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Abstract
Microcalcifications are a feature of diagnostic significance on a mammogram and a target for
stereotactic breast needle biopsy. Here, we report development of a Raman spectroscopy
technique to simultaneously identify microcalcification status and diagnose the underlying breast
lesion, in real-time, during stereotactic core needle biopsy procedures. Raman spectra were
obtained ex vivo from 146 tissue sites from fresh stereotactic breast needle biopsy tissue cores
from 33 patients, including 50 normal tissue sites, 77 lesions with microcalcifications, and 19
lesions without microcalcifications, using a compact clinical system. The Raman spectra were
modeled based on the breast tissue components and a support vector machine framework was used
to develop a single-step diagnostic algorithm to distinguish normal tissue, fibrocystic change
(FCC), fibroadenoma (FA) and breast cancer, in the absence and presence of microcalcifications.
This algorithm was subjected to leave-one-site-out cross-validation, yielding a positive predictive
value, negative predictive value, sensitivity and specificity of 100%, 95.6%, 62.5% and 100% for
diagnosis of breast cancer (with or without microcalcifications) and an overall accuracy of 82.2%
for classification into specific categories of normal tissue, FCC, FA or breast cancer (with and
without microcalcifications). Notably, the majority of breast cancers diagnosed are ductal
carcinoma in situ (DCIS), the most common lesion associated with microcalcifications, which
could not be diagnosed using previous Raman algorithm(s). Our study demonstrates the potential
of Raman spectroscopy to concomitantly detect microcalcifications and diagnose associated
lesions, including DCIS, and thus provide real-time feedback to radiologists during such biopsy
procedures, reducing non-diagnostic and false negative biopsies.
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INTRODUCTION
Breast cancer is the second leading cause of cancer death in women, with one in eight
women likely to develop breast cancer in her lifetime. In 2011, 230,480 new cases of breast
cancer are estimated to have occurred in the United States alone (1). The most effective
approach for preventing breast cancer morbidity and mortality is early detection. X-ray
mammography is currently the only accepted routine screening method for early detection
(2).

Microcalcifications are localized deposits of calcium species in breast tissue that
geographically target the most clinically significant abnormality within the breast and are
considered an early mammographic sign of breast cancer (3). However, mammography
cannot accurately distinguish microcalcifications associated with benign and malignant
breast lesions and even the best mammographic algorithms have limitations arising from
dark mammographic backgrounds and densely clustered calcifications (4-6). Therefore,
although the type of microcalcification is known to correlate with disease status (e.g. type II
microcalcifications co-localize with proliferative lesions (3, 7)), most patients currently
undergo vacuum-assisted stereotactic core needle biopsy to determine whether or not the
microcalcifications are associated with breast cancer.

In addition, despite stereotactic guidance, core needle biopsy fails to retrieve
microcalcifications in up to 15% of patients (8). Failure to retrieve the microcalcifications
results in non-diagnostic or false negative biopsies, requiring the patient to undergo repeat,
often surgical biopsy. Therefore, there is a clinical need for a tool that can detect
microcalcifications in the breast tissue to be biopsied and provide real-time feedback to the
radiologist during stereotactic core needle biopsy procedures to ensure that the biopsied
tissue core contains the microcalcifications observed during mammography.

Raman spectroscopy is a non-destructive, chemical-specific, inelastic scattering technique
(9, 10) that can be performed with fiberoptic probes compatible with vacuum-assisted
stereotactic biopsy needles, and so is an ideal choice for detecting microcalcifications during
these procedures. Calcium-containing species found in breast microcalcifications, such as
calcium hydroxyapatite (CHA) and calcium oxalate (CAO), are strong Raman scatterers.
Thus, Raman spectroscopy is sensitive to the presence of microcalcifications and can
therefore be used as a clinical tool for guidance of stereotactic breast core needle biopsies
for microcalcifications.

