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Abstract

Rhynchocyon udzungwensis is a recently described and poorly understood sengi (giant elephant-shrew) endemic to two
small montane forests in Southern Tanzania, and surrounded in lower forests by R. cirnei reichardi. In this study, we
investigate the molecular genetic relationship between R. udzungwensis and R. c. reichardi, and the possible role that
shifting species distributions in response to climate fluctuations may have played in shaping their evolutionary history.
Rhynchocyon udzungwensis and R. c. reichardi individuals were sampled from five localities for genetic analyses. Three
mitochondrial and two nuclear loci were used to construct species trees for delimitation and to determine whether
introgression was detectable either from ancient or ongoing hybridization. All species-tree results show R. udzungwensis and
R. c. reichardi as distinct lineages, though mtDNA shows evidence of introgression in some populations. Nuclear loci of each
species were monophyletic, implying introgression is exclusively historical. Because we found evidence of introgression, we
used distribution data and species distribution modelling for present, glacial, and interglacial climate cycles to predict how
shifting species distributions may have facilitated hybridization in some populations. Though interpretations are affected by
the limited range of these species, a likely scenario is that the mtDNA introgression found in eastern mid-elevation
populations was facilitated by low numbers of R. udzungwensis that expanded into lowland heavily occupied R. c. reichardi
areas during interglacial climate cycles. These results imply that relationships within the genus Rhynchocyon may be
confounded by porous species boundaries and introgression, even if species are not currently sympatric.
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Introduction

When a new species is described to science, understanding its

genetic and morphological distinctness, relationship to congeneric

taxa, the permeability of species boundaries, and overall evolu-

tionary history are necessary to place the lineage in the grand

scheme of evolution. While many initial investigations document

morphological and sometimes molecular relationships to related

lineages, considering broader aspects of evolution including non-

linear species divergence and interspecific interactions may

provide a more accurate estimate of evolutionary history and

uniqueness. The prevalence of introgression is non-trivial, as

,10% of animal species appear to have hybridization and

introgression in their evolutionary past [1]. In this study, we

investigate the evolutionary history and genetic distinctness of the

newly described grey-faced sengi or elephant-shrews (Rhynchocyon

udzungwensis Rathbun and Rovero 2008) and its relationship to the

parapatric chequered sengi (Rhynchocyon cirnei reichardi Peters 1847)

in the Udzungwa Mountains of Tanzania. Evolutionary relation-

ships within the genus Rhynchocyon are poorly understood, and the

relationship of the newest member to other East African species

and subspecies is of great interest to conservation efforts for

preserving unique lineages in the face of small population sizes and

human degradation of habitat.

The grey-faced sengi, R. udzungwensis, was described in 2008 [2]

as the largest member of a poorly known group of African

mammals of ancient and intriguing evolutionary history. Sengis

are an ancient monophyletic order (Macroscelidea) of 18 extant

species, endemic to Africa [3,4]. Based largely on molecular data,

sengis belonging to the super-cohort Afrotheria, which also

includes elephants, hyraxes, sea cows (Paenungulata), tenrecs

and golden moles (Afrosoricida), and the aardvark (Tubulidentata)

[5–7]. The sengi order consists of two subfamilies: the forest-

dwelling giant sengis (subfamily Rhynchocyoninae, single genus

Rhynchocyon, species = 4), and the soft-furred, arid adapted sengis

(subfamily Macroscelidinae, three genera: Macroscelides (spe-

cies = 2), Petrodromus (species = 1), and Elephantulus (species = 11)).

While a large-scale phylogeny of most sengis has been completed

[8], little is known about the taxonomy and phylogenetic

relationships of the giant sengis (Rhynchocyon) [3,9]. Corbet &

Hanks [10] recognized three Rhynchocyon species based on

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e72506



morphological differences and allopatric distribution (four are now

recognized with the discovery of R. udzungwensis). They also

described six subspecies within R. cirnei, where R. cirnei reichardi

occurs in the Udzungwa Mountains and the highlands of

southwestern Tanzania and northern Malawi. This taxonomy,

however, is based nearly exclusively on pelage patterns and is

debatable in some cases [3,11]. While sufficient sampling for a

robust phylogeny of Rhynchocyon is currently beyond our grasp

because giant sengis are elusive and sufficient samples are not

available, we now have adequate material to investigate the

relationship between two parapatric lineages: the newly described

R. udzungwensis and the more widespread R. cirnei reichardi.

Rhynchocyon udzungwensis has an extremely small range (ca.

