCCACGGCAAAATAGTG 3=) and
VACR (5= CACGGTCCAAAACTTGATTGTT 3=), was designed.
A duplex PCR system using two primer pairs, VACF and VACR
and IGSF (5= CCGAGGCAGGACACACATAC 3=) and IGSR (5=
GGCGGAATACAAATACTACTTACCT 3=), was established.
PCR was performed in a final volume of 50 �l containing 50 ng
DNA, 1� PCR buffer with 1.5 mM MgCl2, 0.2 mM (each) dATP,
dCTP, dGTP, and dTTP, 0.2 �M of each primer, and 1.5 U of Taq
polymerase. PCR was conducted in a Bio-Rad thermal cycler at
94°C for 5 min for initial denaturation, followed by 30 cycles of
94°C for 30 s, 56°C for 30 s, and 72°C for 20 s, with a final extension
step at 72°C for 6 min. PCR products were separated on a 2%
(wt/vol) agarose gel at 90 V for 2 h. All PCRs were conducted in
duplicate. Strains tested included C. gattii (n � 80), C. neoformans
(n � 16), and other pathogenic yeast species (n � 42). The latter
were involved to detect the specificity of the primer pairs.
Genomic DNA was prepared from each strain as described previ-
ously (22). Detailed information regarding the strains tested here
is presented in Table S1 in the supplemental material.

Electrophoretic and sequence analysis revealed an expected
166-bp amplicon for C. gattii VGI, a combination of 277-bp and
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FIG 1 Schematic representation of the amplified regions of the putative vac-
uolar membrane gene. Open boxes represent exons (exon2, exon3, and exon4,
in turn), while lines between exons represent introns. “�” represents intron
loss; intron length is indicated by the numeral above the line; the region be-
tween the arrows represents the amplified fragment.
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156-bp amplicons for C. gattii VGII, a 263-bp amplicon for C.
gattii VGIII, and a 209-bp amplicon for C. gattii VGIV (Fig. 2). As
a result, all C. gattii strains tested were exactly assigned to the
cryptic species level, and none of the other pathogenic yeast spe-
cies, including the sibling species C. neoformans, resulted in an
amplification product by using this approach. Moreover, the
rarely reported C. neoformans � C. gattii hybrids may be further
characterized by the singleplex PCR as previously described (22).

Differences in intron loss in the protein-coding genes were
found not only among species or varieties within the C. neofor-
mans-C. gattii species complex but also among the monophyloge-
netic clusters within C. gattii (24, 26). The latter was utilized
herein for molecular typing of C. gattii. Thus, we report a duplex
PCR assay which performed well in distinguishing among the four
cryptic species belonging to C. gattii.

Nucleotide sequence accession numbers. The sequences of
the vacuolar membrane gene fragment of strains WM161 and
WM779 were deposited in GenBank under accession numbers
KF010296 and KF010297, respectively.
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