Raman spectroscopy is currently being explored by our laboratory (9, 11-18) and others
(19-28) for its potential to both detect breast microcalcifications and diagnose breast cancer.
Our group has demonstrated the potential of Raman spectroscopy to detect and distinguish
type I and II breast microcalcifications and to differentiate type II calcifications associated
with benign and malignant breast lesions (12) in Raman microscopy studies of formalin-
fixed, paraffin-embedded breast biopsies. We also recently developed the first Raman
spectroscopy algorithm to detect microcalcifications in fresh breast needle biopsy tissue
cores (18). However, if Raman spectroscopy is to be used as a clinical tool for guidance of
stereotactic breast needle biopsies for microcalcifications, it is desirable to not only detect
microcalcifications, but also to diagnose the specific breast lesion associated with the
microcalcifications. We previously devised a Raman algorithm to diagnose breast cancer
and benign breast lesions, including fibrocystic change (FCC) and fibroadenoma (FA).
However, the algorithm was developed on tissue sites devoid of microcalcifications (15, 17).
This Raman algorithm is, therefore, not applicable to breast lesions associated with
microcalcifications because of the large spectral contributions from CHA and/or CAO,
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which makes it difficult to map the contributions of the other tissue components onto the
algorithm domain created without consideration of microcalcifications.

To address this issue, we are developing new Raman algorithms to diagnose breast cancer
and benign breast lesions in the presence or absence of microcalcifications. One possible
approach is to combine the previous algorithm for microcalcification detection (18) with a
new algorithm for diagnosis of breast lesions (irrespective of microcalcification status) (29),
thereby constructing a sequential two-step algorithm to identify the breast lesion(s)
associated with the microcalcifications. However, this is a laborious and unwieldy process
(that also does not provide the required level of accuracy as detailed below), which can be
simplified by devising a single algorithm to simultaneously detect microcalcifications and
diagnose the associated breast lesion(s).

Here we report the first development of a single-step Raman spectroscopy algorithm to
simultaneously determine microcalcification status and diagnose the underlying breast
lesion(s), in real-time, during stereotactic breast core needle biopsy procedures. We also
compare the diagnostic performance of this single-step algorithm with its two-step
counterpart(s) to comprehensively assess the advantages (and/or drawbacks) of pursuing
these two approaches.

MATERIALS AND METHODS
Patient population

This study was performed on the Raman spectroscopy data set used previously to develop
our decision algorithms to detect breast microcalcifications (18). Raman spectroscopy was
performed ex vivo on fresh breast tissue cores obtained from 33 female patients (ages 38-79)
undergoing vacuum-assisted stereotactic core needle breast biopsy procedures in the Breast
Health Center at University Hospitals-Case Medical Center. All studies were approved by
the Case Cancer Institutional Review Board and the Massachusetts Institute of Technology
Committee On the Use of Humans as Experimental Subjects, in accordance with assurances
filed with and approved by the U.S. Department of Health and Human Services. Informed
consent was obtained from all subjects prior to their biopsy procedures.

Raman spectral acquisition
The Raman spectra were obtained using a portable clinical Raman spectroscopy system,
previously described in detail (18). The instrument delivers 830nm NIR excitation light to
the tissue via an optical fiber probe. The fiber probe, which is in the form of a flexible
catheter of outer diameter 2mm, consists of a central excitation fiber surrounded by nine
acquisition fibers, each of 200μm diameter. The acquisition fibers are coupled to an f/1.8i
spectrograph for dispersion onto a thermoelectrically-cooled CCD detector. Laser power at
the probe-tissue interface was 98-105 mW. 10 spectral acquisitions were obtained from each
tissue site and these were summed to provide the final spectrum corresponding to the tissue
site. Each of the 10 spectral acquisitions was performed in 0.25s, for a total collection time
of 2.5s per tissue site. Analysis of the spectra was performed in real-time, that is, in a few
tens of milliseconds as detailed previously (30). In other words, each spectrum was
acquired, model fit, analyzed and the diagnostic classification for the tissue site displayed on
a computer interface in just over 2.5 seconds.

Raman spectra were collected from several tissue sites of interest on each tissue core
(typically normal tissue, lesions (grossly abnormal tissue) without microcalcifications and
lesions with microcalcifications) identified by gross inspection and comparison with the
accompanying specimen radiograph. The tissue cores were roughly cylindrical and
measured ca. 1.7 mm by 2 cm, as determined by the size of the needle biopsy port. Spectra
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were also collected from different tissue cores in each biopsy, so the number of spectra
varied from patient to patient. The number of tissue sites studied per core varied from 1-8
and the number of cores per patient from 1-6. All spectra were obtained within 30 minutes
of excision.

Histopathology
After spectral acquisition, the tissue sites from which Raman spectra were obtained were
uniquely identified with multicolored colloidal inks. The tissue was then fixed in 10%
neutral buffered formalin and paraffin embedded, and sections cut and hematoxylin and
eosin (H&E) stained for microscopic examination by an experienced breast pathologist.
Histopathological evaluation, in conjunction with the radiographic assessment, was used as
the gold standard for comparison with the Raman spectral diagnosis.

