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Snapshots of computer systems that are stored and shared ‘in the cloud’
could make computational analyses more reproducible

Scientific findings must be reproducible for them to be formally accepted by colleagues,
practitioners, policy makers and the broader lay public. Although it was once thought that
computers would improve reproducibility because they yield repeatable results given the
same set of inputs, most software tools do not provide mechanisms to package a
computational analysis such that it can be easily shared and reproduced. This inability to
easily exchange the computational analyses behind published results is a substantial
roadblock to reproducibility across scientific disciplines1.

A number of innovative solutions to this problem have been proposed. Most efforts have
focused on software tools that aim to standardize the creation, representation and sharing of
computational ‘workflows’2 that tie several software tools together into a single analysis.
These workflow tools provide a way to represent discrete computational tasks (e.g.
processing an input data file) as computational modules that can be connected into
workflows by linking the output of one module with the input of another (e.g. the output
from the input data processing module connects to the input of a data normalization
module)3. Several of these tools allow researchers to build complex computational
workflows through drag-and-drop visual interfaces and to share standardized representations
of workflows. Examples include GenePattern4 for analyzing genomic data, the Trident
Scientific Workflow Workbench for oceanography (http://www.microsoft.com/mscorp/tc/
trident.mspx), Teverna5 for generalized scientific computation, and web-based resources
such as myExperiment6 for sharing workflows. Recently, a software solution was described7

that embeds access to computational systems directly into digital representations of
scientific papers.

Human nature trumps technology
Existing software applications have not become established solutions to the problem of
computational reproducibility. This is not due to any technical shortcomings of the software
because in fact, many programs are technically well designed. Rather, the failures are a
consequence of human nature and the realities of data-driven science, including (i) efforts
are not rewarded by the current academic research and funding environment8, 9; (ii)
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commercial software vendors tend to protect their markets through proprietary formats and
interfaces10; (iii) investigators naturally tend to want to ‘own’ and control their research
tools; (iv) even the most generalized software will not be able to meet the needs of every
researcher in a field; and finally (v) the need to derive and publish results as quickly as
possible precludes the often slower standards-based development path9.

The consequence is that non-standardized research computational pipelines will continue to
be developed, especially as new types of molecular measurements generate quantities of
data that most standardized software packages cannot handle 11. We conclude that any effort
to establish standard protocols that require investigators to adopt a particular software
system, creating a real or perceived threat of ‘lock in’ to a single lab’s or commercial
vendor’s software, is likely to be met with disregard or even resistance and will fail to
drastically change the current behavior of researchers.

Whole system snapshot exchange
Given these realities, we propose capturing and exchanging computational pipelines using
complete digital representations of the entire computing environment needed to execute the
pipeline. In this approach, which we call whole system snapshot exchange (WSSE), the
computer system(s) used by researchers to produce experimental results are copied in their
entirety, including the operating system, application software and databases, into a single
digital image that can be exchanged with other researchers. Through WSSE, researchers
would be able to obtain precise replicas of a computational system used to produce the
published results, and have the ability to restore this system to the precise state in which the
system existed when the experimental results were generated. Even subtle variances caused
by discrepancies between specific versions of software or programming languages are
avoided by the WSSE approach. In principle, the input data processed by the pipeline to
produce the published results could be exchanged along with the pipeline.

Readers will be quick to realize that the WSSE approach could involve the exchange of data
files that might range in size from tens of gigabytes to several terabytes or more. Even with
the fastest internet connections, it is not feasible to share such large files easily and
efficiently. Thus, it is not our intention that WSSE operate desktop-to-desktop, but rather we
propose that data and computational pipelines will be exchanged exclusively using cloud
computing, defined here as “computing in which dynamically scalable and virtualized
resources are provided as a service over the Internet” 13.

In cloud computing, computation and data are ‘virtualized’, meaning that software and data
are not tied to physical computing resources, such as a specific server with hard drives
plugged into it. Instead, cloud computing infrastructures are comprised of large and often
geographically disparate clusters of computing hardware that are made to appear as a single,
homogeneous computational environment14. Since software and computations run across
computing resources virtually in the cloud, it is possible for others to clone and reconstitute
them in the cloud without any concern for the specifics of the underlying hardware. The
virtualization of data in the cloud makes it possible move or copy ‘snapshots’ of large data
sets from point-to-point within the cloud at high transfer rates, without the need to associate
particular machines or storage drives at either the source or destination of the data transfer.
Some cloud providers offer technologies that enable the creation of large databases that can
persist as omnipresent data resources that can be accessed by any computation in the cloud.

