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Glioblastoma is a disease with poor sur-
vival rates after diagnosis. Treatment 

of the disease involves debulking of the 
tumor, which is limited by the degree of 
invasiveness of the disease. Therefore, a 
treatment to halt the invasion of glioma 
is desirable for clinical implementation. 
There have been several candidate com-
pounds targeting specific aspects of inva-
sion, including cell adhesions, matrix 
degradation, and cytoskeletal rearrange-
ment, but they have failed clinically for 
a variety of reasons. New targets against 
glioma invasion include upstream media-
tors of these classical targets in an effort 
to better inhibit invasion with more 
specificity for cancer. Included in these 
treatments is a new class of compounds 
inhibiting the generation of reactive oxy-
gen species by targeting the NADPH oxi-
dases. These compounds stand to inhibit 
multiple pathways, including nuclear 
factor kappa B and Akt. By conducting a 
screen of compounds thought to inhibit 
these pathways, a new compound to halt 
invasion was found that may have a ben-
eficial effect against glioma, based on 
recent publications. Further, there are still 
limitations to the treatment of glioblas-
toma regardless of the discovery of new 
targets and compounds that should be 
addressed to better the therapies against 
this deadly cancer.

Small Molecule Anti-Invasive 
Compounds for Glioblastoma 

Therapy

Brain tumors, in particular, glioblastoma 
(GBM), are a significant clinical problem 

Identifying new small molecule anti-invasive compounds for glioma  
treatment

Jennifer Munson,1 Michael Bonner,2 Levi Fried,2 Jonathan Hofmekler,2 Jack Arbiser2 and Ravi Bellamkonda1,*
1Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology; Atlanta, GA USA; 2Department of Dermatology;  

Emory University School of Medicine; Atlanta Veterans Administration Medical Center and Winship Cancer Institute; Atlanta, GA USA

due to their poor prognosis. The inci-
dence of brain tumors is about 14 in every 
100 000 people in the United States.1 
However, the 5-y survival rate after brain 
tumor diagnosis is around 35%, as com-
pared with an average 5-y survival rate 
in breast cancer of 89% and prostate of 
nearly 100%. Current treatment of glio-
blastoma (GBM) is difficult and results in 
high recurrence rates.2

Brain tumor invasion is an important 
factor in failure of therapy. The invasive 
nature of gliomas has long been docu-
mented. Yet only recently has a significant 
effort been put forth to try and observe or 
treat the invasive front of tumors.3 With 
MRI scans and advanced MRI techniques 
such as diffusion tensor imaging, it has 
been possible to determine the course of 
treatment based on degree of invasion.4 
With more attention being paid to the 
morphology of the tumor pre-treatment, 
the development of anti-invasive treat-
ments becomes more important in the 
clinic.

Current Treatment of Glioma

There have been changes in the clinical 
treatment of brain tumors, but there have 
not been any major increases in the sur-
vival rate and time of the patients.5-7 The 
first line of treatment includes surgical 
resection, followed by rounds of radio-
therapy and chemotherapy with temozolo-
mide. This treatment fails in the bulk of 
cases, largely due to the invasive nature of 
the tumor.8 Resection is limited by surgi-
cal experience and availability of advanced 
equipment for intraoperative monitoring 
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with the success and future outcomes of 
treatments. Therefore, determination 
and development of therapeutics targeted 
against invasion of glioma cells has been 
and continues to be important for the 
advancement of patient outcomes.

Mechanisms of Invasion  
and Potential Targets

For cancer cells to invade, there are 
three primary mechanisms that must be 
manipulated: cell adhesion to the matrix 
and cells, matrix degradation, and cyto-
skeletal rearrangement. There have been 
many small-molecule inhibitors of these 
three aspects of cancer cell invasion that 
have shown success preclinically though 
fewer clinically (Fig. 1A). There still exists 
no clinically used anti-invasive agent for 
glioma invasion regardless of the poten-
tial of such an agent to make a significant 
impact.