Raman data analysis
The Raman system was wavenumber calibrated and the Raman spectra corrected for the
system wavelength response and background subtracted, as previously described (18). The
Raman spectra were then fit with a previously developed breast model (13), in which the
Raman spectrum is considered as a linear combination of the basis spectra of 10 breast tissue
constituents, including epithelial cell nuclei (ECN) and cytoplasm (ECC), fat, cholesterol-
like deposits (CHOL), β-carotene (β-CAR), collagen (COLL), oxy-hemoglobin (oxy-HB),
CHA, CAO and water; and 2 fiberoptic probe materials, epoxy and sapphire. Ordinary least
squares (OLS) fitting was used to determine the contribution of each basis spectrum to the
tissue spectrum, yielding fit coefficients (FC) that provide information about the
morphological and chemical composition of the tissue. The goodness of the model fit was
qualitatively estimated by visual inspection of the residual (spectrum minus fit) and
quantitatively from the standard deviation of the residual. The extracted FCs were used to
develop the Raman algorithms outlined below.

Raman algorithm development
In this study, support vector machines (SVM) were used to construct single-step and two-
step algorithms to concomitantly detect microcalcifications and diagnose the associated
breast lesion(s) based on the Raman FCs. SVMs are a relatively new class of non-linear
classification techniques (31-33), whose robust nature with respect to sparse and noisy data
has enabled its extensive usage, especially in bioinformatics and chemometrics.

First, a single-step SVM Raman algorithm was constructed to simultaneously detect
microcalcifications and diagnose the associated breast lesion(s). In this single-step
algorithm, we considered the positive class to be cancer (with or without
microcalcifications), unless otherwise specified. All other classes including normal,
fibroadenoma and fibrocystic change, irrespective of microcalcification status, were
considered to be negative. This single-step SVM Raman algorithm was then compared to
two-step Raman algorithms. Initially, a “naïve” two-step algorithm was built by combining
the logistic regression (LR) algorithm for the detection of microcalcifications described in
Saha et al. (18) with an SVM algorithm developed for diagnosis of lesions irrespective of
microcalcification status described in Dingari et al. (29). In the first step of this two-step
naïve algorithm, LR was performed to first discriminate the entire dataset into three classes:
normal breast tissue, lesions without microcalcifications and lesions with
microcalcifications. For the LR step, a likelihood ratio test was used to estimate the FCs
most critical for diagnosis, namely COLL, fat and the combined contribution of CAH and
CAO. In the second step of the naïve algorithm, a breast model FC-based SVM algorithm
was employed for all tissue sites to further diagnose the specific tissue type, namely normal,
FCC, FA or cancer.
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Additionally, in order to comprehensively assess the two-step algorithm, we sub-divided the
second-step into two new SVM Raman algorithms (as diagrammed in Fig. 1), one optimized
for classification of breast lesions without microcalcifications and one optimized for
classification of breast lesions with microcalcifications. We call this implementation of the
two-step algorithm the “optimized” version. It is worth noting that the first-step (the LR
algorithm for detection of microcalcifications) is identical in both the naïve and optimized
versions of the two-step algorithms. All three scenarios (namely, single-step, two-step
(naïve) and two-step (optimized) algorithms) result in classification of the tissue sites into
one of eight categories, based on the tissue type (normal breast tissue, FCC, FA or cancer)
and microcalcification status (with and without microcalcifications).

Here, LR was performed using in-house code (MATLAB R2010b, Math Works, Natick,
MA). The SVM classification analysis was performed using Orange (http://www.ailab.si/
orange), an open-source data mining suite featuring Python scripting and a graphic interface
(34). Specifically, a radial basis function (RBF) kernel with a Gaussian profile K(xi,xj) =
exp(-g∥xi-xj∥2) was used for non-linear SVM classification, where g represents the RBF
kernel parameter. The optimal model parameters C (cost parameter) and g that give
minimum error in cross-validation were determined by performing a grid search over
appropriate ranges (30).

