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Abstract

The bone marrow is necessary for renewal of all hematopoietic cells and critical for maintenance 

of a wide range of physiologic functions. Multiple human diseases result from bone marrow 

dysfunction. It is also the site in which “liquid” tumors, including leukemia and multiple 

myeloma, develop as well as a frequent site of metastases. Understanding the complex cellular and 

microenvironmental interactions that govern normal bone marrow function as well as diseases and 

cancers of the bone marrow would be a valuable medical advance. Our goal is the development of 

a spatially-explicit in silico model of the bone marrow to understand both its normal function and 

the evolutionary dynamics that govern the emergence of bone marrow malignancy.

Here we introduce a multiscale computational model of the bone marrow that incorporates three 

distinct spatial scales, cell, hematopoietic subunit, whole marrow. Implemented as a fixed lattice 

3D cellular automaton, it reproduces the spatial characteristics of the normal bone marrow and is 

validated against data from the daily production of mature blood cells and response of 

hematopoiesis after irradiation. The major mechanisms modeled in this work are: (1) replication, 

specialization and migration of hematopoietic cells, (2) optimized spatial configuration of sinuses 

and hematopoietic compartments and, (3) intravasation of mature hematopoietic cells into sinuses.

Our results, using parameter estimates from literature, recapitulates normal bone marrow function 

and suggest an explanation for the fractal-like structure of trabeculae and sinuses in the marrow, 

which would be an optimization of the hematopoietic function in order to maximize the number of 

mature blood cells produced daily within the volumetric restrictions of the marrow.

Introduction

The human bone marrow is one of the body’s largest organs occupying the central regions of 

virtually all long and flat bones. Consisting of a mixture of fat and hematopoietic precursor, 

the marrow typically produces 500 billion mature blood cells daily (Fliedner et al., 2002).

Hematopoiesis, or the production of mature blood cells in the marrow, is a complex process 

of replication and specialization of hematopoietic stem cells (HSC) into progenitor cells and 

finally into functioning mature phenotypes that leave the marrow through a specialized 

network of vessels called sinusoids (Fliedner et al., 2002; Mazo and von Andrian, 1999; 

Valarmathi et al., 2009).
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Several mathematical and computational models of bone marrow dynamics have previously 

been developed. Generally, these works either consider the replication and specialization 

process of cells non-spatially (Adimy and Crauste, 2009; Adimy et al., 2008; Antoniou et 

al., 2004; Colijn and Mackey, 2005a; Colijn and Mackey, 2005b; Ostby et al., 2003; 

Smirnova, 2006) or isolate and confine stem, progenitor and mature cells to adjacent layers 

extending from the bone endosteal surface to the sinus (Bessonov et al., 2008; Bessonov et 

al., 2009).

In this article we report the initial development of a comprehensive, spatially realistic model 

of the bone marrow for the study of carcinogenesis and treatment of hematologic 

malignancies. Our goal is to incorporate the role of the microenvironment (extracellular 

matrix and stroma) which is believed to be instrumental in controlling the proliferation and 

maturation processes as well as conferring environment-mediated and acquired resistance 

(Meads et al., 2008; Meads et al., 2009) to bone marrow malignancies during therapy.

Our model is built on previous work from Colijn et al. (Colijn and Mackey, 2005a) who 

modeled normal hematopoiesis and periodic chronic myelogenous leukemia, a malignant 

condition in which levels of mature white cells in blood oscillate well above the normal 

range. This model incorporated the specialization of hematopoietic cells, possible feedback 

mechanisms believed to control the levels of the different types of blood cells, and the bone 

marrow response to perturbations like hemorrhage or wounding.

The model abstracts the spatial dimension of hematopoiesis and thus allows all non-

quiescent cells to proliferate in an amplification process culminating in the number of 

mature blood cells observed in vivo. However, this assumption is not always valid in a 

spatially constrained bone marrow environment in which proliferation transitions from 

exponential growth to a nearly linear function at high cell densities when only the cells in 

the outer layer are able to replicate.