Targeting Matrix Degradation  
to Inhibit Invasion

In order to move through the matrix, can-
cer cells often need to manipulate the host 
environment. This can often be avoided 
by changing route which leads to forma-
tion of many of the typical glioma inva-
sion structures. Regardless, cells need to 
degrade the extracellular matrix in the 
basement membrane and interstitial space 
in order to move, release growth factors 
bound to the matrix, and grow. Matrix 
metalloproteinases (MMPs), which are 
a class of zinc-dependent proteases that 
degrade a variety of membrane proteins, 
including collagen and gelatin, are the 
best-studied of degradation proteins in 
brain cancer.32 These proteins are upregu-
lated in all cancers, and in brain tumors, 
MMP-2 and MMP-9, the two gelatin-
ases, are commonly overexpressed.33-35 
MMPs are regulated upstream by mul-
tiple signaling molecules including, Src 
kinase, PI3 kinase, protein kinase C, 
epidermal growth factor receptor, plate-
let-derived growth factor receptor, and 
other chemokine/growth factor receptors. 
Further, matrix metalloproteinases can be 
expressed by and stimulated by cell-cell 
interactions with normal glial cells such as 
astrocytes and microglia.36

cell lines.11,13,20,21 Irradiation of glioma 
cells leads to activation of Rho GTPases, 
which induce invasion of cancer cells.12 
Inhibition of MMP-2 with siRNA leads to 
a reduction of this invasion effect, impli-
cating multiple pathways in the radia-
tion effect.22 Radiation therapy of glioma 
affects healthy tissue due to ill-defined 
borders. This can cause priming of the 
stroma and adjacent tissue, including acti-
vation of astrocytes and microglia, leading 
to enhancement of the invasive potential 
of the tumor.20

Anti-angiogenic treatment increases 
invasion in many tumor types, though 
in glioma, this effect is particularly pro-
nounced. Used as a last line of treatment 
in glioblastoma, because it extends life by a 
few months, the invasiveness of the tumor 
into the brain is apparent postmortem. It 
is thought that the invasion is enhanced 
due to the removal of blood supply, yield-
ing increased hypoxia in regions of high 
proliferation.23 This effect not only results 
in cell death and necrosis, but also causes 
switching on of pro-invasive factors.24 
This change can also be seen after treat-
ment with chemotherapeutics that affect 
blood vessels, though not as strong as with 
the anti-angiogenics.25,26

Chemotherapy of brain tumors leads 
to far-distant metastases in humans and 
animal models. This may be attributed 
to increases in invasion related to the 
blood supply decrease; however, it is often 
attributed to the clonal selection that can 
result from treatment.27,28 It is known 
that glioma stem cells, a subpopulation 
of proliferative and invasive tumor cells, 
show resistance to apoptosis induced by 
etoposide, camptothecin, cisplatin, temo-
zolomide, doxorubicin, vincristine, and 
methotrexate at doses that are toxic to 
comparable non-stem cell populations.29 
Further, these cells are commonly found 
at the invasive front of tumors.30 They also 
have been shown to interact with endothe-
lial cells in the brain and non-stem glioma 
cells to promote an invasive phenotype 
via a Tie2/TEK mechanism.31 The ability 
of chemotherapy to actually induce inva-
sion is thought to be largely through this 
selection mechanism of the most deadly 
of the cancer cells. It is apparent from the 
building clinical evidence that the inva-
sion of glioma cells is closely connected 

of tumor removal. These limitations 
result in the inability to remove all tumor 
cells. Similarly, due to the invasion of 
cells, radiotherapy will miss many of the 
tumor cells in the brain in order to prevent 
damage to healthy tissue. Chemotherapy 
is delivered systemically and enters the 
tumor via the blood vessels and thus is 
limited by diffusion through the tumor.9,10 
This means that often chemotherapeu-
tics cannot reach invading cells and thus 
do not kill them. In cases of recurrence, 
anti-angiogenic therapeutics are applied to 
prolong life, though this treatment rarely 
offers a cure.

Induction of Invasion  
by Treatment

It has been suggested that each treatment 
approach may lead to invasion of tumor 
cells into healthy tissue, resulting in ther-
apy failure and difficulty in future treat-
ment. Though seen in animal models and 
humans, it is difficult to determine what is 
attributable to the treatment vs. progres-
sion of the tumor after longer survival in 
the patient. The most direct links of inva-
sion with treatment are in radiotherapy11-13 
and anti-angiogenic therapy.14 In some 
cases, resection has been shown to increase 
malignancy of tumors through a stem cell 
proliferation effect termed repopulation.15 
Chemotherapy causes a large range of 
alterations in malignancy of cancer cells.6 
However, the degree to which this process 
is accelerated as opposed to tumors that 
are untreated is unknown due to survival 
effects.

