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Abstract
Mobility characteristics associated with activity of daily living such as sitting down, lying down,
rising up, and walking are considered to be important in maintaining functional independence and
healthy life style especially for the growing elderly population. Characteristics of postural
transitions such as sit-to-stand are widely used by clinicians as a physical indicator of health, and
walking is used as an important mobility assessment tool. Many tools have been developed to
assist in the assessment of functional levels and to detect a person’s activities during daily life.
These include questionnaires, observation, diaries, kinetic and kinematic systems, and validated
functional tests. These measures are costly and time consuming, rely on subjective patient recall
and may not accurately reflect functional ability in the patient’s home. In order to provide a low-
cost, objective assessment of functional ability, inertial measurement unit (IMU) using MEMS
technology has been employed to ascertain ADLs. These measures facilitate long-term monitoring
of activity of daily living using wearable sensors. IMU system are desirable in monitoring human
postures since they respond to both frequency and the intensity of movements and measure both
dc (gravitational acceleration vector) and ac (acceleration due to body movement) components at a
low cost. This has enabled the development of a small, lightweight, portable system that can be
worn by a free-living subject without motion impediment - TEMPO. Using the TEMPO system,
we acquired indirect measures of biomechanical variables that can be used as an assessment of
individual mobility characteristics with accuracy and recognition rates that are comparable to the
modern motion capture systems. In this study, five subjects performed various ADLs and mobility
measures such as posture transitions and gait characteristics were obtained. We developed postural
event detection and classification algorithm using denoised signals from single wireless inertial
measurement unit (TEMPO) placed at sternum. The algorithm was further validated and verified
with motion capture system in laboratory environment. Wavelet denoising highlighted postural
events and transition durations that further provided clinical information on postural control and
motor coordination. The presented method can be applied in real life ambulatory monitoring
approaches for assessing condition of elderly.
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INTRODUCTION
In the coming next two decades about 20% of US population will be above the age of 65
years (U.S. Census bureau) and their cost of healthcare will add 25% to the overall
healthcare in the US (CDC 2010). In 2009, about 2.2 million nonfatal fall injuries were
reported among older adults and were treated in emergency departments and more than
581,000 of these patients were hospitalized[1]. Also, in the year 2007, over 18,000 older
adults died from fall injuries [1]. A recent survey by Liberty mutual research institute for
safety ranks falls as the second leading cause of disabling injury and number of falls remain
at same level since last decade and costs about $8.37 billion each year. Falls are due to
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postural imbalance and locomotion impairment, and cause of serious hazards to the elderly,
which has lately become a public research interest [2, 3]. In spite of the multiple efforts
aiming to decrease the high mortality and improve the quality of life in the elderly, limited
success has been achieved. While reducing fall accident experienced by all older adults is a
major public health challenge, it is especially crucial for keeping the elderly functionally
independent. Increased fall rates of the elderly, if addressed, could dramatically decrease
morbidity and mortality in this growing population.

Home health care and telemedicine have been looked upon as possible health and activity
monitoring solution for this growing elderly population.

Postural control has been defined as positional control of the whole body in space for
purpose of balance and orientation [4]. Postural orientation is an ability to maintain
appropriate relationship between body and body segments and is dependent upon goals of
movement task and environmental context [5]. Human postural control is highly governed
by vestibular, visual, proprioceptive inputs, and integrated central processing [6–8]. The
background level of muscle tone activity changes in certain antigravity postural muscles
when we counteract force of gravity. This increased level of activity in antigravity muscles
is known as postural tone. Visual inputs and vestibular systems are known to influence
postural tone in various muscles while transition movement occurs (e.g., sit to stand).
However, postural adjustments associated with movement are called anticipatory postural
adjustments (APAs) and are preplanned by CNS and serve to counteract the perturbation to
postural control induced during the movement activity[9]. In other words, prior to voluntary
limb movement, APAs serve to maintain postural stability by compensating for destabilizing
forces associated with moving a limb [5] and thus prepare sensory and motor systems for
postural demands based on previous experience and learning. The CNS combines
independent though related muscles into units called muscle synergies, which are
constrained to act together as a unit, thus reducing the control demand on CNS. Although it
is unknown how at higher levels CNS manages APAs to optimize postural stability in
movements, but at lower level changes in postural strategies articulated by postural demand
of a task (stand-to-sit, sit-to-lay and other daily activities) can be quantified and investigated
with inertial measures of involved limbs. This measure is indicative of the final response of
neuromuscular system. Many researchers have related postural control with understanding
of balance, motor control and gait problems in elderly population[4]. Postural motor control
delay coupled with lower extremity strength degradation in elderly can lead to difficulty in
maintaining balance upon a postural perturbation and may increase the risk of falls.