390 km2) limited to two forests in the northern Udzungwa

Mountains in Tanzania: the western Ndundulu-Luhomero forest

and the eastern Mwanihana forest, which are separated by a

,25 km gap of lower elevation and drier woodland [2]. The range

of R. udzungwensis is nearly encompassed by the range of R. cirnei

reichardi, and the two taxa present partial overlap in elevation (R.

udzungwensis occurring between 350 and 2300 meters elevation and

R. c. reichardi between 290 and 1800 meters in the Udzungwa

Mountains [2,10]). The distributions of the two taxa meet only

along the central part of the eastern Mwanihana forest ([12];

Fig. 1), with no indication of physical barriers, abrupt habitat

changes, or steep rises. While there is no evidence of intermediate

pelage colouration between these two taxa that might suggest

hybridization (based on camera-trapping images, sightings, and

voucher specimens), the physical proximity of these congeneric

lineages, coupled with small population sizes estimated for R.

udzungwensis, led us to include the relationship with R. c. reichardi

when investigating R. udzungwensis’ evolutionary history.

We began this study with a simple investigation of genetic

distinction between the two morphological lineages, and then

added additional molecular data, species tree analyses, and current

and historical species distribution modelling (SDM; see [13] for a

review) in order to provide a scenario that could accommodate

non-bifurcating molecular data. In this way, we can determine

how historical scenarios of contact, isolation, and introgression

have shaped evolution for rare and isolated montane fauna, and

better understand evolutionary dynamics in a biodiversity hotspot.

Species with stable, allopatric distributions are not expected to be

prone to hybridization, but species with historic range shifts

tracking fluctuating climatic conditions may have experienced

temporary sympatry and associated genetic introgression [14–17].

While climate-driven range shifts have been documented in a wide

variety of settings, the most pronounced shifts are expected in

montane species, as climatic similarity may correlate with distant

montane areas rather than nearby lowlands [18,19]. In particular,

by using SDM through time, we are able to assess the potential of

overlap between sengis during both current and past time periods

to accommodate the possibility of low-level historical and/or

current introgression [20].

Materials and Methods

Ethics Statement
All field procedures involving live animals met the standards for

the ethical and humane treatment of animals of the American

Society of Mammalogists and the 2000 American Veterinary

Medical Association guidelines [21,22], and all precautions to

minimize pain, distress or suffering by trapped animals were taken.

Vouchered animals were euthanized using chloroform, as

approved by the Guidelines of the American Society of

Mammalogists for the use of wild mammals in research [21]. All

fieldwork was performed under research/collecting permit num-

ber 2008-311-ER-2008-150 to SR and permit number 2010-270-

ER-2009-49 to FR, issued by the Tanzania Wildlife Research

Institute. Research and collection permits were also issued by the

Tanzania Commission for Science and Technology and by

National Parks. Materials were exported under Tanzania Wildlife

Division/CITES Office export permits #57189 and #58267 to

SR.

Tissue Sampling
We collected tissues for molecular analysis from 31 specimens in

Tanzania from 2006–2009: R. udzungwensis (n = 22, localities = 3),

R. cirnei reichardi (n = 8, localities = 2), and one outgroup sengi,

black-and-rufous sengi (Rhynchocyon petersi, n = 1, locality = riparian

forest on the north side of the Rufiji river, 150 km east of the

Udzungwa Mountains) (Fig. 1). For live animals to be released,

tissue collection consisted of a small amount of hair along with a

tiny piece of auricle. The ear was then disinfected with betadine

and the animal was monitored for a few minutes to ensure no

adverse reaction. Dead specimens and specimens destined for

voucher had fresh muscle, liver, or kidney tissues preserved in 95%

ethanol. Tissue samples for genetic analysis are stored at the

Foundation Edmund Mach in Trento, Italy. A complete list of

sampled specimens and sampling localities can be found in Table

S1.

We trapped sengis with nylon twin snares [2] and double-door

live traps (Tomahawk Live Traps, 246666 inch) that were set

where sengi were likely to travel. Capture and handling of

specimens followed the Animal Care and Use Committee of the

American Society of Mammalogists Guidelines. Voucher speci-

mens were collected (R. udzungwensis: n = 8 (of which 4 were

specimens taken for the description and of these, 3 were given to

other museums), R. cirnei reichardi: n = 5 (including one given to

California Academy of Sciences) and were prepared as study skins

and skulls.