Bessonov et al. (Bessonov et al., 2009) created a spatial model of hematopoiesis in 2D 

which incorporates a number of additional features including changes in cell diameter 

during replication and mechanical forces such as compression and pushing of more mature 

cells by immature proliferating cells towards the sinusoids.

Here we develop a spatial bone marrow model that adds a number of new components to the 

previous works. Our goal is to obtain a model that incorporates critical aspects of bone 

marrow physiology including vascular dynamics and spatial distribution of hematopoietic 

elements within the anatomic limitations of the boney trabeculae (Fig. 1). This model will 

allow us to examine the interactions of hematopoietic elements of the bone marrow with the 

underlying mesenchyma including blood vessels, extracellular matrix, boney endosteum, 

and fibroblasts. In part we are motivated to develop a spatially and anatomically accurate 

depiction of the bone marrow and overcome limitations of previous models which have 

separated the hematopoietic function from the spatial constraints of the marrow. In addition, 

there is growing evidence that cellular and physical microenvironment plays a critical role in 

the bone marrow during normal function as well as in tumor infiltration and response to 

therapy.

Silva et al. Page 2

Math Biosci Eng. Author manuscript; available in PMC 2013 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A major goal of this work was the development of an accurate depiction of the morphology 

of the bone marrow vasculature. The simplified model of bone marrow vasculature typically 

used in theoretical models is shown in the upper cartoon of Fig 1. However, it is clear from 

observations using vital microscopy and plastic injection in bone marrow blood vessels 

(Albrektsson and Albrektsson, 1978; Branemark, 1959; Fliedner et al., 2002) that the 

sinusoids actually have a complex branched structure.

Our work was also guided by published data on replication and specialization of bone 

marrow stem cells (Passegue et al., 2005) and in vivo imaging of the bone marrow 

microenvironment (Albrektsson and Albrektsson, 1978; Bourke et al., 2009; Calvi et al., 

2003; Kubota et al., 2008; Li et al., 2008; McClugage et al., 1971; Nilsson et al., 2001; 

Watchman et al., 2007; Yahata et al., 2008; Yin and Li, 2006; Zhang et al., 2003).

To validate our models we simulated the bone marrow’s response to radiation and compared 

our results with data from Fliedner et al. (Fliedner et al., 2002) who measured the levels of 

blood cells in subjects following exposure to whole body radiation.

Materials and Methods

Theoretical Model of Hematopoiesis

The classic model of hematopoiesis as depicted in Fig 2, stem cells located in the endosteum 

niche proliferate either symmetrically or asymmetrically according to still not completely 

known regulatory mechanisms. Normal bone marrow function maintains a stable stem cell 

population while producing sufficient progenitor cells to maintain optimal blood levels of 

red cells, white cells, and platelets (Adams et al., 2006; Calvi et al., 2003; Eliasson and 

Jonsson, 2010; Yin and Li, 2006; Zhang et al., 2003) thus ensuring blood homeostasis. Other 

niches of hematopoiesis are proposed, such as the sinusoids or perivascular, but these have 

not yet been fully characterized (Kiel and Morrison, 2008) and were therefore not 

incorporated in to the current model.

The classic model depicted in Fig 2 shows a stem cell generating progenitor cells that in turn 

replicate and mature in a gradual process that creates increasingly mature cells along the 

path from the bone to the sinusoids. This model, however, is spatially unfeasible as each 

generation would have twice as many cells as the previous, and thus eventually there would 

be insufficient space in the marrow for them.

The second model of Fig 2 is the one developed here. In this model the sinusoid network 

reaches into the hematopoietic niches, collecting mature cells from different distances within 

the bone, eliminating the potential spatial constraint discussed above. This alternative 

architecture also optimizes the production of mature cells, as will be quantified below.

As a minimal requirement, the model must capture normal bone marrow hematopoietic 

function. It is estimated that the daily production of mature blood cells is 500×109 (Fliedner 

et al., 2002) with an hematopoietic stem cell (HSC) population of 80×106 of which 10% are 

actively replicating (Colijn and Mackey, 2005a). Thus, each proliferating HSC would form a 

hematopoietic subunit with daily a production of approximately 62,500 mature blood cells.