Presently, clinical assessment tools used are questionnaires, observation, diaries, kinetic and
kinematic systems, and validated functional tests. “Timed get-up and go” method [10] has
been widely used as a standard feature of clinical tests of elderly mobility, although it has
sit-to-walk movement, gait and turning as separate components but their respective
transition times cannot be identified from the single time value score. Characteristics of
postural transitions such as sit-to-stand are widely used by clinicians as a physical indicator
of health, but transitions such as sit-to-(stand)-walk have been identified as inherently more
unstable than just sit-to-stand movements [11]. Sit-to-walk movement has been used as a
functional task that challenges balance and coordination[12]. Walking is used as an
important mobility assessment tool to determine the extent of neurological disorders [13].
Measurement of temporal events in gait cycle such as heel contact and toe-off information
of double support duration may alert physician to the inability of the patient to compensate
for progressive weakness, and thus enable early consideration of surgical or orthotic
treatment [14]. Duration of double support phase during gait cycle reflects stability during
gait [14] and fallers are found to have increased stride to stride variations in double support
time [15].
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Although modern motion capture laboratories, collect precise gait and posture data but are
expensive and immobile, limiting their capabilities for continuous, long-term data collection
in natural settings. As a result, gait researchers have had limited success achieving accurate
fall risk assessment in diverse elderly patient population. Also, laboratory and clinical
measurements are time consuming often unrealistic in busy clinical environments, while
relying on subjective patient recall may not accurately reflect functional ability in the
patient’s home environment. Major limitations of most observational gait and posture
analysis are poor reliability even among highly experienced clinicians. However, this work
addresses these limitations by developing and validating a custom-designed inexpensive
wearable wireless sensor (TEMPO) system that collects accurate and precise gait and
posture data continuously and non-invasively, and objectively of functional ability, and can
readily be employed to ascertain ADLs [16–18].

Pathological changes in postural transition patterns and changes in postural transition
duration can be used as an indicator of health status [16]. The use of IMU reduces the
human source of error in postural timing events. We have tested concurrent validity of IMU
based system measuring time events and transition phases in sit-to-stand postural
movements against those taken from three-dimensional motion capture system. IMU sensors
can be used beneficially in telemedicine to analyze movements of the elderly person and
detect distress situations such as balance loss and falls providing timely care. Wavelet
denoising of IMU signals highlighted postural events and transition durations that further
provided clinical information on postural control and motor coordination. Moreover, IMU/
TEMPO can be efficiently used in monitoring of an individual’s daily movements and
provide information regarding movement frequencies and intensities, and can lead to better
diagnosis of postural instabilities and assessments of falls risk in the environment and
situations in which their own living environments.

METHODS
Sensors

The IMU system is based on the TEMPO 3.1 system which is manufactured in collaborative
research with inertia team in UVA [17]. It consist of MMA7261QT tri-axial accelerometers
and IDG-300 (x and y plane gyroscope) and ADXRS300 as z-plane uniaxial gyroscope. The
data acquisition was carried using a bluetooth adapter and Laptop through a custom built
LabView VI [17]. (Figure 1 a).

Description
Data are acquired with sampling frequency of 128Hz. This frequency is largely sufficient for
human movement analysis in daily activities which occurs in bandwidth [0.8–5Hz] (for a
sensor on upper extremity of body)[18]. The collected data is stored in custom xml file using
the custom built LabView VI and the battery consumption of TEMPO node has been
reduced by entering in sleep mode when waiting for acquisition.

Positioning
The IMU acquisition circuit is kept immobile on the subject’s body and worn in a pocket at
sternum (Figure 1 a & b). This position is chosen for its comfort in wearing the device for a
long duration without hindrance to natural activities, and more importantly, trunk
movements are helpful in detecting postural changes.

Signal Processing Of Inertial Sensors
In order to support the clinical decision making, IMU signal must be clearly represented and
filtered, and to remove noises and artifacts from the signal. IMU signals are non-stationary
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and need denoising, and an efficient technique for non-stationary signal processing is the
wavelet transform. The wavelet transform can be used as a decomposition of a signal in the
timefrequency scale plane.