Genetic Analyses
Genomic DNA was extracted with the DNeasy Tissue kit

(Qiagen, Valencia, USA) following manufacturer’s instructions.

We used PCR to amplify fragments of three mitochondrial loci:

NADH dehydrogenase 2 (ND2: Met-1 and Trp-2 [23]), the

hypervariable 59 end of the control region (D-loop: L0-F [24] and

E3 [25]) and the ribosomal gene 12S (12S –F & 12S-R, [26])

totalling 1756 bp. For the mtDNA markers we used 10 ng of DNA

and PCR conditions were as follows: 94uC for 10 min, followed by

35 cycles of 94uC for 1 min, 55uC for 45 sec, and 72uC for 1 min,

with a final extension of 72uC for 10 min. To avoid comparing

paralogs, we tested for the presence of numts (for details see Text

S1). Starting from 50 ng of extracted DNA, we also amplified

portions of two nuclear protein-coding genes, von Willebrand

factor (vWF; 1100 bp) and Enamelin (ENAM; 2598 bp), using

primers and PCR conditions as in [27]. During both DNA

extraction and amplification, blank samples were inserted to check

for contamination. All sequence data are deposited in GenBank

(Accession Nos. KF202138–KF202289).

Sequencing was performed with the same set of primers used for

PCR, using Big Dye terminator cycle sequencing with an ABI

37306l. Sequences were edited and assembled with Sequencher

4.8 (Gene Codes Corporation). All sequences aligned unambigu-

ously, but we additionally evaluated alignments in MUSCLE

(http://www.ebi.ac.uk/Tools/msa/muscle; [28]. Heterozygous

genotypes in the nuclear gene data were resolved using PHASE

2.1.1 [29,30], under the default options of 100 iterations, 1

thinning interval, 100 burn-in iterations, and confidence proba-
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bility thresholds of 0.90. One nuclear allele from each individual

was chosen at random to represent the individual in species-tree

analyses.

We concatenated all three mitochondrial loci to form a single

mitochondrial dataset for phylogenetic analyses except where

specified otherwise. Models of sequence evolution for each locus

were selected using the corrected Akaike information criterion

(AICc) as implemented in jModelTest [31] (Text S1). We assessed

the performance of all Bayesian analyses (convergence and

stationarity) with the program Tracer v. 1.5 [32]. Only runs with

adequate mixing and ESS above 200 were considered for final

analyses. Rhynchocyon petersi was included as an outgroup in initial

analyses and removed when inclusion failed to alter relationships

between R. c. reichardi and R. udzungwensis.

Single gene tree analysis. Each locus was individually

analysed using Bayesian inference in MrBayes, [33]. All analyses

were run for 200 million Markov chain Monte Carlo (MCMC)

generations, sampling every 1000th tree. Half of the resulting trees

were discarded as burnin. Maximum clade credibility trees were

calculated in TreeAnnotator from Beast v. 1.6.2 [32].

Species tree construction. We employed several methods

for estimating species trees with different assumptions on ILS

(Incomplete Lineage Sorting) and horizontal gene transfer HGT to

accommodate the possibility that introgression and HGT may be a

substantial part of the evolutionary lineages of at least some

populations within these species. Three species tree methods,

BEST (Bayesian Estimation of Species Trees: [34,35], *BEAST

(Bayesian Evolutionary Analysis Sampling Trees: [36], and BP&P

(Bayesian Phylogenetics & Phylogeography: [37,38] have been

Figure 1. Map of the north-eastern portion of the Udzungwa Mountains, south-central Tanzania with sampling localities.
Distribution records of the grey-faced sengi, Rhynchocyon udzungwensis, shown as white dots. The occurrence of the checkered sengi, R. cirnei
reichardi, shown as black triangles. The western portion of the distribution of R. udzungwensis is in Ndundulu/Luhomero forest, and the eastern
portion is in Mwanihana forest. Rhynchocyon c. reichardi’s distribution extends into the Magombera forest on the eastern plain. The five sampling sites
for molecular analysis of the two species are also shown. The background layer is a topographic map (dark is lower elevation). The inset shows the
location of the Udzungwa Mountains in Tanzania (left) and of the mapped area within the Udzungwa Mountains (right). Insert reprinted from [75]
under a CC BY license, with permission from A. Marshall, original copyright 2005.
doi:10.1371/journal.pone.0072506.g001
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shown to accurately estimate phylogenetic (species tree) relation-