Silva et al. Page 3

Math Biosci Eng. Author manuscript; available in PMC 2013 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The cell cycle times of HSC, the proportion of symmetric and asymmetric replications are 

described in figure 3 and were considered constant during normal hematopoiesis. Three 

blood cell lineages are modeled: erythrocytes (RBPC, 5% of the progenitor cells and 19 

generations required for maturation), granulocytes (GPC, 23% of the progenitor cells and 16 

generations required for maturation) and platelets (PPC, 7% of the progenitor cells and 18 

generations required for maturation).

The proportion of progenitor cells for each lineage was based on experimental estimates of 

the numbers of cells produced daily for each lineage (120×109 for granulocytes, 200×109 for 

erythrocytes and 150×109 for platelets, (Bessonov et al., 2009; Colijn and Mackey, 2005a; 

Fliedner et al., 2002)) and the number of replications before reaching maturity.

Computational Model of Hematopoiesis

The computational model develop here was implemented as a cellular automaton in three 

dimensions using the software TSim (Tissue Simulator, http://www.i-genics.com), 

previously described (Silva et al., 2009; Silva et al., 2010).

One of the main features of this software is its ability to bridge intracellular and tissue 

scales, simulating metabolism, replication, apoptosis and cell movement according to the 

cell genotype but also considering the extracellular stimuli such as growth factors, pHe 

(extracellular pH), nutrients and gas levels. These species are assumed to diffuse through the 

interstitial fluid and be consumed or produced by the different cells composing the simulated 

tissue. Other structures such as compact bone, arterial vessels and sinusoids are also 

modeled by defining these units as incompressible barriers, volumes with fixed 

concentrations of oxygen and nutrients, and sinks of mature hematopoietic cells, 

respectively.

The current implementation of this software, however, has some limitations, such as (1) all 

cells have the same dimensions, when hematopoietic cells can vary from 5 (erythrocytes and 

mast cells) to 25 um (granulocytes), (2) cell size does not change during replication and (3) 

mechanical forces are not represented and cells are incompressible. We may expect that our 

approximations will result in a reduction in cellularity (on the order of 2–3 fold) in the 

simulated marrow as compared to the real marrow, as well as less motility of smaller cells, 

which in the real marrow should be able to “squeeze” into spaces where the bigger cells 

cannot.

In future versions of this software, compressibility of cells will be incorporated as well as 

lattice-free placement of cells and the real extent of the influences of these factors will then 

be assessed. However, even in lattice-free models with compressible cells, the simulated 

cells appear to find a minimum energy lattice configuration (Bessonov et al., 2009). The 

algorithm of the simulation of this model is briefly described in table 1 and reproduced in 

pseudo-programming language in the Appendix A.

In the context of this model, the human bone marrow is viewed as one organ separated into 

multiple bones and, within each bone, further divided into independent subunits composed 

of stem cells, progenitor cells and sinuses. Each of these subunits self-regulates its daily 
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production of blood cells based on equilibrium between proliferation, maturation, motility 

and intravasation into the sinuses. We consider this subunit as the minimum hematopoietic 

subunit of the bone marrow model we develop.

Our first proposed geometry was the classical model where stem cells are located at the 

endosteum and produce progenitor cells that move in waves of specialization until they 

reach the sinus (figure 2). However, we found that this organization is not capable of 

producing the amount of cells per stem cell that is observed in real marrow, unless the 

distance between the stem cell and the sinusoid is increased to non-physiological values 

(centimeters). Placing the sinusoids at distance N-layers away from the endosteum, where N 

is the number of generations required to reach maturity, also poses the problem that some 

mature cells may eventually get trapped among immature cells and be unable to reach the 

sinusoids until their neighbors also reach maturity, and are transported out of the marrow 

themselves.