WAVELET DENOISING
Wavelets are used for the processing of signals that are non-stationary which are time
varying in nature. In wavelet transform, the original signal is transformed using a selected
mother wavelet. Using pilot hit and trial testing of various mother wavelets we figured out
that daubechies family wavelet (db10) were beneficial in highlighting postural events. In
discrete case like ours the wavelet transform is modified to filter bank tree structure using
the decomposition / reconstruction at level 5. Basically, decomposition of the signal into the
basis of wavelet functions implies the computation of the inner products between the signal
and the prototype functions, leading to a set of coefficients called wavelet coefficients. The
signal can consequently be reconstructed as a linear combination of the prototype functions
weighted by the wavelet coefficients. But here in our denoising protocol we have set all
detail coefficients to zero and carried on reconstruction of the signal. Thus, only the
approximation coefficients are used in an inverse wavelet transformation to reconstruct the
data-set. The mother wavelet ψ(t) is defined as

Where the wavelet coefficients

And the scaling function

Where h(k) are the scaling coefficients. The wavelet transform represents the decomposition
of a function into a family of wavelet functions. Three simple steps of denoising algorithm
that used in the wavelet transform are Step 1. Calculate the wavelet transform of the noisy
signal; Step 2. Discard the noisy wavelet detail coefficients; Step 3. Compute the inverse
transform using the approximation coefficients. A Matlab routine was created using Mallat’s
algorithm of discrete wavelet transform[19]. Raw and denoised signals are shown in Figure
2 b.

WALKING DETECTION
Moving window median were used on denoised gyro-y and gyro-z and walking threshold
was established. Median windows helped in removing short postural transitions such as
stand-to-sit, sit-tostand, sit-to-lay, lay-to-sit etc. from the dynamic events such as walking
(Figure 3).
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LAY DOWN DETECTION
Lay down event was classified when detected dynamic events had acc-z greater than 0.5g
and acc-y less than 0.5 g. This threshold was used as major gravity component shifts from
sensitive y-direction to sensitive z-direction of IMU when lying in supine posture.

SIT/STAND EVENT DETECTION
Sit-to-stand events and stand-to-sit events were classified as those dynamic events which
were neither classified as walking nor as lay down. This was done by replacing the data
interval where walking and lay down events occurred by calibration data points and using
the static threshold in truncated acc-z and truncated gyro-x.

EXPERIMENT
POSTURAL EVENTS DETECTION—A robust algorithm to detect postural events
occurring in daily life of an individual without any user-specified parameters was deployed.
Testing total of five subjects (2 females, 3 males, mean age: 28) in our Locomotion
Research Laboratory at Virginia Tech, and data was collected for seven minutes
continuously with sampling rate of 128Hz – simulating various ADLs to test protocol to
evaluate the classification algorithm.

The experimental procedures were explained to all participants and informed consent was
obtained individually before the experiment. The participants performed common daily
activities– walking, standing upright/sitting down and laying down on a bed with one IMU/
TEMPO node attached at the sternum as shown in the Figure 1. Data obtained was denoised
using db10 (daubechies family) mother wavelet at level 5 and, all details were left during
reconstruction using MATLAB (R2010a Mathworks Ltd). Denoised data was then used in
analysis of posture events detections utilizing a posture classification algorithm (Figure 3).
Figure 5 illustrates time in seconds of each posture that was maintained (e.g., participants
stood for 120 seconds, walked for 360 seconds, stood for 20 seconds, etc.), and
identifications of postural transitions were made using the “gold standard” baseline data
(i.e., known/true postures) with measured postural data using the motion capture system.
Classification accuracy was ideal for standing, walking, and laying down postures, however,
transitional aspects of postures (i.e., stand-to-sit and sit-to-stand) were more difficult to
classify perfectly. Since then, we’ve developed a method for accurately determining the
postural transitions utilizing a gyroscope (illustrated in Figure 4).

GAIT AND MOBILITY PARAMETERS—After the classification procedure (see activity
event detection and classification section), gait and mobility parameters such as the double
support time and postural transition durations are calculated using the methods below.