ships in spite of gene tree heterogeneity. They assume, however,

that ILS is the only cause of gene tree-species tree discordance. To

complement these assumptions with a model that is agnostic to the

causes of gene tree heterogeneity, we also analysed our dataset in

BUCKy (Bayesian Untangling of Concordance Knots, Bayesian

concordance analysis: [39–41], which can be used to reject ILS as

sufficient to explain gene tree discordance. If ILS cannot be

rejected as the cause of mismatch between our datasets, then the

species-trees produced from *BEAST and BEST should be good

estimates of the true species tree without invoking HGT to explain

discordance of genetrees. If BUCKy rejects ILS as sufficient to

explain genetree discordance, the individual gene trees can be

assessed to determine likely transgenic events [42].

BEST v2.3.1 is a hierarchical coalescent model implemented in

a two-step MCMC algorithm. The first step estimates the posterior

probability distributions of gene trees for each locus in MrBayes,

and the second step uses these probabilities to estimate the

posterior probability distribution of species trees. In our BEST

analysis, we obtained Bayesian posterior probabilities from 100

million MCMC cycles with a sample frequency of 1,000 and a

burn-in period of 25 million generations, with a relatively flat prior

for h (a= 3, b= 0.03) as employed in [43,44]. Models of molecular

evolution for each locus were defined from the highest scoring

models in jModeltest available in BEST (mtDNA: nst = 2, haploid,

Invgamma; ENAM: nst = 2, diploid, Invgamma; vWF: nst = 2,

diploid, Equal).

The program *BEAST v. 1.6.2 was used to jointly estimate the

posterior distributions of species trees and contained gene trees

using coalescent models. The *BEAST analysis was conducted

under a strict molecular clock model (no loci violated a strict clock

assumption, data not shown) using the SRD06 model of sequence

evolution [45] and a random starting tree. As no estimated

mutation rates or calibrated phylogenies are available for this

clade, relative evolutionary rates were estimated by setting the

mean clock rate of mtDNA to 1.0 and allowing all other loci to be

estimated in relation to this rate. The final analysis was run for 100

million generations, sampling every 1,000th generation. A

maximum clade credibility tree was generated using the program

Tree Annotator v.1.6.2 provided in the BEAST package, with a

burn-in of 1,000 (10%).

We used the hyperresolved (population level) species tree

generated in *BEAST as the user-specified ‘‘guide tree’’ for

species tree estimation in the program BPP, v. 2.0. Population size

parameters (qs) and the age of the root of the species tree (t0) were

assigned gamma priors (a= 2, b= 1000), while all other diver-

gence time parameters are assigned the Dirichlet prior [38]. Each

analysis was run twice to confirm consistency between runs.

Analyses were run for 150,000 generations, with the first 50,000

discarded as burn-in and a sampling frequency of 5. The species

delimitation algorithms 0 and 1 were both run for this dataset

(species delimitation: 1 0 5, reported). A variety of algorithms, a’s,

e’s, and m’s were explored (algorithm 0, e = 5 & 20. algorithm 1,

a= 1 & 2, m= 0.5, 1, 2) with similar results (Text S1). All five loci

(3 mtDNA and 2 nuDNA) were allowed to vary independently in

this analysis. Finetune variables were adjusted in the control file for

each run so that the acceptance proportions were contained in the

interval (0.15, 0.7).

BUCKy v.1.4.0 was used to estimate a primary concordance

tree and a population tree from genetrees estimated in MrBayes.

Analyses were run for 2 million generations with four different

heating chains after a 200,000 generation burn-in. Two extremes

of a were explored (a= 0.5, a= 10) with no change to our results.

To determine whether HGT appears to play a major role within

this region, we compare the Population Tree (PT) and the Primary

Concordance Tree (PCT). If ILS is the sole source of gene tree

conflict, the two trees should be in tight concordance [46]. If,

however the Population Tree and Primary Concordance Tree are

in disagreement, this is evidence of hybridization [42].

Species Distribution Models (SDMs)
Occurrence data. Data on the presence of R. udzungwensis

and R. cirnei reichardi were collected from live traps and camera

traps [12], museum records, and personal communications (Fig. 1

and Text S1) for a total of 32 and 172 localities for grey-faced and

chequered sengi, respectively. To reduce taxonomic misidentifi-

cation of sengis used in the modelling effort, only data from

Tanzania were used to avoid uncertainty of identification and

distribution of R. c. hendersoni in relation to R. c. reichardi [11].