Considering these results, we searched for a spatial organization of the sinusoids that would 

maximize the surface of contact with the hematopoietic population without increasing the 

distance to the stem cell population, and hence the volume of the marrow, thus keeping the 

bone compact and able to collect mature cells from different locations in the marrow. Our 

solution was achieved using the architecture proposed in figure 4. In this model the 

sinusoids follow a forking pattern that probes into the hematopoietic compartment from 

where it co-opts the mature stem cells. This design is also similar to heat dissipaters used in 

microprocessors in order to maximize heat exchange by increasing the surface contact with 

the air.

In our model, each HSC may replicate symmetrically or asymmetrically as described in 

figure 3. The doubling time for each HSC was fixed at three days (Colijn and Mackey, 

2005a), after which one of the daughter cells will be a stem cell and the other would have 

65% of chance of being a stem cell and 35% of chance of becoming a progenitor cell (23% 

for a granulocyte progenitor cell, 5% for a erythrocyte progenitor cell and 7% for a platelet 

progenitor cell). Each of these progenitor cells has its own number of replications until they 

reach maturity and are able to enter the nearest sinusoid.

The mechanism through which the specialization of stem cells into different lineages is not 

modeled in this work, as our focus is to model the spatial configuration of the hematopoietic 

subunit, and not the underlying mechanisms of hematopoietic differentiation. The number of 

cells within the marrow is limited by its volume; the spatial restriction providing a feedback 

mechanism that prevents exponential growth of the intra-marrow population and imposing 

competition among the different lineages for proliferation and production of mature blood 

cells.

Besides replicating, cells can also move randomly with a speed of 2.5um/minute towards a 

vacant volume or into a neighboring sinusoid. This rate was estimated from Brownian 

movement of an average mammalian cell in water (Bray, 2001). Considering that each cell 

in the model has the length of 25um, this means that each cell will randomly cover 6 

diameters in one hour.
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The maximum uptake of a sinusoid is thus four times its length (by approximating sinusoids 

and cells as being cubic structures) per 10 minutes. In order to transport 62,500 mature cells 

in one day, the sinusoids of an hematopoietic subunit would need a surface of 62,500 

cells/(4 cells × 24h × 6x pMature)=108/pMature cell lengths in direct contact with mature cells, 

where pMature is the proportion of mature cells from the total hematopoietic population in the 

marrow. The volume of each subunit may be estimated from the weight of the hematopoietic 

share of the marrow, which is approximately 1,400g for a 70kg adult (Fliedner et al., 2002). 

This mass would correspond to an approximate volume of 1,400 cm3 which split by 8 

million hematopoietic subunits would give approximately 10,000 cells per subunit. 

Considering that cells shrink (during hematopoiesis and replication), which is not 

implemented in this model, we triple this number and estimate that approximately 30,000 

hematopoietic cells are produced in each subunit. Our first simulations showed that 

approximately 2/3 of the cells in the compartment are mature cells (pMature=0.67) and that a 

volume of approximately 37,000 cells (42×42×21) in combination with a sinusoid surface of 

at least 162 cell areas are required to produce a daily yield of 62,500 cells. The subunit was 

thus implemented according to these specifications as illustrated in figure 4.

The diameter of the sinusoids was assumed to match the diameter of the standard cell 

modeled as measured in vivo: 15um for sinusoids and 12um for venules (Fliedner et al., 

2002). The microvessel density was reported to be 75 microvessels/mm2 for animal models 

(De Raeve et al., 2004), and 59.5 (ranging from 17–140) and 25.1 (ranging from 0–60) 

microcvessels/mm2 for patients with multiple myeloma before and after treatment, 

respectively (Sezer et al., 2001). Biopsies in asymptomatic patients showed on average a 

microvessel density of 5 microvessels/mm2 (Watchman et al., 2007). The configuration of 

sinusoids in figure 4 is of 25 microvessels/mm2 which is within physiological ranges, event 

though the measurements from literature do not differentiate the arterial vessels and 

sinusoids.