The performance of the single-step and two-step SVM Raman algorithms were assessed
using the following metrics: sensitivity (SE), specificity (SP), positive predictive value
(PPV) and negative predictive value (NPV) for the diagnosis of cancer (with or without
microcalcifications) and overall accuracy (OA) for the diagnosis of all categories: normal
tissue, FCC, FA and cancer, with and without microcalcifications. These metrics were
evaluated based on the rates of true and false positive and negative results per standard
definitions (35). Algorithm performance was validated using a leave-one-out cross
validation technique (LOOCV) (15). In this technique, the data from a particular tissue site
is eliminated, and a decision algorithm developed that classifies all of the remaining tissue
sites in the dataset (including ones from the same tissue core and patient) optimizing
agreement with the histopathology diagnoses. The resulting decision algorithm is then used
to classify the excluded site. This process is successively applied to each site.

RESULTS
The data set initially included Raman spectra obtained from 158 tissue sites. Five tissue sites
with miscellaneous tissue histopathological diagnoses (fat necrosis, healing biopsy site, etc.)
were excluded from analysis during algorithm development. Seven additional tissue sites
were excluded during LOOCV as unallocated, based on their relatively low probability of
belonging to any class, including: 1 ductal carcinoma in situ (DCIS) with
microcalcifications; 4 FCC with microcalcifications; 1 FCC without microcalcifications; and
1 normal breast tissue site. (Specifically, these 7 tissue sites yielded low probability of
classification on application of the single-step Raman algorithm and were excluded from all
ensuing analysis for the sake of consistency. In clinical practice, tissue sites for which there
is no definitive spectral diagnosis would be designated as unclassified or equivocal and
additional Raman measurements made in the hope of obtaining more definitive results.)
Analysis was performed on the remaining 146 tissue sites, whose reference classifications
are as follows: 50 normal; 3 normal with microcalcifications; 17 FA all with
microcalcifications; 60 FCC, 43 with and 17 without microcalcifications; 16 cancers, 14
with microcalcifications (13 DCIS and 1 invasive ductal carcinoma (IDC)) and 2 without
microcalcifications (1 DCIS and 1 lobular carcinoma in situ (LCIS)). Breast lesions were
classified as having microcalcifications if microcalcifications were seen at that tissue site on
either the specimen radiograph or the H&E stained tissue sections. In particular, there were
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13 microcalcifications seen on the H&E stained sections that were not observed on the
specimen radiograph. In addition, 3 normal tissue sites were classified as normal with
microcalcifications since microcalcifications were seen on radiography that were not seen on
histopathology. Of the 77 tissue sites with microcalcifications, 75 had type II (CHA-derived)
and only 2 had type I (CAO-derived) microcalcifications.

Raman spectra
Figure 2 shows the histopathology and Raman spectrum (blue) with model fit (red) and
residual (black) for a typical breast lesion (FCC) with type II microcalcifications. The
microcalcifications are visible as dark blue concretions (arrow) in the photomicrograph in
Figure 2(a) (H&E; 10X). The corresponding Raman spectrum in Fig. 2(b) shows a
prominent band at 960 cm−1 due to CHA (arrow) (arising from the ν1(PO4) totally
symmetric stretching mode of the “free” tetrahedral phosphate ion) present in the
microcalcifications.

Single-step SVM Raman algorithm
We devised a single-step Raman spectral algorithm to diagnose normal breast tissue, FCC,
FA and breast cancer with and without microcalcifications. This algorithm uses SVM to
classify the tissue sites into the different lesion categories based on the FCs extracted using
the OLS model. In particular, the FCs corresponding to CAH, ECC, fat, oxy-HB, COLL and
CHOL were selected as input parameters to the SVM model as they provided the optimal
diagnostic performance on LOOCV. The inclusion of the other parameters (e.g. epoxy and
water FCs) had a slightly detrimental effect on the classification capability of the algorithm,
which can be attributed to lack of correlation between the presence of these components and
the lesion type.

The LOOCV results for this single-step SVM Raman algorithm are shown in the confusion
matrix in Table 1. This algorithm, which takes into account microcalcification status for the
first time, has a SE of 62.5%, SP of 100%, PPV of 100% and NPV of 95.6% for the
diagnosis of breast cancer (with or without microcalcifications) and an OA of 82.2% for the
classification into the specific categories of normal breast tissue, FCC, FA or breast cancer
(with and without microcalcifications). Here, the area under the curve (AUC) is 0.92, and
indicates the robustness of the algorithm (with respect to a maximum AUC of 1.00 for a
perfect algorithm).