Similarly, samples of R. c. reichardi from the western border of Lake

Tanganyika were eliminated from our analyses due to uncertainty

regarding the affinity with southern Tanzanian samples. Though

the recently discovered Rhynchocyon in the northern coastal forests

of Kenya [47] has pelage colouration and patterning very similar

to R. udzungwensis, we have not included it in our analyses because

it has not been adequately sampled or described.

Environmental data. Climate layers were acquired from the

WorldClim data set [48]. Three time points representing the

recent climate extremes of glacial and interglacial cycles were

assessed: current, Last Glacial Maximum (LGM –21 kya, Com-

munity Climate System Model: [49], and Last Interglacial (LIG –

120 kya: [50]. While these specific time points (21 kya and

120 kya) may not be directly related to range shifts or genetic

events concerning these species, by representing well documented

dry and wet extremes known to have impacted forest habitat and

extent in East Africa, we can approximate the range of

distributions experienced by these species. We ran an initial

correlation assessment of Bioclim layers at each time point

(calculated using ENMtools, v 1.3, [51] to attempt to reduce the

number of auto-correlated variables which have the potential of

over-fitting models of distribution predictions. As these correla-

tions were not stable between time points or between species, all

19 variables were retained for analyses to avoid under-fitting the

model. All layers were clipped to both the extent of Tanzanian

boundaries and to a rectangle encompassing the area of species

overlap in the Udzungwa Mountains (Latitude: 26u to 29.25u,
Longitude: 35u to 37.25u) in ArcGIS (ESRI v.10.1).

Species Distribution Models (SDMs). Species distribution

models were created with MaxEnt version 3.3.3 [52]. MaxEnt was

chosen because of its ability to make accurate predictions of species

distributions on small and spatially limited datasets [53,54]. All

MaxEnt runs were trained on the current climate conditions with

a convergence threshold of 0.00001, 1,000 iterations, 25% model

testing, logistic output, and the 10% training presence threshold

for outputs to create binary models of habitat suitability. Outputs

were then projected onto climate models of the LGM and LIG.

ENMtools was used to evaluate the similarity of the environmental

niche occupied by the two lineages using the Niche Overlap,

Niche Identity, and Background functions (200 randomized

pseudoreplicates). Background comparisons were completed on

using both the distributions envelope of each species (minus the

other’s range) from which to generate random points, and the

larger shared distribution of the limited area rectangle. The

hypothesis of identical climatic niche is rejected when the

empirically observed values of identity (D and I statistic: [55,56]

respectively) are significantly lower than the range of pseudor-

eplicate values [51]. Range overlap through time was calculated in

ArcMap.

Ancient Introgression in African Elephant-Shrews
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Results

Molecular Analysis
Gene trees. Nuclear loci were in agreement concerning the

monophyly of R. udzungwensis. Rhynchocyon c. reichardi has strong

support of monophyly for vWF, but an uncertain relationship to

the R. udzungwensis clade in ENAM. Neither species showed

intraspecific population structure for nuclear loci (Fig. 2, top). The

concatenated mitochondrial loci, however, showed substantial

paraphyly of the two species, particularly in regards to R. c. reichardi

from Magombera and R. udzungwensis from Mwanihana forest,

which both possessed mtDNA haplotypes from both major clades

(Fig. 2, bottom). Dating divergence events between these lineages

is currently impossible without a full phylogeny and fossil

representation, but future work will help establish the timing of

separation of these species and the approximate timing of genetic

transfer between species.

Species trees. Species tree methods were in agreement

concerning the monophyly of the species and phylogeographic

relationships within species, with strong support (posterior = 1.00

for all three methods) for the basal split between the two species

(Fig. 3). The BUCKy analysis, which was run with individuals as

the terminals instead of populations as in the other species trees

(e.g., [44]), showed monophyly in the Population Tree, yet

extreme paraphyly in the Primary Concordance Tree (Fig. 4). As

the CFs (concordance factors, which measure the genomic support

of each clade) of the PCT were low, it is likely that many

alternative topologies are possible for each node, consistent with

Horizontal Gene Transfer.