We simulated this model with subunits initially identical, from the configuration of figure 4, 

for 50 days (consisting of 7,200 simulation steps). Each simulation step was 10 minutes 

long, during which one cell could move to a neighboring slot in space, replicate or enter a 

neighboring sinusoid if they were mature.

Cell movement was random and replication was implemented as a probability that was 

tested at every simulation step. For progenitor and immature cells, the cell cycle was 

estimated at one day, and the probability that one cell would replicate at a given moment 

within the length of its population’s doubling time, was modeled as an exponential function 

( ) starting at zero at the beginning of the cell cycle and reaching one at the end of 

the doubling time (see Appendix A for details). Using these parameters, the probability of 

replication measured at any given 10-minute interval should be . The 

same probability was calculated as 0.16% for stem cells which double every three days and 

remain quiescent 9 cycles out of 10.
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Results

Four sample outputs of hematopoietic subunits among those simulated are shown in figure 

5, where HSC are shown in white, immature granulocytes in blue, immature erythrocytes in 

pink, immature platelets in green and mature cells of the three types are shown in cyan. All 

subunits eventually reach a state where two thirds of the cells are in mature state, even 

though the temporal development and spatial distribution vary among the three lineages 

between the simulated subunits. Human biopsies show that the percentage of hematopoietic 

cell lineages in the marrow varies with age but that approximately 40–65% of the 

hematopoietic cells are mature granulocytes and erythrocytes (Orazi et al., 2006), which is 

in accordance with the model results.

The average simulated output obeys the required share as shown in figure 6, with a daily 

production of approximately 47,400 cells (19,900 erythrocytes, 15,780 granulocytes and 

11,740 platelets), giving the whole body daily production of 379×109 cells (159×109 

erythrocytes, 122×109 granulocytes and 94×109 platelets). This is a good approximation of 

what happens in real marrow, given the simplifications of this model and the scaling 

required for changing from a subunit of a few thousands of cells to a system, with a complex 

geometry, with hundreds of billions of cells.

Although erythrocytes originate from only 5% of HSC asymmetrical divisions-in contrast 

with 7% and 23% for megakaryocytes and granulocytes, respectively- our model shows that 

the red blood cell lineage is responsible for 40% of the cells in the marrow and 42% of the 

daily production of mature blood cells. The explanation for this apparent paradox comes 

from calculating the number of mature blood cells produced per HSC asymmetric division, 

which is (0.05)×219=26,200 for RBC, (0.07)×218=18,350 for PBC and (0.23)×216=15,000 

for GBC. Thus, the higher the number of replications before attaining maturity and leaving 

the marrow, the bigger will be the share of a certain lineage within the marrow population 

and in blood.

A second test for this model was the recovery after irradiation. Hematopoietic cells respond 

to radiation with different levels of resistance depending on their maturation stage: fully 

mature quiescent cells have a D0 (radiation dose that kills 63% of the population) of 50Gy 

while HSC and progenitor cells have a D0 of approximately 1Gy (Fliedner et al., 2002). This 

differential response was used to test the current model by comparing the levels of 

hematopoietic cells produced after simulated radiation exposure with data from the literature 

on patients exposed to radiation. To approximate an intermediate treatment of say 5Gy in the 

simulations, we simply removed all the HSC from the subunits after six days of 

hematopoiesis and used the resulting subunits to initialize new simulations with only the 

progenitor and mature cells for a further 20 days.

The lower graph in figure 6 shows the simulated results. As expected, the daily delivery of 

mature cells to the blood decreases with time and is eventually negligible around 10 days. 

These results agree well with observations from victims of radiation, who have marrows that 

cannot recover and eventually have negligible production of granulocytes after 6 days and 

platelets after 10 days after exposure.
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Conclusion

In this work we approached the problem of hematopoiesis from a systems perspective by 

developing a bone marrow model that was realistically based on the anatomic and 

physiologic restrictions of the human bone marrow. To validate our model, we compared 

simulation results with the behavior of normal marrow under physiological conditions and 

after irradiation.