In these studies, we chose the decision line whose operating point results in maximal PPV
for the diagnosis of breast cancer, as is typically done in a clinical situation where the
disease to be diagnosed is serious, should not be missed and is treatable (35). However, the
situation is more complex in the case of Raman spectroscopy guidance of stereotactic breast
biopsies for microcalcifications. In this instance, the radiologist’s goal is to diagnosis breast
cancer if present or, failing that, to retrieve the targeted microcalcifications. So, the
radiologist needs to know whether or not there are microcalcifications present in the tissue
to be biopsied and whether or not the associated breast lesion is cancer. In order to take this
into account, we also carefully considered the OA of the diagnostic algorithm, the only
metric that fully takes into account the combined diagnosis of microcalcification status and
the underlying breast lesion.

The performance of the single-step SVM algorithm for simultaneous detection of
microcalcification status and diagnosis of the underlying breast lesion is virtually identical
to that of a previously developed SVM Raman algorithm that ignored microcalcification
status, which has a SE of 62.5%, SP of 100%, PPV of 100% and NPV of 95.6% for the
diagnosis of breast cancer (ROC AUC=0.92) and overall accuracy of 81.5%, in this same
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data set (29), as shown in Table 2. (This is not surprising as, even though the new algorithm
simultaneously detects microcalcification status and diagnoses the underlying lesion, here
we are assessing algorithm performance for the diagnosis of breast cancer irrespective of
microcalcification status for the sake of comparison. We have also assessed its performance
for an instance of a combined diagnosis of microcalcification status and lesion diagnosis
(See Concomitant diagnosis of microcalcifications and underlying breast lesion below.))
Further, the performance of this single-step SVM algorithm is markedly superior to that
obtained with our previously developed LR Raman algorithm (in a prospective ex vivo
validation study), which has a SE of 83%, SP of 93%, PPV of only 36% and NPV of 99%
for the diagnosis of breast cancer in the absence of microcalcifications (17). Significantly,
the majority of breast cancers in the current study are DCIS, a lesion that could not be
diagnosed with the previous LR Raman algorithm, as the latter algorithm was developed in a
data set that consisted primarily of samples with IDC (15).

Impact of microcalcifications on single-step SVM Raman algorithm performance
In order to specifically assess the impact of the presence of microcalcifications on the
performance of the single-step SVM Raman algorithm, the 7 specific diagnostic categories
were collapsed into 2 sub-categories: tissue sites (normal, FCC, FA and cancer) with and
without microcalcifications, as shown in Table 3. This resulted in a PPV of 100%, NPV of
92.7% and an OA of 70.1% for lesions with microcalcifications, compared to a PPV of
100%, NPV of 98.5% and OA of 95.7% for lesions without microcalcifications. These
results indicate that the SVM Raman algorithm is more robust for classification of tissue
sites without microcalcifications than for tissue sites with microcalcifications, especially
when one considers classification of all classes (i.e. the OA metric) as compared to
discrimination of cancer sites only (i.e. the PPV and NPV metrics). Nevertheless, the SVM
algorithm provides comparable accuracy for the critical metrics of PPV and, to a slightly
lesser extent, NPV. The confusion matrices for these two sub-classification schemes are
strikingly similar to that of the 7-category classification scheme (Table 1), and are shown in
the Supplementary Information (Tables S1 and S2). Table S3 also provides a detailed
breakdown of the tissue sites by pathology and the corresponding diagnoses based on the
single-step SVM Raman decision algorithm. Overall, these results indicate that performance
of the single-step SVM Raman algorithm is remarkably consistent, irrespective of the
presence of microcalcifications.