Figure 2. Gene Trees and Haplotype networks. Bayesian Gene trees of two nuclear loci (top: ENAM and vWF) and concatenated mtDNA
(bottom left: ND2, D-loop region, and the ribosomal gene 12S) constructed in MrBayes. Posterior probabilities displayed for major nodes. Branch
lengths proportional to genetic distance. (Bottom Right) Haplotype network of concatenated mtDNA. Each node represents one base pair change.
doi:10.1371/journal.pone.0072506.g002

Figure 3. Highest probability species tree selected by all three
methods (*BEAST, BPP, and BEST). Posterior probabilities shown
for each node. Both species are monophyletic for all species tree
reconstructions. Branch lengths proportional to genetic distance.
doi:10.1371/journal.pone.0072506.g003
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Species Distribution Models
Niche overlap between species. Geographic scale did not

significantly impact the current distribution predictions or niche

similarity estimates for these species, as models based on the full

extent of Tanzania and models generated from just the

rectangular region around the Udzungwa Mountains and

Southern Highlands yielded similar results (Fig. S1). Projections

into past climate conditions were less stable between the two

scales, so results are interpreted from the limited distribution

rectangle with insights from the larger scale. The AUC (Area

Under the Curve) in the rectangle encompassing the Udzungwa

Mountains was 0.901 for R. c. reichardi, and 0.994 for R.

udzungwensis. The niches of the two species (R. udzungwensis and

R. c. reichardi) are significantly more dissimilar than chance by all

similarity measures (P,0.001; Fig. S2, S3). As expected given their

separate distributions and elevation separation, all models

confirmed that they currently occupy different niches despite their

close spatial distribution.

Figure 4. Bayesian concordance analysis in BUCKy: Population Tree (top), Primary concordance tree (bottom). Posterior mean
concordance factors at major nodes are displayed above branches. Branches with concordance factors below 0.2 are not shown except in major
nodes. The population tree shows monophyly for the two species, while the primary concordance tree shows admixture between the species and
poorly supported relationships implying some level of admixture.
doi:10.1371/journal.pone.0072506.g004
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Distributions and shifts. Under current climate conditions,

R. c. reichardi has a much larger and more continuous distribution

in the region of interest than does R. udzungwensis (Fig. 5, left),

which appears to be limited to the two extant forest blocks. The

distributions during past wet climate cycles (exemplified by the

LIG) show increased suitability throughout the region for R. c.

reichardi. Instead of expanding in a similar manner to R. c. reichardi,

R. udzungwensis appears to experience a shift in range towards

eastern, lower-elevation forests. Instead of the current distribution

with one population in a western high elevation forest (Ndundulu-

Luhomero) and one population in a central mid-elevation forest

(Mwanihana), the LIG distribution consists of populations in the

central mid-elevation (Mwanihana) and the eastern lower-eleva-

tion forest of Magombera (currently only occupied by R. c. reichardi)

(Fig. 5, right). The distribution of both species during dry climate

cycles (exemplified by the LGM) was likely greatly reduced, as our

climate models fail to predict any substantial areas of suitable

habitat within this region for either species.

Discussion

Species-tree methods confirm the genetic distinctness of the two

species with very high support, validating the morphological

description of R. udzungwensis [2]. This is a first, important result

given the complex phylogeny of the genus. However, the

discrepancy between the BUCKy population tree and primary

concordance tree, and the clear introgression of mtDNA

haplotypes despite nuclear monophyly imply that ancient hybrid-

ization occurred between these two taxa. The absence of current

admixture inferred from monophyletic nuclear loci is supported by

the fact that despite the close proximity of R. c. reichardi and R.

udzungwensis populations in the Udzungwa Mountains, no mor-

phologically intermediate individuals (presumed hybrids) have

been found. Given the spatial proximity of these species, apparent

mitochondrial introgression, and the narrow habitat requirements

of R. udzungwensis, four related questions arise: (1) Why is there no

evidence of nuclear gene introgression; (2) Why do some

populations of R. udzungwensis exhibit ancient hybridization while

others do not; (3) Why is there no evidence of current

hybridization between the two species; and (4) Why do SDM

models predict a near complete lack of suitable habitat in this area

during the LGM?

Mitochondrial Introgression
The phenomenon of extensive mitochondrial introgression

without a comparable nuclear signal is relatively common in

phylogenetic studies (e.g., [57–60], exemplified by a stark

disagreement between resolved nuclear genes and admixed

mitochondrial loci. Given the ,4-fold increase in mutation rate

for mtDNA vs. nuclear [61,62], these patterns are unlikely to be a

result of incomplete lineage sorting [63], particularly when two

morphologically and genetically distinct lineages share exact

mitochondrial haplotypes. Though data are extremely limited

within this sengis, no examples of incomplete lineage sorting of

mtDNA have been found [4,64].