In the proposed model, the marrow is composed of multiple self-regulating subunits that 

produce and deliver mature blood cells into the sinusoids. Each subunit produces slightly 

different numbers of blood cells, but as a whole reliably renews the blood cell population 

maintaining the proportions found in vivo. When perturbed by radiation (which is believed 

to be more deadly for the stem cell population than the progenitor or mature cells) these 

modeled subunits respond similar to data from humans following radiation exposure. We 

find this multiscale organization of the marrow structure both intuitive and computationally 

ideal for understanding the dynamics of bone marrow and hematopoiesis.

This work also gives insights into the “sieve-like” structure of the marrow bone, in which 

trabeculae protrude in structures similar to fractals. We propose that this is an optimization 

of the internal bone surface with the goal of better using the volume available in the marrow 

to produce the most mature cells within the space and time restrictions imposed by the 

marrow anatomy.

Our next step will be to incorporate cytokines mediated movement, replication and 

specialization. We will also include metabolism of glucose in order to simulate the effects of 

hypoxia and low pH in hematopoiesis and later in carcinogenesis.

In this work the actual mechanism for which immature hematopoietic cells remain in the 

marrow, even when they are in the proximity of a sinusoid, is not modeled. However, 

relaxing the requirement for immature cells to be located far from sinusoids to prevent 

leakage into the blood stream, has allowed us to propose a spatial hematopoietic architecture 

which is closer to what is observed in vivo. Some authors (Fliedner et al., 2002; Furze and 

Rankin, 2008; Jain, 1993) have proposed that the bigger size, lack of malleability, electric 

charge or lack of receptors for chemo-attractants in immature cells, in contrast with smaller 

mature cells, would be the reason for which they would only be able to migrate to 

bloodstream in conditions of stress such as shock or endotoxemia. In future versions of this 

work’s model, where chemotaxis, lattice-freedom and cell size variability will be 

implemented, these questions might be addressed more thoroughly.

Our ultimate goal with this project is to build a model of the marrow microenvironment 

were the interactions between cancer cells, stroma and extracellular matrix, quantified in 

different experiments in vivo, can be merged together and used to understand the process of 

acquired resistance.
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Appendix A: Hematopoietic Model Algorithm

The algorithm below describes the model used in this article. The actual software used for 

the simulation is available for download at www.i-genics.com along with the source code, 

the simulation files used in this article and movies of some of the simulation results.

1 Create a tridimensional data structure with dimensions x, y and z as described in 

the figure 4, including hematopoietic stem cells, sinusoids and vacant space. 

This will be our working data structure. For this article, x, y and z correspond to 

21, 42 and 42, respectively.

2 Repeat the steps below N times, where N is the number of days for the 

simulation:

2.1 Repeat the steps below M times, where N/M is the time step simulated. In this 

work, M was 144, which corresponds to 24h*60′/144=10′. Thus, each 

simulation step corresponds to 10 minutes in real time:
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2.1.1 Create a new empty data structure with dimensions x, y and z. This will be our 

temporary data structure;

2.1.2 Create a list of references to all the elements in the working data structure and 

shuffle their order randomly;

2.1.3 For each reference in the list do:

2.1.3.1 If the reference points to a vacant space, do nothing;

2.1.3.2 If the reference points to a sinusoid, copy its data into the corresponding slot 

into the temporary data structure;

2.1.3.3 If the reference corresponds to a cell, then:

2.1.3.3.1If the cell is not a stem cell:

2.1.3.3.1.1Test if the cell may move:

2.1.3.3.1.1.1 Search among the six neighbors around the cell if there is a vacant slot 

or a sinusoid.

2.1.3.3.1.1.2 If one of the neighbors is a sinusoid and the cell replication counter is 

at its maximum level (mature blood cell), remove the cell from the 

working data structure and increase the number of mature blood cells 

of the lineage produced by the marrow and delivered to bloodstream.

2.1.3.3.1.1.3 Otherwise, if there is a vacant slot in the direct vicinity of a cell, copy 

the data from the cell to the new slot in space and erase it from the old 

slot. Copy the data into the corresponding slot of the temporary data 

structure.