Radiation is closely linked to increased 
invasiveness in vitro and in vivo in brain, 
breast, and prostate cancer.16 This effect 
occurs in response to low radiation levels 
that activate both the tumor cells and the 
tumor stroma. Using human breast carci-
noma cells, it was seen that irradiating the 
injection site before injecting tumor cells 
enhanced the invasion and metastasis of 
the cells upon implantation.17,18 Further, 
it has been shown that irradiation causes 
activation of fibroblasts in the tumor 
area, enhancing the invasive potential of 
prostate cancer cells.19 In glioma, in vitro 
studies have indicated increased invasion 
when low-dose radiation is applied in 
culture in both U87MG and C6 tumor 
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recruit cytoskeletal proteins and acti-
vate RhoGTPases integrating the adhe-
sion process with cellular cytoskeleton 
assembly.52 It is known that FAK is over-
expressed in almost every type of cancer, 
including brain, and the degree to which 
FAK is overexpressed correlates with 
degree of malignancy in breast, colon, 
and brain cancer.53 Several small-molecule 
inhibitors of FAK have been developed, 
including PF-573,228 and similar deriva-
tives that act by blocking autophosphor-
ylation of FAK in cancer cells54,55 and 
subsequent invasion. Further molecules 
are targeted for invasion inhibition by 
alteration of cellular adhesions, including 
CD44, the hyaluronan binding receptor,56 

dysregulation in other cancers, small-mol-
ecule compounds targeting integrins are 
the best developed. The best example of 
these compounds is cilengitide, which 
inhibits both α

v
β

3
, involved in vitronec-

tin adhesion, and α
v
β

5
, more associated 

with endothelial adhesion.48 This drug 
showed promise in inhibiting invasion 
of glioma cells and angiogenesis in vitro, 
though it has shown moderate effects in 
vivo in phase II clinical trials depending 
on scheduling.49

Cell adhesion molecules are regulated 
by, among other upstream molecules, 
focal adhesion kinase (FAK), which 
acts to promote assembly and disassem-
bly of adhesion complexes.50,51 FAK can 

Broad spectrum MMP inhibitors, 
such as marimastat,37 prinomastat,38 and 
MMI270B,39 have gone through exten-
sive clinical trials in glioma and other 
invasive cancers. Marimastat affects all 
matrix metalloproteinases and, thus, in 
clinical trials, it showed many unwanted 
side effects without much efficacy, lead-
ing to termination.40 Prinomastat has 
more selectivity, inhibiting MMPs 2, 3, 
9, 13, and 14 only, but still yields some 
off target effects and has not shown 
definitive efficacy when combined with 
chemotherapy.38 MMI270B is an orally 
available MMP inhibitor still under inves-
tigation clinically. This last compound 
is a hydroxyamate-based compound and 
has led to development of similarly struc-
tured molecules with better specificity 
and bioavailability including MMI-166, 
a gelatinase-specific inhibitor with good 
blood brain barrier crossing41 that has 
shown some promise in other cancers 
clinically and preclinically in glioma. Due 
to the failure of broad spectrum MMP 
inhibitors, this more specific approach has 
been popular; however, other matrix deg-
radatory enzymes such as hyaluronidases 
(degrades hyaluronan) and cathepsin B 
(degrades laminin) are overexpressed by 
glioma42,43 to deal with the specific matrix 
heterogeneity of the brain.44 Further, 
glioma cells express and secrete a host of 
ECM constituents, including hyaluronan, 
collagen I and IV, laminin, versican, brevi-
can, and chondroitin sulfate proteoglycans 
to rebuild the matrix for enhanced motil-
ity.45,46 Therefore, targeting of MMPs may 
not be the best approach for small mol-
ecule anti-invasive compounds in brain 
tumors.

Targeting Cell Adhesion  
to Inhibit Invasion

Glioma cells, like many cancer cells, have 
increased expression of cell adhesion mol-
ecules (CAMs) as compared with healthy 
brain tissue and this increase is correlated 
with malignancy of disease.47 In particular 
there is increased integrin α

v
β

3
 expression 

and ICAM-1 expression, indicating both a 
need for increased cell-matrix and cell-cell 
interactions in glioma cells. As one of the 
earliest identified components of cell inva-
sion in brain cancer and for their similar 