The signal of mitochondrial introgression can persist between

species, despite loss of a nuclear signal when two potentially

hybridizing species meet in circumstances of disparate abundance.

In these uneven encounters, normally choosy females of the less

abundant species may accept heterospecific mates if conspecifics

mates are rare [58]. In these instances, though both nuclear and

mitochondrial genes from the rare species introgress into the

common species, mitochondrial introgression invariably exceeds

nuclear. This is particularly apparent when the proportion of

immigrants is small [58].

Introgressed and Pure Populations
Historical uneven encounters could be expected in some

populations of R. udzungwensis and R. c reichardi, while others may

have remained isolated from introgression throughout history.

Evidence from this study suggests that some populations have

undergone introgression while others have not: (1) mtDNA of R.

udzungwensis from the Luhomero forests appears introgressed into

R. c. reichardi individuals from Magombera forest, (2) apparent

mtDNA haplotypes from R. c. reichardi appear in R. udzungwensis

Figure 5. Species Distribution Models during current climate scenario (left) and wetter Last Interglacial (right; LIG). Current sampling
points used in model construction are shown. The limited distribution of R. udzungwensis is entirely contained within the suitable area for R. c.
reichardi at both time points. During the LIG, the ranges for both species were predicted to occur at lower elevations in the eastern areas of the
Udzungwa Mountains foothills. During this time, R. udzungwensis shifted its entire distribution eastward resulting in a loss occupancy in the western
Ndundulu/Luhomero forest, a reduced range in the Mwanihana forest, and a relatively extensive distribution east of Mwanihana in the Kilombero
Valley including the Magombera forest (see Fig. 1 for place names).
doi:10.1371/journal.pone.0072506.g005
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individuals from Mwanihana, and (3) R. udzungwensis from

Ndundulu appear isolated and free from admixture despite the

fact that the Ndundulu forests are equally surrounded by R. c.

reichardi as the other fragments occupied by R. udzungwensis.

The spatial distribution of habitat during both current and LIG

climate conditions, and the unique nature of the Ndundulu forests

offer possible explanations for spatially structured introgression.

The Ndundulu forest appears to act as an ark of diversity for a

number of forest-restricted species, providing stable habitat

through time for its unusually divergent occupants (e.g.,

Udzungwa forest partridge (Xenoperdix udzungwensis, [65–67]),

kipunji (Rungwecebus kipunji, [68,69], and rufous-winged sunbird

(Cinnyris rufipennis, [70]). The reason that distinct and relictual

species are preserved in the Ndundulu forest is not understood, but

perhaps various environmental aspects filter generalist species

from invading and displacing or intermingling with local lineages.

Together, the current parapatric distribution, population-

specific mtDNA introgression, and the predicted historical ranges

of these species during interglacial cycles support a scenario of

hybridization with R. c. reichardi through uneven encounters. As

species ranges shifted in response to glacial climate cycles, rare

colonists of displaced R. udzungwensis may have encountered

abundant and established R. c. reichardi in the newly accessible

flood plain forest of which Magombera is today a remnant (Fig. 5)

leading to a transfer of mtDNA haplotypes into R. c. reichardi

populations [71]. Likewise, R. c. reichardi may have expanded into

the northern Mwanihana forests as R. udzungwensis’ range

contracted, leading to the mtDNA introgression from R. c. reichardi

into R. udzungwensis. These scenarios of predicted relative

abundance (i.e., ‘‘rare colonists’’ and ‘‘abundant established’’)

reflect stable range distributions of one species (based on current

and LIG models) vs. newly occupied areas for the other. With the

current data, much of this interpretation is speculative, but fits

with known models of interactions. Future studies incorporating

larger sampling of the diversity within R. c. reichardi and R. cirnei as

a whole will help to clarify these hypotheses.