Concerns have been voiced12 that scientific computing in the cloud could make results less
reproducible. Primarily, there are concerns that cloud computing will serves as a large
computing ‘black box’, potentially obfuscating important factors or details underlying the
production of scientific results by software running on proprietary cloud architectures.

Dudley and Butte Page 2

Nat Biotechnol. Author manuscript; available in PMC 2013 August 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although this is an important concern, we argue that cloud computing infrastructures can
serve to dramatically increase the transparency of scientific computing. The virtualization of
data and systems in the cloud makes the handover and scrutiny of entire computational
infrastructures underlying computational results practical. Historically, software and data
used to derive results would need to be modified and repackaged for distribution, and the
receiver would be required to possess the infrastructure necessary for peer evaluation of
computational methods, which could be substantial. Furthermore, wholesale digital
‘snapshots’ of data and source code are easily produced and distributed within the cloud,
which can serve as a basic means to track the provenance of data and source code in
scientific computing in lieu of more formalized procedures -- which historically have proven
difficult to gain in general acceptance or widespread use.

Cloud-based support for reproducibility
Cloud computing could support reproducibility in several ways, which correspond to
different ‘layers’ for accessing computing resources (Fig. 1).

First, at the data layer, cloud computing enables data sets to be easily stored and shared
virtually—that is, without necessarily copying it to another computer. Most importantly,
when a data set has been used to derive published results, it can be copied and archived in
the cloud. This would be facilitated if large public data repositories are regularly versioned
and moved to the cloud. One cloud computing vendor, Amazon Web Services (AWS), has
already taken the initiative to archive many such public data sets. Their extensive online
catalog (viewable at: http://aws.amazon.com/publicdatasets/) contains large public data sets
from various domains of science, including astronomy, biology, chemistry and climatology.
Second, at the system layer, cloud computing allows snapshots of complete computer
systems to be exchanged, as proposed in WSSE. This addresses observations that computer
systems can substantially confound the reproducibility of analyses15

A higher-level layer of scientific computation in the cloud is the service layer, in which
computational services are exposed to external applications through some form of
programming interface16. Examples include the Entrez Utilities from NCBI (http://
eutils.ncbi.nlm.nih.gov) that provide access to data and computational resources from
NCBI’s repertoire of bioinformatics applications and databases. From the standpoint of
reproducibility, there are problems introduced by such a service-oriented approach to
scientific computing: the underlying application supporting the computational service may
be altered significantly without any apparent change to the public-facing service interface. If
the applications and infrastructure supporting such services were migrated to a cloud
computing environment, the application service providers could run and maintain replicate
instances of their entire application to maintain access to previous versions without the need
to duplicate the hardware infrastructure underlying the service. Alternatively, the component
data and systems underlying a computational service could be archived as ‘images’ in the
cloud in a non-active state, which would provide an economical means of preservation for
the service provider while maintaining an efficient route of access to previous versions of a
computational service for investigators. This may make it more feasible for authors to cite
specific versions of data, systems, and services in publications describing their results, and
have a means to easily direct colleagues to these resources for reproducibility and reuse.

Reproducibility through preservation
One often-overlooked barrier to reproducibility is the loss or abandonment of grant-funded
databases and other computational resources17. Therefore, one advantage of cloud
computing is that virtual machines and cloud-based data storage can offer a means to sustain
bioinformatics projects after funding cuts, project termination or abandonment. Although it
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may be easy to demonstrate the need to make biomedical databases available after their
original purpose has been fulfilled, from a practical standpoint, funding the maintenance of
these databases has become a contentious issue for funding agencies, who must balance
maintenance with declining budgets and the need to fund new investigators and initiatives.
For example, the Arabidopsis Information Resource (TAIR), used by thousands of
researchers each day, recently fell into disarray after its funding was terminated after 10
years of support from the National Science Foundation18. Instead of turning off these servers
and losing access to these resources, virtual machine images of the server could have been
created and distributed across the Internet, and executed on- demand through cloud
computing, ensuring that investments in bioinformatics resources such as TAIR could be
used for years after discontinuation.

The costs associated with preserving data in the a cloud computing environment are
relatively minimal, making it feasible for research groups and institutions to preserve data
through extended gaps in funding, or to fulfill commitments to collaborators or stakeholders
well beyond the defunding of the primary database infrastructure. To illustrate, the current
rate for storage space in Amazon’s cloud service is $0.10 USD per gigabyte of storage per
month. To maintain even an exceptionally large data set comprising 1 terabyte of data would
require nominal costs of approximately $100 USD per month. As the per gigabyte cost of
storage is expected to decrease with time, it is likely that a 1 terabyte biomedical database
could be preserved in accessible form in the cloud for more than 10 years at a total cost well
below $10,000 USD. The cost of this active preservation could be written into the budgets of
all proposals for creation and renewal of biomedical databases to address the problem of
preservation and access to data beyond proposed funding periods. Moreover, having a
working virtual machine server along with open source code could enable distributed teams
of investigators to informally support these disbanded projects.