Figure 1. Anti-invasive compounds. (A) More traditional routes to halt invasion of cancer cells 
include targeting the cytoskeleton (microtubules, actin, and associated myosin machinery), cell 
adhesions and their activators, and matrix degradation enzymes. (B) Newer treatment options for 
halting invasion include more diverse targets, including upstream inactivation routes including 
receptor tyrosine kinases and chemokine receptors, ion, and water channels, transcription factors 
such as HIF-1α, and inflammation driven progression through reactive oxygen species (ROS).
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of microtubule assembly and disassem-
bly, such as paclitaxel60 and vincristine61 
at non-cytotoxic doses, prevents glioma 
invasion in vitro and tumor growth in 
vivo. Inhibitors of myosin II, involved in 
contraction of the cell for forward move-
ment, are similarly inhibitory of inva-
sion in the brain.62 These drugs, most 
notably blebbistatin, inhibit invasion of 
glioma cells in vitro though not a viable 
in vivo option for treatment.63 Due to the 
non-specificity of most direct inhibitors 
of the cytoskeleton and cell dynamics, 
there has been more interest in targeting 
upstream proteins involved in cytoskeletal 
signaling pathways such as the rho gua-
nosine triphosphatases (Rho GTPases) 
and their regulatory elements64 as well 
as other signaling proteins and receptor 
tyrosine kinases.65 Inhibition of phospha-
tidylinositol-3-kinases, such as PIK3CA 
and PIK3R1, is known to inhibit glioblas-
toma proliferation and invasion in vitro.66 
Often, growth factor receptors also affect 
all of these migratory pathways. Growth 
factors known to be involved in glioma 
invasion include many of the same path-
ways as in other cancer, such as epidermal 
growth factor (EGF/EGFR), platelet-
derived growth factor (PDGF/PDGFR), 
Met tyrosine kinase, and transforming 
growth factor β.67 Inhibitors of these 
molecules exist and are at varying stages 
of development as discussed in reference 
65. Further, these drugs have the added 
benefit of inhibiting multiple components 
of glioma invasion, including adhesion, 
cytoskeletal dynamics, and matrix degra-
dation, which are more closely linked than 
alluded to here.

New Targets and Treatments  
that Effect Invasion of Glioma

As the knowledge of mechanisms that 
contribute to cancer cell invasion expand, 
so do the potential targets and agents that 
might be clinically viable. Most of these 
treatment strategies are in the experimen-
tal to pre-clinical (animal model) stages 
yet show distinct promise in contributing 
to efficacy of more aggressive antitumor 
treatments. Some of the strategies with 
compounds are summarized in Figure 1B.

Ion channels and water transporters. 
Recently, it has been shown that cancer 

amounts of matrix degradation enzymes 
and form the leading structure for inva-
sion, is dependent on cytoskeletal assem-
bly and lipid bilayer rearrangement.58 
Therefore, compounds targeting these 
pathways are desirable for their anti-
invasive effect. However, specificity is an 
issue with cytoskeletal targeting agents 
as compounds that directly interact with 
these cell structures affect all cell types, 
and most specificity results from efficacy 
at a lower dose in cancer cells than in their 
healthy counterparts. Direct inhibitors of 
actin polymerization and depolymeriza-
tion include cytochalasin, phalloidin, and 
jasplakinolide, and while good inhibitors 
of cancer cell invasion when using in vitro 
assays, in vivo use is limited by effects 
on healthy cells.59 Similarly, inhibition 

and junctional adhesion molecules, which 
both are upregulated in glioma.

Targeting Cytoskeletal  
Rearrangement to Inhibit Invasion

Adhesion disassembly and assembly is 
closely linked with the cytoskeleton. For 
the cell to protrude forward, there must 
be a large degree of actin polymerization 
and depolymerization, leading to move-
ment of the cell body. Further, the use 
of myosin to contract the cell as it moves 
is vital to movement. Microtubules and 
intermediate filaments act to maintain 
the cell structure internally and hold the 
organelles in place.57 Formation of podo-
some structures and invadopodia, protru-
sions from the cell body that release high 

Figure 2. Compounds based on honokiol and triphenyliodide screened for anti-invasive activity. 
Included compounds in the screen for a novel anti-invasive compound were based on honokiol 
and diphenyliodide.
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hypoxia-inducible factor-1 α (HIF-1α), 
which acts as a transcription factor for 
invasion machinery (as well as cell cycle, 
survival, chemoresistance, and angiogen-
esis genes). Blocking of HIF-1α or its 
downstream transcriptional activity yields 
inhibition of invasion of glioma cells 
and under hypoxic conditions.84 There 
are many small-molecule inhibitors of 
HIF-1α,85,86 though none in clinical trials 
yet. However, many clinically approved 
small molecules show hypoxia sensitiv-
ity enhancement in cancer cells, includ-
ing cisplatin, doxorubicin,87 flavonoids 
such as green tea extract,88 and geldana-
mycin.89 Hypoxia obviously causes many 
other tumoral changes besides invasion; 
however, small molecules that specifi-
cally inhibit the invasion associated with 
hypoxia are strong candidates for adjuvant 
therapy. HIF-2α is also associated with 
poor prognosis, and may be the major 
mediator of chronic hypoxia, as opposed 
to HIF-1α, which may be a response to 
acute hypoxia.