2.1.3.3.1.2 Test if the cell may replicate:

2.1.3.3.1.2.1 If the replication counter of the cell is lower than the maximum 

number of replications allowed (16 for granulocytes, 19 for 

erythrocytes and 18 for megakaryocytes) proceed to the next step, 

otherwise the cell is not allowed to replicate.

2.1.3.3.1.2.2 Given the doubling time of a cell, Dt, and the time step of the 

simulation dt, then the probability that a cell replicates during the 

simulated time step dt is .

2.1.3.3.1.2.3 According to the term above, derived from a binomial expansion, a 

population with N0 cells at time t0, with a doubling time Dt and 

simulated with time steps dt, will have at time 

2.1.3.3.1.2.4 In this article, non-stem cells have a doubling time Dt=1 day and 

every simulation step corresponds to 10 minutes, thus 
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, which means that at every simulated step a non-

stem cell has a chance of 0.48% of replicating.

2.1.3.3.1.2.5 Generate a random number between 0 and 1 using a uniform 

distribution. If the number is lower than or equal to p, the cell may 

replicate if there is one adjacent vacant slot in the working data 

structure. In this case, copy the data from the mother cell into the 

corresponding slot in the temporary data structure and increment the 

replication counter of both “mother” and “daughter” cells;

2.1.3.3.2 If the cell is an hematopoietic stem cell:

2.1.3.3.2.1 Test if the cell may replicate by computing the probability of 

replication using as parameters the doubling (Dt) time and the 

simulation time step (dt), as done for progenitor cells;

2.1.3.3.2.2 In this article, the doubling time of hematopoietic stem cells is 

considered as three days, thus the probability of replication, p, at every 

simulated stesp is equal to 

2.1.3.3.2.3 Test if there is a vacant slot in the vicinity of the cell in the working 

data structure. If true, generate a random number with a uniform 

distribution between 0 and 1. If the number is equal to or lower than 

0.65, the daughter cell will be another stem cell. If the number is 

between 0.65 and 0.7 the daughter cell will be an erythrocyte 

progenitor cell. If the number is above 0.7 and below 0.77 the cell will 

be a megakaryocyte progenitor cell. Otherwise, it will be a 

granulocyte progenitor cell, as described in text and depicted in figure 

3.

2.1.3.3.2.4 If a progenitor cell is generated, update the type of cell from stem cell 

to progenitor cell and set its replication counter to zero;

2.1.3.3.2.4.1 Copy the “mother” and “daughter” cells into the corresponding slots 

of the temporary data structure;

2.1.4 Discard the working data structure and use the temporary data 

structure as the new working data structure for the next simulation 

step;
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Figure 1. 
In (A) a long bone is depicted with an arterial vessel which feeds the marrow and vein that 

transports the mature hematopoietic cells recently produced in the marrow. (B) Shows a 

simplified view of a long bone cross-section where the central sinus, which collects the 

mature blood cells, is located in the center of the marrow and the hematopoietic stem cells 

are located in the endosteum which is the smooth surface of bone at the interface of the 

marrow and compact bone. This is the classical bone marrow model used for hematopoiesis. 

(C) Shows a more realistic cross-section of a long bone in which the marrow is immersed in 

a sieve-like structure of bony trabeculae (c1) which create chambers that are connected to 

the central sinus (c2) through a branching structure of sinusoids (c3).
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Figure 2. 
In the classic model of hematopoiesis, the stem cells generate progenitor cells that in turn 

replicate and specialize until they reach maturity and are collected by sinusoids and leave 

the marrow. This model, however, cannot be reproduced spatially as the number of cells in 

each layer is double that of the previous one which would either mix cells in different stages 

of maturity or create a funnel with one stem cell in the apex and approximately 65,000 

mature cells in the base close to the sinus. Thus, this configuration is not optimized for space 

and is physiological unfeasible. The model proposed in this work suggests that the marrow 

is composed of multiple subunits, each of them composed of 10 or more stem cells, one 