Towards a cloud-based scientific computing commons
Although the cloud computing technology required to facilitate straightforward approaches
to reproducible computing, such as WSSE, are now widely available, there are a number
measures that could be taken to help and encourage the utilization of cloud-based resources
by the broader scientific community. As nearly every scientific discipline is becoming data-
driven, one of the most enticing benefits of cloud computing is the means to aggregate
scientific data sets efficiently and economically. The aggregation and centralization of
public scientific data into the cloud, which offers a unified, location-independent platform
for data and computation, might work to establish a shared virtual commons for
reproducible scientific computing. For example, it would be possible to develop and
implement cloud-based scientific computational analysis that assume and source public data
from centralized, cloud-based master catalogs. This computational analysis could then be
shared and distributed within the cloud as part of a standardized system image, After
reconstitution of the system image, the computational analysis could be reproducibly
executed, because the same source code would be executing within the same system
environment, drawing the same data from the master data catalog. Journals and funding
agencies could support this vision by mandating that more types of measurements be
deposited into approved cloud-based data catalogs, and funding could be provided for
existing consortia to move their valuable data from isolated data silos into centralized cloud-
based catalogs. As cloud computing becomes commonplace, we expect technologies to
emerge that allow one to move data between cloud computing providers, to prevent ‘lock
in’ 19. For example, the open-source Eucalyptus platform (http://www.eucalyptus.com) is
enables one to move cloud-based resources out of the Amazon Web Services commercial
platform into a private cloud infrastructure.
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Some have already called for the creation of a publicly-funded cloud computing
infrastructure14; however, we suggest that it would be most prudent to focus funds and effort
into building cloud-based scientific computing software on top of existing cloud
infrastructures in such a way that they portable across vendors. Given the economic and
competitive pressures facing commercial cloud computing vendors, as well as their
substantial technical and capital resources, it is not clear that a publicly funded cloud
infrastructure would offer any significant technical or economic advantages over
commercial clouds. Furthermore, we suggest that, as has been observed in many aspects of
computing, standards enabling cross-cloud interoperability are likely to emerge as cloud
computing becomes more prominent and additional vendors increase competition in the
market. Groups such as the Open Cloud Consortium (http://opencloudconsortium.org) have
already been formed to explore this issue. Notably, many of the popular tools for managing
and interacting with cloud-based infrastructures, such as Chef (http://www.opscode.com/
chef), are designed in such a way that they are independent from the specifics of any one
cloud computing vendor’s infrastructure. Peer-to-peer technologies such as BitTorrent,
which is already being leveraged in the bioinformatics community20, can be used as a
failover solution to ensure that data sets persist and remain accessible independent of the
viability of any single cloud computing provider.

In our domain of biomedicine, a number of efforts towards the development and distribution
of cloud-based tools, systems and other reproducible resources for cloud-based biomedical
computing have recently emerged21. Several groups have created standardized machine
images with software tools and configuration settings optimized for biomedical research.
The most ambitious among these so far is the J. Craig Venter Institute Cloud Bio-Linux
project (http://www.jcvi.org/cms/research/projects/jcvi-cloud-biolinux/), which aims to
provide a comprehensive and coherent system capable of a broad range of bioinformatics
functionality. These pre-configured machine images are made publicly available to the
research community, providing individual investigators with a standardized, tuned
bioinformatics platform for cloud-based computational analyses. Other efforts have gone
into the creation of more comprehensive multipart systems for facilitating biocomputing in
the cloud22, 23. A significant effort in this area is the Galaxy project24, which provides a
platform for large-scale genomic analysis.