Inflammation and reactive oxygen 
species (ROS)-driven invasion. Looking 
to nature is a commonality among anti-
cancer research as noted above with 
many of the compounds already identi-
fied for glioma. Honokiol is a compound 
derived from the magnolia tree and is an 

the brain due to secretion by ependymal or 
endothelial cells.77 Chemokines known to 
trigger glioma invasion include CXCL12 
(with receptor CXCR4 and CXCR7), 
PDGF (PDGF receptor), CXCL10 (with 
receptor CXCR3), and CXCL13 (with 
receptor CXCR5).78 The best-studied of 
these pathways is the CXCL12/CXCR4 
axis with developed inhibitors such as 
AMD3100, a small-molecule antagonist 
of the CXCR4 that leads to decreased 
invasion and in vivo growth of glioma.79 
This compound has been used in clinical 
trials for HIV but has not been tried in 
human glioblastoma clinically,80 though it 
shows promise as a novel small molecule 
anti-invasive agent and adjuvant for che-
motherapy.81 Of interest, many of these 
cytokines, are capable of inducing reactive 
oxygen species, which can lead to further 
cancer cell progression and invasion.

Hypoxia-induced invasion. 
Glioblastoma shows a distinct histologi-
cal phenotype known as pseudopalisad-
ing necrosis, which results from areas of 
hypoxia in the tumor,82 leading to inva-
sion of cancer cells away from a hypoxic 
center and the resulting necrosis of the 
central region. Hypoxia is also induced 
after anti-angiogenic therapy and is 
thought to partially lead to the inva-
sive response.83 Cancer cells overexpress 

cells upregulate both aquaporins68 and ion 
channels.69 Aquaporins are an active com-
ponent of astrocyte function in healthy 
brain tissue and increase activity after 
injury or in presence of a tumor.70 More 
invasive glioma have increased expres-
sion of Aquaporin-1, -4, and -9, which 
correlates with grade of disease and are 
instrumental in formation of lamellipo-
dia and invadopodia.71,72 Targeting aqua-
porin-4 with the small molecule AQN4, 
a prodrug, decreases glioma invasion and 
sensitizes the tumor to further treatments 
including radiotherapy and chemother-
apy.73,74 Ion channels are upregulated in 
brain tumors as well, being involved in 
homeostasis and transport into the tumor 
cells.69 Use of chloride or potassium chan-
nel blockers such as tetraethylammo-
nium (TEA) chloride, chlorotoxin, and 
tamoxifen, leads to inhibition of invasion 
of multiple models of glioma in vitro.75,76 
There are no direct inhibitors used clini-
cally for glioma yet, for either aquaporins 
or ion channels, though there are many 
compounds that have clinical approval for 
other indications, such as cerebral isch-
emia and seizure.

Chemotaxis and chemokine gradients. 
A hypothesis for the pattern of invasion of 
cancer cells in the brain is that they are 
following chemokine gradients inherent to 

Figure 3. Results of compound screen. (A) Invasion assay conducted with compounds at concentrations listed through matrigel in tissue culture 
inserts, RT2 glioma. *P < 0.05 compared with control after 24 h. (B) Viability of astrocytes as compared with initial measurements based on metabolic 
activity at 5 μM concentration after 96 h in culture.
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two compounds and thus are divided into 
Triphenylmethanes (TPMs) and honokiol 
derivatives (HDs). In this study we had 
two primary criteria for the selection of 
the lead compound to be used in further 
testing: (1) anti-invasive at non-cytotoxic 
doses in vitro as determined through 
Boyden chamber matrigel-based inva-
sion assays; (2) no cytotoxicity toward 
primary rat astrocytes at doses ten times 
that used in invasion assays. In this way, 
we could select a compound that was 
both selective for glioma cells and had 
definite anti-invasive effects. Compounds 
were first screened at three different doses 
(0.1 μM, 1 μM, and 10 μM) to deter-
mine the cytotoxic dose over 72 h in RT2 
glioma cells. The invasion screen was then 
run with highest dose shown to be non-
cytotoxic to prevent confounding effects 
of cell death on invasion quantification 
(Fig. 3A). In parallel, the lowest cyto-
toxic dose was used to determine astrocyte 
cytotoxicity over 96 h (Fig. 3B). Though 
several compounds showed anti-invasive 
and antitumor effects with limited cyto-
toxicity toward healthy astrocytes, it was 
determined through this screen that the 
best anti-invasive candidate at non-cyto-
toxic doses to astrocytes or RT2 is imip-
ramine blue, a novel triphenylmethane 
compound. This agent has recently dem-
onstrated efficacy in inhibiting invasion of 
multiple primary and glioma cell lines in 
vitro as well as complete survival in rats 
bearing aggressively invasive RT2 glioma 
when combined with the potent chemo-
therapeutic doxorubicin.101 In this study, 
then, we outlined the move from in vitro 
compound, development of a drug deliv-
ery system, testing in vivo, and combina-
tion with a powerful antitumor treatment. 
Further, the mechanism of action was elu-
cidated to show the involvement of both 
Src kinase and NADPH oxidases.