Double support is a part of stride when both feet are in contact with the ground. To illustrate,
Trunk Gyro- X (trunk angular velocity with flexion/extension) signals during standing,
walking and various other postures during seven minute activity is illustrated in Figure 4-a.
A 3-seconds walking data from sternum TEMPO is denoised and Heel Strike and Toe Off
events are identified (Figure 4-b). In order to synchronize motion capture system and the
IMU/TEMPO, two TEMPO (IMU) nodes were used. One of the TEMPO nodes was at
sternum and another TEMPO sensor was mounted on the right wrist of the subjects. An
infra-red marker was placed on wrist near TEMPO node. Camera system and floor
embedded force plates were used to obtain kinematics and kinetics of the lower extremity
during gait on the walking platform. Participants were asked to tap quickly near the right
wrist and start walking on a walkway. This was conducted in order to synchronize the
TEMPO signals with the wrist infra-red marker acquired using motion capture camera
which were used to temporally synchronize the IMU data with force plates by a custom built
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LabView VI. Double support time information was computed from the duration between
heel strike by the contacting foot and toe-off by the contralateral foot. The trunk vertical
accelerations represented the whole body COM transitional acceleration occurring shortly
after the heel strike event [20]. Postural transition times included initial flexion phase-t1,
mid-transition phase-t2, and late extension phase-t3 (postural durations =sum of all phases).
These postural transition time delays can be interpreted as an indicator of pathology in
coordination of involved postural muscles to perform the postural task.

RESULTS
We have developed a wireless one-node gait/mobility assessment system. Additionally, a
robust algorithm to detect postural events associated with ADLs were developed and tested
in quantifying fall risk associated with gait instability. The results indicated that the
sensitivity of our algorithm was 96.78 %, with specificity at 92.31% (False Negative =18,
False Positive =17, True Negative =204, True Positive=541 from 15 records of five
participants).

DISCUSSION AND FUTURE WORK
Two factors of gait and postural characteristics, which are relevant to balance control and
dynamic stability during ambulation, are: double-support time and postural transition times
[21, 22]. In terms of the biomechanical principle, increased double support time is indicative
of gait adaptation to improve stability, and longer postural transition duration is indicative of
pathology or weakness leading to increased fall propensity [23]. Additionally, an increase in
the variability of one or both of these parameters in elderly at any time could indicate lack of
compensation for instability and may predispose an individual to falls, especially when
balance mechanisms are stressed [24]. Temporal (double support time) and transitional
aspects of postures over several walking cycles and transition events were used to assess and
differentiate gait and mobility decrements. Collection of these variables could allow more
useful comparisons to assess the effects of elderly pathological conditions and frailty on gait
characteristics relevant for fall risks at their home. Furthermore, postural transitions as proxy
for functional mobility status can be developed. Postural transition parameter is considered
to be important since movements from sit-to-stand and rising from a lying position were
among the most common activities associated with daily life and the most mechanically
demanding functional tasks in daily activities [25, 26]. Additionally, older adults fall more
often during these transitions. Monitoring of postural transitions using the TEMPO and
computing the duration to further evaluate the increased fall risks in this population is
warranted (i.e., increased postural transition duration – e.g., “slow to get out of the chair”
and “unable to rise from a chair of knee height without using the arms” is indicative of
degraded functional status and increased fall propensity)[27]. Furthermore, in order to veer
away from traditional way of analyzing postures visually, we propose to denoise IMU
signals using Mallets method such that signals can highlight postural events and associated
postural temporal phases. Thus using TEMPO system, we can successfully measure
biomechanical variables that can assess individuals mobility characteristics with high
accuracy that are comparable to the motion capture laboratories.
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Figure 1.
a) TEMPO node providing six degrees of freedom motion capture in a form factor which
can be attached at sternum level b) Sensitive axis’s of IMU
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Figure 2.
a) Schematic diagram of denoising method b) Gyroscope signals for daily activities in raw
(blue colored) and denoised (red colored) collected for an hour duration
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Figure 3.
pseudo code for postural event identification and further classification into static, dynamic,
walking, laydown and sit/ stand.
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Figure 4.
Illustration of time epochs associated with calculating the gait and mobility parameters using
the TEMPO including the ground reaction forces (GRF) a) Gyro-x denoised signals
illustrating various activities b) walking signals synchronized with camera and force plates :
illustrate heel strike events by trunk acc-z and trunk acc-y showing toe-off events,
furthermore double support temporal information is gathered c)sit-to-stand posture transition
is illustrated by gyro-x denoised signals and flexion phase time t1, mid-transition phase time
t2, and trunk flexion phase time t3
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Figure 5.
Sequence of performed postural transitions and their durations. Different postural transitions
involved are shown with different color.
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Figure 6.
Bead diagram of identified posture with ‘gold standard’ baseline data at bottom.
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