Misdiagnoses using single-step SVM Raman algorithm
As might be suspected from the results above, a significant number of tissue site
misdiagnoses using the single-step SVM Raman algorithm involved misdiagnosis of the
underlying lesion in tissue sites with microcalcifications. All 3 normal breast tissue sites
with microcalcifications were misclassified, one as FCC, one as FCC with
microcalcifications and one as FA with microcalcifications. Presumably, the spectroscopy
results for these tissue sites (which showed normal breast tissue on histopathology) are
correct as they agree with the radiographic assessment of the presence of lesions with
microcalcifications at these sites, and the apparent misclassifications arise due to
spectroscopy-histopathology registration errors. The majority of tissue sites with FA with
microcalcifications (11 of 17) were also misclassified as FCC with microcalcifications. For
these tissue sites, microcalcifications are the dominant spectral contributors, and the spectral
contributions from the other tissue components (such as CHOL, fat and COLL) are fairly
comparable for FA and FCC. In other words, we suspect that the SVM class allocation
probability for these tissue sites was reasonably similar for both the FA and FCC categories,
and the resulting misclassification can be attributed to the combination of an imperfect
decision plane (between these two classes) and the uncertainty inherent in spectral
assignment (from shot noise etc.). It is worth noting that the substantially larger number of
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samples designated as FCC with microcalcification (43) in relation to FA with
microcalcification (17) in this dataset may have also artificially skewed the decision plane in
favor of the former. Fortunately, this problem can be remedied by adequately increasing the
sample size, e.g. by performing larger clinical studies. These misclassifications are likely not
clinically significant in the context of Raman guidance of stereotactic breast biopsies,
viewed in terms of overall biopsy (or patient) results, and not individual tissue site results, as
the overall assessment that these biopsies harbor benign breast lesions with
microcalcifications that would be retrieved at biopsy is correct.

Further, 5 of 14 tissue sites with cancer with microcalcifications were misclassified by the
single-step SVM Raman algorithm as normal (1) or FCC with microcalcifications (4). The
first of these was classified as normal due to a high FC of fat. The spectroscopy result for
this tissue site is most likely correct, as it appeared normal (largely fat) on gross inspection.
Thus, the apparent misclassification of this site is likely due to a spectroscopy-
histopathology registration error. Also, 3 out of the 4 tissue site misclassifications as FCC
with microcalcifications belonged to an individual patient, the spectral data from whom
exhibited tissue features that were not accounted for by the breast constituent model. The
misclassification of these 4 cancer with microcalcifications sites, while potentially clinically
significant, are not unexpected due to the relatively high FC of CHA in both of these
categories (FCC and cancer with microcalcifications). There were only two tissue sites with
cancer without microcalcifications, and these were both misclassified as normal (1) and
cancer with microcalcifications (1). Again, the misclassification for cancer without
microcalcifications is not likely clinically significant, as the biopsy also contained tissue
sites correctly classified by the Raman algorithm as cancer with microcalcifications. Thus
the overall assessment that the biopsy harbors cancer with microcalcifications that would be
retrieved at biopsy is correct.

Other misdiagnoses resulted from misclassification of microcalcification status. The
majority of tissue sites with FCC without microcalcifications (12 of 17) were misclassified
as FCC with microcalcifications, most likely because the corresponding decision plane is
dominated by the FC of COLL as opposed to the FC of CHA. Even so, these
misclassifications are again likely not clinically significant, as these biopsies also contained
tissue sites correctly classified by the Raman algorithm as FCC with microcalcifications.
Thus the overall assessment that these biopsies harbor benign breast lesions with
microcalcifications that would be retrieved at biopsy is again correct. As alluded to above in
the case of misclassification of FA sites as FCC with microcalcifications, the SVM
classification algorithm is likely to perform with greater accuracy for more extensive clinical
datasets, which have sufficiently large number of FCC without microcalcifications sites.

Two-step SVM algorithm
Performance of the single-step SVM Raman algorithm was compared to that of the naïve
and optimized two-step algorithms. The naïve two-step algorithm, which sequentially
applies our LR algorithm (for microcalcification detection) and a SVM algorithm (for lesion
discrimination), yields a SE of 53.8%, SP of 94%, PPV of 95% and NPV of 81.3% and an
OA of 73.4%. Clearly, the performance of this algorithm in LOOCV is considerably inferior
to that of the single-step SVM algorithm across the board (Table 2). This reveals the
underlying deficiencies of employing a two-step method where the multistage or
hierarchical decision scheme amplifies errors emanating from the imperfect decision planes
in each of the steps.