proliferative and the others quiescent, perfused by a branching network of sinusoids that are 

permeable only to mature cells. This structure has the advantage of not requiring a 

hierarchical spatial distribution of the hematopoietic cells and also optimizes the 

intravasation of mature cells.
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Figure 3. 
A stem cell may replicate symmetrically and yield two identical stem cells or 

asymmetrically and generate one stem cell and one progenitor cell. This progenitor cell may 

give rise to a granulocyte, erythrocyte or platelet lineage of cells, each of them requiring a 

certain number of replications before reaching maturity. Besides replicating, cells can also 

move randomly. The probability of replication and specialization were obtained as described 

in text and represent a steady-state, decreases in the concentration of mature blood cells in 

circulation are believed to feed back in these probabilities in order to reestablish normal 

levels. This feedback mechanism however is not modeled in this work. A sinusoid wall will 

absorb any mature cell immediately in its neighborhood (within the distance of 1 cell 

diameter).
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Figure 4. 
Implementation of the minimum hematologic subunit composed of 9–10 stem cells next to 

the endosteum and a network of sinusoids reaching through the entire volume (top). The 

dimensions (bottom) were determined from the calculations discussed in the text above; the 

units are in cell diameters. The bone is not part of the simulations and thus is not visible in 

the 3D view (top).
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Figure 5. 
Simulation of four different hematopoietic subunits starting with the same initial 

configuration (9 stem cells) after 20 days. In white are stem cells, in blue immature 

granulocytes, in red immature erythrocytes, in green immature platelets and in cyan mature 

cells of the three cell lines able to intravasate into the sinusoids. Each subunit produces 

different quantities of mature blood cells of each lineage but on average they produce the 

three lineages at a stable rate according to the whole body needs.
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Figure 6. 
Normal and post-irradiation hematopoiesis. (A) The number of hematopoietic cells at 

different stages of differentiation in each of the three lineages per hematopoietic subunit. (B) 

The daily production of mature blood cells per hematopoietic subunit calculated.(C) The 

accumulated production of mature blood cells by a single hematopoietic subunit over 50 

days. The results of A, B and C are the average of ten independent simulations. (D) The 

decrease in production of mature hematopoietic cells after irradiation, modeled as 

eradication of the stem cell population but no harm to the progenitor and mature cells.
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Table 1

Algorithm implemented in software TSim for simulation of hematopoietic model. The first column shows the 

time scale of the event being modeled. The middle column describes the implementation of each of the tasks 

for this simulation (in bold italic) and the last column describes the output of each of these operations.

Time 
scale for 
each step

Actions Results

Days Compute Simulation:
For days 1 to N, do:

1 Compute Movement;

2 Compute Replication;

N snapshots of steady states of 
hematopoiesis;

10 min Compute Movement:
For each cell in the model, except for the HSC do:

1 Search for a neighboring empty slot or a sinusoid;

2 If a sinusoid found then Compute Sinus Intravasation;

3 Else chose one randomly neighbor slot and move into it, if no empty slots are 
available do nothing;

Updated spatial rearrangement of 
cells and production of cells into 
blood;

10 min Compute Sinus Intravasation:
If the cell is mature then remove it from the simulation space and increase the counter of 
mature blood cells produced of that type for that hematopoietic subunit.

Updated simulation space with an 
empty slot instead of the mature 
blood cell and incremented 
counter of mature blood cells 
produced;

10 min Compute Replication:

1 Check if the cell is not mature (quiescent);

2 Check if there is an empty slot in the direct vicinity of the cell;

3 Test the cell for the probability of replication;

4 If all tests succeed, then occupy the randomly chosen empty slot with a copy of 
the original cell;

5 If the original cell was a progenitor cell then increment the counter generation for 
both daughter cells;

6 If the original cell was a stem cell then test for symmetric or asymmetric 
division. If asymmetric test for which cell lineage will be the daughter cell.

Simulation space with daughter 
cells which can be stem cells, 
progenitor cells or immature 
blood cells.
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