Current Genetic Isolation
SDM show that the current R. udzungwensis range is completely

within the predicted, and much broader, range of R. c. reichardi, yet

no on-going hybridization appears to be taking place. In situations

such as this, where one species is predicted to occupy the range of

another yet is distinctly absent from that area, competition coupled

with reinforcement for potentially hybridizing species is typically

invoked. It is likely that the larger-bodied R. udzungwensis is able to

outcompete R. c. reichardi at the higher/harsher elevations that it

currently occupies, but R. c. reichardi is better able to utilize

resources in the available landscape surrounding the R. udzung-

wensis refugia. In this case, gradual historic climate change may

explain the trend towards reduced introgression at the present by

reinforcing the concentration of R. udzungwensis in its wetter,

highland refugia if it cannot compete in the drier mid-elevation

areas occupied by R. c. reichardi. Though East Africa experienced

many climate fluctuations in the past 5 my, oscillating from wet to

dry climate conditions with associated forest expansions and

contractions, there has been a general drying trend from 1.86 (+/

20.44 Ma) to present (ODP 721/722 dust flux record, [72]. From

this point on, the range of R. udzungwensis would have concentrated

in the highland forests of the Udzungwa Mountains tops instead of

the expanded eastern range with R. c. reichardi. This scenario is

difficult to verify without absolute dating of the larger phylogeny

and the proposed introgression event (an ongoing effort of these

authors and others), but is likely the levels of divergence and other

phylogenetic and phylogeographic patterns in East Africa

(discussed in [73]).

SDM Model Predictions
Species distribution modelling is an invaluable tool for many

aspects of evolutionary and conservation biology, but there are

limitations for range-restricted species that tend to have little

latitude in their environmental envelope [74]. The modelling

approach in this study, MaxEnt based on bioclimatic variables, did

not predict any areas of stable habitat (using a threshold cut-off of

suitability) within the Udzungwa Mountains region for either sengi

in this study during the LGM, a result that seems unlikely given

our molecular findings. Though this may imply that populations in

this area were nearly extinct, as should be investigated with a

larger population genetics dataset, it is also possible that the

distribution requirements of sengis are either not adequately

predicted by these models or that the reconstructions of climate

during the LGM may be inadequate for this region. Future

improvements in both models and sengi distribution requirements

will aid in our understanding of these dynamics: (1) Models of past

and future climate continue to evolve, particularly in terms of

sensitivity to the under-represented African tropics. These

advancements will greatly enhance the understanding of climatic

effects on diversity within African lineages as a whole. (2) As more

ecological information becomes available for sengis including

microhabitat requirements, physiological limits, and potential

competitors, we may be able to provide a more sensitive model of

distributions. These traits, however, have limited ability to be

predicted into past and future climates.

Advancing our Understanding of Sengis
This study is the first known case of introgression in sengis, a

result that was only identifiable using multi-locus data from

multiple populations. Previous investigations into relationships of

co-distributed sengis failed to detect introgression, but lacked

multi-locus data [4,8]. A multi-locus perspective will be necessary

in studies of sengis, including phylogenetic analyses, to adequately

interpret interspecific relationships.

In the current study, we are able to see a clear signal of

introgression using multiple individuals from multiple localities. In

future studies, increased sample sizes sufficient to investigate

demographic events (such as expansions and contractions) and

estimate population diversity across ranges would both verify

proposed demographic processes and ground our estimates of the

extent of introgression between species.

This study demonstrates that multi-locus, population-level

sampling including introgression analyses is imperative for any

attempts at investigating the broader relationships and evolution-

ary history of Rhynchocyon. Within this, all subspecies, pelage

variants, and allopatric populations should be considered for the

fullest understanding of evolution and diversification within this

poorly understood genus. It also highlights how comparisons with

neighboring and closely related species highlight the uniqueness

and complex history of a new and vulnerable giant sengi.

Supporting Information

Figure S1 ENM predictions of Tanzania vs. reduced rectangle.

Current predictions for R. c. reichardi (left) and R. udzungwensis

(right) with Udzungwa NP and Kilombero Forest reserve outlined

in black for reference.

(TIF)

Figure S2 Niche Identity comparisons between R. udzungwensis

and R. c. reichardi.
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(TIF)

Figure S3 Similarity of R. udzungwensis and R. c. reichardi niche to

backgrounds. Top of each set: Shared background of entire

evaluated rectangle. Bottom of each set: compared to random

points in the threshold occurrence envelope of the other species.

Arrows represent actual similarity.

(TIF)

Table S1 Collection and identification of specimens used in this

study.

(XLS)

Text S1 Supplementary information regarding jModelTest,

BPP, exclusion of 12S numts, niche comparisons between R.

udzungwensis and R. c. reichardi.
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