In comparison, the optimized two-step algorithm, which uses two separate SVM algorithms
to sub-categorize lesions with and without microcalcifications as FCC, FA and breast cancer
in step two, yields a SE of 56.3%, SP of 100%, PPV of 100% and NPV of 94.9% for the
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diagnosis of breast cancer and an OA of 80.2% for classification into the specific categories
of normal breast tissue, FCC, FA or breast cancer (with and without microcalcifications).
Thus, when optimized, performance of the two-step Raman algorithm is comparable to that
of the single-step SVM Raman algorithm (Table 2). Nevertheless, it should be noted that
application of two separate SVM algorithms for lesion discrimination in our limited dataset
may run the risk of overtraining (overfitting) due to the concomitant reduction in number of
samples available for each algorithm (i.e. data sparsity). For example, 12 tissue sites were
classified by the LR algorithm as lesions without microcalcifications and, as all of these 12
were designated as FCC by histopathology, the corresponding SVM algorithm was able to
readily identify all these tissue sites as FCC. For larger datasets, one would anticipate that
lesion discrimination would be more difficult due to the presence of other types of lesions
without microcalcifications. Thus, viewed from the perspective of diagnostic accuracy
(better PPV, NPV and OA) as well as robustness (lower chance of overfitting), use of the
single-step SVM Raman algorithm appears more promising. Nevertheless, the two-step
algorithm has certain intrinsic advantages in terms of interpretability, as it decomposes the
overall classification into two independent steps to determine microcalcification status and
diagnose the underlying lesion. Furthermore, in specific cases, only one step of the
decomposition (for example, microcalcification status) may be of interest to the radiologist.

Concomitant diagnosis of microcalcifications and underlying breast lesions
Finally, to further validate the capability of the single-step SVM algorithm to concomitantly
diagnose both microcalcification status and the underlying lesion, performance metrics were
also calculated for the diagnosis of breast cancer with microcalcifications. In this case, we
considered the positive class to be cancer with microcalcifications. All other classes,
including cancer without microcalcifications, were considered to be negative. In this case,
our single-step SVM algorithm exhibits a SE of 64.3%, SP of 100%, PPV of 100% and NPV
of 96.4%, a slight improvement in SE and NPV over those for the diagnosis of breast cancer
with or without microcalcifications (62.5% and 95.6%, respectively). An ROC curve
illustrating the performance of this single-step Raman algorithm is shown in Fig. 3. The
AUC for the diagnosis of breast cancer with microcalcifications was 0.92, indicating the
robustness of the algorithm.

DISCUSSION
Our research focuses on development of Raman spectroscopy as a clinical tool for the real-
time diagnosis of breast cancer, motivated by its exquisite chemical specificity especially for
detection of microcalcifications. Here we report on the development of a novel single-step
Raman spectroscopy algorithm to simultaneously determine microcalcification status and
diagnose the underlying breast lesion, in real time, at stereotactic breast needle core biopsy.
Our SVM-derived algorithm yielded a PPV and NPV of 100% and 95%, respectively, for
the diagnosis of breast cancer, with or without microcalcifications. The single-step algorithm
had an OA of 82% for the specific diagnosis of microcalcification status and the underlying
breast lesion. Significantly, the algorithm is able to classify DCIS cases, the most common
type of breast cancer associated with microcalcifications, which could not be done with our
previous algorithms (15, 17). This is a vital step in the development of Raman spectroscopy
as a viable biopsy guidance tool. Specifically, we see Raman spectroscopy as a clinically
viable adjunct to stereotactic breast needle biopsy procedures. Real time analysis of the
Raman spectra using our single-step algorithm would reveal whether or not the tissue
harbors the targeted microcalcifications and diagnose any breast lesions present, helping the
radiologist to decide how many cores to take for submission for pathology examination.
This should improve the likelihood of an adequate, diagnostic biopsy that contains the
targeted microcalcifications and reduce the need for repeat, surgical biopsy.
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The findings in this study suggest that the new single-step SVM Raman algorithm is more
robust and accurate than two-step Raman algorithms utilizing previously developed or
newly constructed SVM algorithms. In fact, due to the potential error propagation in a
multistage algorithm, it is expected that a single-step algorithm simultaneously considering
all the variables will do a superior job. An analogy can be drawn to the relatively poor
performance of multistage decision tree algorithms (where the dataset is repetitively split
based on the criterion that maximizes the separation of the tissue type) in relation to support
vector machines in classifying large and complex datasets (29, 31-33, 36, 37).