These compounds work through 
inhibition of reactive oxygen species 
(ROS)-mediated activation of NFkB and 
associated pathways. ROS are capable of 
inducing NFkB activation by oxidatively 
inactivating IkB. In addition, ROS can 
activate Akt by oxidizing PTEN. Finally, 
ROS can inactivate wild-type p53. Thus, 
inhibition of NADPH oxidases results 
in decreased NFkB, decreased Akt, and 
activation of wild-type p53 in a single 

be delocalized among aromatic rings. 
TPM differ from DPI in that the central 
atom is a carbon instead of an iodine, as 
in DPI. They were explored in the early 
1990s as chemopreventive agents though 
not pursued extensively.97 The Nox family 
of proteins is generally active in cancers, 
leading to enhanced presence of reactive 
oxygen species in the tumor cells and 
stroma. This leads to activation of a host 
of intracellular pathways, including Src 
kinase, p38/MAPK, and NFkB, which 
can lead to downstream cytoskeletal rear-
rangement as well as directly activating 
matrix metalloproteinases (MMPs).95,98,99 
Compounds such as DPI have previously 
been seen to inhibit invadopodia forma-
tion, inflammatory response, and cancer 
cell migration in vitro.100 Therefore, this 
class of compounds was of interest for 
development of novel therapeutics against 
glioma invasion.

A screen of novel compounds from the 
triphenylmethane and honokiol classes of 
drugs (Fig. 2) resulted in identification 
of multiple anti-invasive agents against 
glioma. These are all novel compounds 
except honokiol, and all show antitumor 
activity to some extent. The compounds 
were synthesized through simple meth-
ods to yield derivatives of the original 

ancient herbal remedy. It has been shown 
to inhibit growth and progression of mul-
tiple types of cancer including melanoma, 
prostate, and colon cancers.90-92 Through 
these studies it was also determined that 
honokiol works via modulation of NFkB 
activity though the direct target is still 
unknown. NFkB is constitutively acti-
vated in 75% of cancers.93,94 This is par-
ticularly dangerous, because NFkB directs 
both invasive and antiapoptotic activities 
of tumor cells, including metastasis of 
cancer cells including actin regulatory 
elements, cell adhesion proteins such as 
integrins and focal adhesion kinases, and 
secretion of matrix metalloproteinases.95 
The upregulation of these factors con-
tributes to the migration of cancer cells. 
In particular, these attributes are neces-
sary for the invasion of glioblastoma into 
the surrounding brain. Hence, the known 
inhibitory effects of honokiol provided a 
rationale for testing honokiol derivatives 
for their potential anti-invasive activity.

Triphenylmethanes (TPM) are a class 
of compounds modeled after diphenyl-
eneiodonium (DPI) and have NADPH 
oxidase (Nox) antagonistic activity.96 We 
had hypothesized that the ability of DPI 
to inhibit Nox activity was linked to its 
structure of a positive charge that could 

Figure 4. Mechanisms of reactive oxygen species-mediated activation of cancer cells. Reactive 
oxygen species (red) can activate several pathways of cancer progression and invasion including 
wild-type p53, and NFkB.
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involved in invasion and ability to inhibit 
them specifically offers an opportunity to 
affect therapy in a positive way. We should 
be able to advance the treatment of glioma 
to a point of increased survival and mini-
mized recurrence unseen before if we can 
determine how best to assess and incorpo-
rate this new type of treatment.
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