Although we suggest that the WSSE approach is a pragmatic and substantial first step
towards enabling reproducible scientific computing in the cloud, we acknowledge that it
does not address all aspects hindering reproducibility. Foremost, software licensing
constraints could prevent the use of WSSE. Many commercial software applications are
licensed to specific individuals, and will often constrain the number of software application
instances that can run simultaneously per license, or restrict execution to a number of
processors per license. These constraints might prevent an investigator from sharing some or
all the system or software components of used to produce published results, limiting the
effectiveness of WSSE. We also recognize that there is a need for continued research and
development into reproducibility enhancements at levels above WSSE. For example,
problems in data organization, systematic provenance tracking, standardization and
annotation are not solved by WSSE. Nonetheless, we suggest that WSSE can serve to
initiate a value-driven movement towards general reproducible scientific data and
computing into the cloud, and that solutions to problems of reproducibility not solved by
WSSE – many of which already exist in some form – will follow WSSE into the cloud
towards the realization of a comprehensive platform for reproducible computing enabled by
the technical innovations of cloud computing.
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Figure 1.
Layers of reproducible computing in the cloud
The reproducibility of scientific compuitng in the cloud can be understood at three layers of
scientific computation. (A) Data Layer: Generators of large scientific data sets can publish
their data to the cloud as large data volumes (1) and substantial updates to these data
volumes can exist in parallel without loss or modification of the previous volume (2).
Primary investigators can clone entire data volumes within the cloud (3) and apply custom
scripts or software computations (4) to derive published results (5). An indepdendent
investigator can obtain digital replicates of the original primary data set, software, and
published results within the cloud to replicate a published analysis and compare with
published results (6). (B) System Layer: Investigators can set up and conduct scientific
computations using cloud-based virtual machine images, incorporating all the software,
configuration, and scripts necessary to execute the analysis. The customized machine image
can be cloned wholesale and shared with other investigators within the cloud for replicate
analyses. (C) Service Layer: Instead of making in-place modifications or updates to the
systems or data comprising the underlying infrastructure of a scientific computing service,
the entire infrastructure can be virrtualized in the cloud and cloned prior to update or
modification to retain the state and characteristics of the previous version of the service.
Requests made by external tools or applications through the external service interface could
incorporate a version parameter into requests to the service, so that published results citing
previous versions of the service can be evaluated for reproducibility.
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Table 1

Features of reproducible scientific computing in the cloud

Traditional challenges Cloud computing solutions

Data Sharing • Large data sets difficult to share over
standard internet connections. Can
require require substantial technical
resources to obtain and store.

• Public data sets change frequently.
Difficult to archive and share entire data
repositories used for analyses.

• Large data sets can be stored as
“omnipresent” resources in the cloud.
Easily copied and accessed directly from
any point in the cloud.

• “Snapshots” of large public data sets can be
rapidly copied, archived and referenced.

Software & Applications • Reproducibilty of results often requires
replication of the precise software
environment (i.e. operating system,
software and configuration settings)
under which the original analysis was
conducted. Specific versions of software
or programming language interpreters
often required for reproducibility.

• Analyses typically conducted by several
softwares or scripts executed in a precise
sequence across one or several systems as
part of an analysis pipeline. Only the
individual programs or scripts are usually
provided with published results.
Substantial technical resources typically
required to recreate the pipeline used in
the original analysis.

• Standard software packages cannot serve
all the needs of a scientific domain.
Investigators develop non-standard
software and computational pipelines to
facilitate computational analysis
exceeding the capabilities of common
tools.

• Computer systems are virtualized in the
cloud, allowing them to be replicated
wholesale without concern for the
underlying hardware. Snapshots of a fully
configured system or group of systems used
in analysis can be rapidly archived as digital
machine images. System machine images
can be copied and shared with others in the
cloud, allowing reconstitution of the precise
system configuration used for the original
analysis.

• System images can be pre-configured with
common and customized software and tools
in a standardized fashion to facilitate
common tasks in a scientific domain (e.g.
assembly of genome sequences from DNA
sequencer data). Pre-configured images can
be shared as public resources to promote
reproducibility and follow-up studies

System & Technical • Substantial computational resources
might be required to replicate an analysis.
Original computational analyses requiring
several hundred processors to complete
becoming more common. Reproducibility
limited to those with requisite
computational resources.

• Substantial technical support often
required to reproduce a computational
analyisis. Substantial technical support
often required to replicate the software
and system configuration required by the
analysis. Prevents reproducibility by non-
technical investigators lacking substantial
IT support.

• Cloud-based computational resources can
be scaled up in a dynamic fashion to
provide necessary computational resources.
Investigators can create large computational
clusters on-demand and disperse upon
anlaysis completion.

• Complete digital representations of a
computational pipeline can be shared as
machine images along with deployment
scripts that can be executed by non-
technical users to reconstitute a complete
computational pipeline.

Access & Preservation • Grant-funded software and data
repositories often disappear from the
public domain after funding is
discontinued or the maintainers abandon
the project. Leads to loss of access by
dependent users and loss of public
investment into the resource.

• Software, code, and data from grant-funded
projects can be archived and provided as
publicly accessible resources in the cloud.
Economies of scale in the cloud allow for
active preservation of grant-funded
resources for many years past funding for
nominal cost.

• Cloud computing providers already
showing a willingness to host public
scientific data sets at no cost.
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