Further, these preliminary results are not representative of the best classification
performance that is likely to be obtainable after further optimization of the probe hardware
(optical excitation and collection) and algorithm selection procedures. Specifically, we are
designing and fabricating customized fiber probes that integrate non-imaging optical
elements and bifocal lenses to enhance the efficiency of collection of Raman photons. In
terms of algorithm performance enhancement, we anticipate that hybrid multivariate
classification schemes that tailor to individual categories of lesion types and
microcalcification status will be developed with the incorporation of larger clinical datasets.
More extensive clinical studies will also enable us to expand our diagnostic algorithm to
encompass breast lesions (such as epithelial hyperplasia, sclerosing adenosis and
Monckeberg’s arteriosclerosis), which were not observed in the current dataset.
Furthermore, such datasets would enable us to perform cross-validation by leaving out a
larger number of tissue sites (e.g. 25% of the total dataset), or alternately by leaving out the
sites corresponding to a single patient. The final milestone in algorithm validation would be
in prospective application of the developed algorithm in patients undergoing stereotactic
breast needle biopsy.
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Figure 1.
Schematic diagram of sequential two-step optimized Raman algorithm using a logistic
regression algorithm for Step 1 and two separate support vector machine classification
models (naïve and optimized) for Step 2. Both these algorithms were used in a leave-one-out
cross-validation protocol. (*Normal tissue sites with microcalcifications were not considered
for algorithm development as they represent a discordance between radiographic assessment
(lesion with microcalcifications) and histopathological evaluation (normal))
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Figure 2.
Histopathology and Raman spectrum (blue) with model fit (red) and residual (black) for a
typical breast lesion (FCC) with type II microcalcifications. The microcalcifications are
visible as dark blue concretions (arrow) in the photomicrograph in Figure 2(a) (H&E; 10X).
Note the yellow ink on the breast tissue surface at the top in Figure 2(a), marking the site for
spectral correlation. The corresponding Raman spectrum in Figure 2(b) shows a prominent
band at 960 cm−1 due to CHA (arrow), which is a major constituent of type II
microcalcifications.
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Figure 3.
ROC curve for the single-step SVM Raman decision algorithm for the diagnosis of breast
cancer with microcalcifications. The x- and y-axis represent the false positive (FP) rate and
the true positive (TP) rate, respectively. The ROC curve of two indistinguishable
populations, represented by the dashed line, is included for comparison. The area under the
curve (AUC) is 0.92, the AUC for a perfect algorithm is 1.
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Table 1

Confusion matrix for leave-one-out cross validation (LOOCV) of single-step SVM Raman decision algorithm
for all 7 diagnostic categories

Pathology
Diagnosis Raman Diagnosis

Normal
Normal

with
Microcalcs

FCC
FCC
with

Microcalcs

FA
with

Microcalcs
Cancer

Cancer
with

Microcalcs
Total

Normal 50 0 0 0 0 0 0 50

Normal
with

Microcalcs
0 0 1 1 1 0 0 3

FCC 2 0 3 12 0 0 0 17

FCC with
Microcalcs 1 0 6 34 2 0 0 43

FA with
Microcalcs Note 0 0 1 11 5 0 0 17

Cancer 1 0 0 0 0 0 1 2

Cancer with
Microcalcs 1 0 0 4 0 0 9 14

Total 55 0 11 62 8 0 10 146

Note
There were no tissue sites with fibroadenoma without microcalcifications.

Abbreviation: Microcalcs = microcalcifications
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Table 2

Comparison of diagnostic performance of single-step, two-step and previous Raman algorithms for detection
of breast cancer, with and without microcalcifications

Raman Algorithm Classification Scheme SE SP PPV NPV OA

Single-step SVM All tissue sites 62.5% 100% 100% 95.6% 82.2%

Tissue sites with
microcalcifications

64.3% 100% 100% 92.7% 70.1%

Tissue sites without
microcalcifications

50% 100% 100% 98.5% 95.7%

Two-step LR-SVM
(naive)

All tissue sites 53.8% 94% 95% 81.3% 73.4%

Two-step LR-SVM
(optimized)

All tissue sites 56.3% 100% 100% 94.9% 80%

Previous SVM

algorithma
All tissue sites 62.5% 100% 100% 95.6% 81.5%

Previous LR

algorithmb
83% 93% 36% 99% 78.3%

a
SVM Raman algorithm for the diagnosis of breast cancer irrespective of microcalcification status (29)

b
LR Raman algorithm for the diagnosis of breast cancer in the absence of microcalcifications (17)
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Table 3

Performance of single-step SVM Raman decision algorithm for tissue sites with and without
microcalcifications

Pathology
Diagnosis Raman Diagnosis

Correct
Lesion

Classification

Incorrect
Lesion

Classification
Total

Tissue sites
with

Microcalcifications
54 (70.1%) 23 (29.9%) 77 (100%)

Tissue sites
without

Microcalcifications
66 (95.7%) 3 (4.3%) 69 (100%)

Total 120 (82.2%) 26 (17.8%) 146 (100%)
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